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REMIGIO RUSSO (%)

Continuous dependence for the

viscous compressible fluids in unbounded domains (**)

1 - Introduction

In a previous paper [7], by using the weight function method [6], we
established a uniqueness theorem for classical solutions of the equations go-
verning the motion of a viscous compressible fluid in unbounded domains,
removing some ¢ classical » conditions of convergence at large spatial distance,
wich are a priori artificial both from the physical and mathematical point
of view. More precisely, denoting respectively by v, 0, T, p, f, 2, 7, , vel-
ocity, density, temperature, pressure, body force, the region of motion, a
positive number and the spatial distance from some fixed point, and putting
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we prove that, in order to get uniqueness, it is sufficient to require that

(*) Indirizzo: Istituto di Matematica, Universitd, Via Mezzocannone 8, 80134
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(I) |F|<Mr, M= const>0, in Q= Qx[0,7], with Fel,UI and

12, Fel,

nw={
N 1/4, Fel,.

T should stress that such assumptions are much weaker than those of clas-
sical Graffi’s paper [2];, where it is required # = 0 for Fe I, UL, — {1/¢} and
info >0 in 2.. This last condition appears physically immotivated, as the
same Author admibs.

In the present paper we investigate the question in the more general con-
text of continuous dependence upon the initial data, boundary data and body
force (1) for solutions of the equations of viscous compressible fluids. Pre-
cisely, after a brief section (n. 2) devoted to preliminaires and to statement
of the problem, in section 3, following the methods outlined in [1], » ; We obtain
a continuous dependence theorem with respect to the weighted norm

(IT) [ g{ou® + o> + 007} dQ2
2

where u, ¢, § are, respectively, the velocity, density and temperature perturba-
tions, g = exp [a(t -+ £)71*], « and y are positive constants and ke (0,2 — ¢)
with & € (0, 2). The statement is proved under the assumptions that (I) holds
with

kf2, Fel,—{l/e}

N k4, Fel,.

1/o< Mre, and for solutions belonging to L* (82, ¢) (»), together with their
first derivatives and data.

Successively (sect. 4), from the theorem proved in section 3, we get a con-
tinuous dependence theorem with respect to a suitable nonweighted metrie,
related to continuous dependence of Holder type. '

(*) Continuous dependence theorems for classical solutions of the equations of the
viscous compressible fluids in bounded domains are given in [4], [6]. Till now, however,
we know nothing about similar theorems in unbounded domains. In R» and for in-
viscid fluids see [4].

(2) The space L%, g) is defined as the completion in the norm j’ gu® 4.2 of the
functions which are finite in 2 [8].
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Turthermore, in section 4, we shall give a continuous dependence theorem
in L*norm under the hypothesis that the initial data and body force belong
to L¥0).

2 - Statement of the problem

In the theory of viscous compressible flow a fluid filling a domain Q (3)
is governed by the equations

0
@, olz +o Vel =—Vp+ A+ VV-v+ pdot fp,0,1),

]
(1), 5§+V-(9v)=0,

oF .
(L), Q{§+U-VE}=(——p+lV-v)I-D—{—2,uD-D——Vq,
Lase q=—kVT, p=p(o, T), B = H, T),

where the symbols have their usual meaning [9],.
For the sake of formal simplicity; we shall suppose that equation (1), has
the special form

H=c¢1T, ¢y == const >0 .

We can however get the same results on the more general assumption
¢y = (0I[0T), be positive [7].
Let 4 be the class of regular solutions (v, o, T) of (1) such that (7> 0):

(i) if (v, 0, 1), (v + u, 0 + 0, T - 0) belong to , then u, o, 0, f, p,
belong to L*(£, exp [«(t + to)7rt), with ke (0,2 — &) and g€ (0,2), together
with their first derivatives;

(3) The boundary 3Q is assumed as smooth as required by the validity of the
divergence theorem. If £ is unbounded we assume that Q is the exterior of a closed
fixed region £, (c R?), contiaining the unit sphere. This assumption on @ (unbounded)
is made for the sake of simplieity [1],.
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(i) AM >0: 1/o< Mre and |F|< My, for Fel,— {1/o} UL, and

k2, Fel,—{1]o}

n = <
K4, Fel, in Qg

(iii) f and p are as smooth as required by the mean theorem.

Let V= (v,0,T), V4+ U= (v + u, 0+ ¢, T+ 0) two elements of . De-
noting by ((”07 00y To)y (0o + g, 00 + 00y Lo + 00))7 ((vz, 05, Tz), (vs+ us,
or + oz, T 4 0x)) (*), (f, f+ ) the initial data, boundary data and body
force, respectively, corresponding to the above solutions, we ask if, provided
that the perturbation U, of the data associated to V is «small », the pertur-
bation U is itself sufficiently « small», that is the motion ¥4 U is not much
different from V. It is clear that the meaning of the word « small » is related
to a suitable measure for the perturbations of the solutions and the data, that
is to metries [3]. In the sequel we shall consider weighted as well as non-
weighted metrics. Precisely, we shall prove continuous dependence with respect
to the metrics (II), L* and continuous dependence of the type (Holder) (*)

sup (|Up |+ | Us| -+ |])< 8 :>Qj'ed!2,,+ofrd€?_[ (Vi)* (V0)%) dQn< 0,

(III)  Qp= 8,/0,, VE>R,, Vte[0,T], R,= inf{R: 822}
|Us | =voue|+ 00|+ [v00s],  |Us|=|uz|+|oz|+|0z],

where ¢ = pu? - o? -} 00 and S, denote the ball of radius R centered in .(3
Now, we collect some relations wich will be frequentelly used in the sequel.
Let 4, B, C, D be vector fields and f, g, E scalar functions with & > 0.
Then (%)

(2) V(fA) ZA'Vf+fV'A’
(2). fY(V-A4) = V-[f(V-A)A] — {(V-4)2 4 (V-A) 4-Vf,

(2)s fA-4A = V-[fVA-A— A*Vf]—{(VA): + A°Af,

(%) p is assigned V(P,t)e 802 x[0,t]: v-n<0[7]

(®) We shall successively observe this continuous dependence is given by a suit-
able metric [1],.

() Of course such vector fields and scalar functions are assumed smooth enough
and the product ABCD suitably carried out.
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(2)q flAl = V-[fiVI — #Vf] — f(VI)2 + 1*4f
12 Tk .
(3) gA-BC-D<<gE;J—é:+%— gB*, |CD|krH, §>0,
A:B: ¢ BA* 0§ jgC?
. - P, P — — K 1
(4): gAB-C < gE %E +902<<987-25+27 BA® 4 5 )
(4), BIVE < rHt, §,6>0.

We shall finally note that the sign < in the formula I« @, where ¥ and ¢
depend on a function w(x), means that F<cG, where the constant ¢> 0
does not depend on u(x).

3 - Continuous dependence with respect to a weighted-norm

As can be easily checked, the difference motion (u, ¢, 0) obeys the equa-
tions (7)

|

L1 3 1 3 2
(gou®) = 5 gu 5t—+50% Fria A alz(v+u)

bol =
[s))

(5)1 I3

—gou-V(v+u)-u—gow -+ u) Vo +u)u+tgdu
—gov-Vu-u -+ gaV-u -+ au-Vg— (4 -+ p)(V-u)u-Vyg
— (A + n)g(V-u)? —ug(Vu): + udg + go(x, 0 + 0, 1) u

+VI(A+we(V-u)u + pgVu-u — pu?Vyg — gru],

10 1 ,0g 1
- =2 2) o T g2 . . a2V
(8)s 5 5 (900 =50 5 gooV-u — gou-Vo —: go* V- (v + u)

1 1
+ 508 +u)-Vg——§ V-[go*(v + u)],

("} In (5), without loss of generality, we have set ¢, = 1.
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19 1 a9 1 0 . V
éa(ggﬁ ) = 590 e +§!10 &—QUU(U'FU) V(T - 0)

—go0u- V(T 4+ 0) —g0aV-v —gplo -+ 0, T+ 0)V-u
A 2g0V-(v +u)V-u + 2g0V-v V-u -+ 2ugd- (D -+ d)

+2ug0D-d — golv- VO — 4g(VO)? 4 0249 + XV -[g0 VO — 62Vg]

where g = exp [a(t - £,)77*], and the initial and boundary data

w(P,t) = us(P, 1), O(P,t)=0x(P,¢t), V(P,1)edlx[0,7],

(6)
o(P, t) = ox(P, 1), V(P 1) x[0,7]: v -n<0

(7) u(P’ O) = uo(P) H U(Pr 0) = O‘O(P) ’ 0(P7 0) = OO(P) ’

In (5) we have set (%)
w =ple+ o, T+ 0)—plo,0),

Y= f(z, 0+ 0,t) —fl0,1),
d = [V(o+ w)— [Vo].

By (iii) it turns out that

2 ) _
ﬂ:G£@+W@T%Hﬁ%@T+Mm=aW+M
3 oyl . o
= @ ; 0< 2]
bu=3 Lo+ toduo<2| 2ol

By the properties of the weight function g we get

Vg = —alt + 1) kri-le,,

8)
%Z“MH%WW%

(8) A° is the symmetric part of a second order tensor A.

YPeQ.

(hyy 1y > 0),

(l;>0).
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Now, exploiting the inequality (3), we increase the following terms of (5)

1 10

goow b 51, —goviu [v cwrwl,  —gouwlVetulu,
(I)

~—ga[—1—§(v+u)~\7<v+u>]-«/§u, —.«/w&u-[\—%vm,

~ 3. oyl
290 ve [= 3 5"{,— ;

(IT) (,gG{V (v +u)l;

1 10 — 1 ]

59001 =1, —9oV/80 [ (0 + w) V(T+0)), — gohu-[V(X +0)],
(II1)

b
—OG\/Qer—V v], -—yg@e[év-v],

where the first factor and [-] correspond respectively to A and €D of (3).
In (I), (1I), (III) the positive constant j is expressed respectively by &, 8, ».

In the same way as before we apply the Cauchy inequality (4) to the
terms of (5)

@ —g0[p]V u, Ag0[V-(v+ u)]V-u, g0[V-0]V u, —gblOV u;
(A1) 2ug0d-[D +d], 2ug0 [D]-d;

where 0, [-] correspond respectively to 4, B of (4) and B = ¢ > 0. In (I),
(I1)', the positive constants j and § are expressed respectively by (£, ») and (1, v).

To give an idea of as (3)-(4) are applied, we carry out the (3) to — gou
-(0/ot)(v 4+ u) and (4) to 2ugdD-d

-gaw%(v+u> —govauise Lwtu W) <955+ § e,

Vo o

since — (v + u) | iz (for (ii));

\/" |5
f2D2 0 vurtg0*
2ugd D-d< gy ——— -+ nud* < Jgng"y 4 g + nu(Vu)?,

gince |d|<|Vu| andvz | Vo |< it (for (ii)).
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Now, taking into account (ii) and Cauchy inequality, we increase the
other terms of (3)

gotviw® | ng(Vu)® _ gou® | Ertogu? +ng(Vu)2

(a) —gov-Vu-u < <

2 2 8n2& 2 7 7
() g Vi< gé;ccz + Cg(v2- W« g;; + ,37-k2gge + Cg(vz'“)g ,

Putting b = a(t -+ 4,)*% and proceeding in the same way as before, we get

a2g? B2y g2
n

(e) aou-Vg = rk-1gacu, < 29 2

< 8{702; ﬂ?";gcr“ nh‘zo«z(;—ngue ’
(£) bhu-Vg< qbznﬂ + nhzre(;—ngug %%g; n m‘"g@()z + nh%-ﬁ(h;) gu? ’
(g) — (A4 p)(V-u)u-Vg< (A + /gg(V- w? | (At M);;eg.g(k_l,guz |

To deduce (a)-(f) we have used the relations
Velvl, e, lel,  [BIWe<r,

wich are contained in (ii).
Now, we notice that

1 lo%0g 1 . yr
(a)' 5 0% (vt u) Vg + 1 —= <5 alt + 1)7go* [k(z + fo)(v +u).— 51,
(4 +u) , 1,9
7 2 S TR gae2(k—1) 5,2 2 p2(k—1) 2 — 2 _v
(b) wurdg + 5% hEg w? o+ h® 2N gut 4 o out o
13 2
L h*p + ’ j;j# + n)riE-regoy® — Lytorgtgg—u )
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oytertgo0?

(o)’ xomg+éz 002 2« Aperasrre gope =,

ot

from wich, choosing

y = max {2k(r + t,), Ah?

(/L 4 A4+ w/20 + 1), 4XR2/ody}

and taking account of the fact that r+> r2-1+e (for (ii)), it follows that the
sums in (a)’, (b)’, (c)’ are nonpositive.
Finally, we increase the term gep(w, o + 0, ) u by (8) and (ii)

sy TR ou?
(R) g u<g—3— +45

The next step is to integrate over ©, and to apply the divergence the-
orem. Let’s note, by the way, that the surface integrals extended over 80,
in the limit R — oo, tend to zero.

Choosing the constant p as before, from (3)-(4), (a)-(h), (a)'-(¢)’, the reader
should have no trouble in getting the following

d 3 1 1
(9) 5§<(—5+8n2§+2v+ ) [geutd2 + (3 W+ +8,”3
9 3
fgadQ—{—(zC%—{—%—*—z;
1 o 7 0
FCE =) [rigeura + (15— 1) [rigorac
o

25 o 1
+ (5 v =) 1% 900200 + [n(5 + 2u%) — wpe) [ g(Vu)? a0
2 02

+e 4 a4 A

e = (4wl [g(V-u) dQ+(———wx)ng0 aQ
— p(l— w) —}—éfg(Vu)zd.Q — z(1— o) [_Jfg(VG)Z a0

+fg7€<pwo+o', + [F (2, 1) ndZ,

&
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where we (0,1) and
F (@, t) = (A -+ ) g(V-u)u 4+ ugVu-u — yu*Vg

- -—(—’#’fﬁ + 4[g0V0 —0°Vg] .

Now, by the Clausius-Duhem inequality, is @ > 0, 34 4 2¢ > 0 [9],, and
s0 A4+ u>0.

Choosing
o 4ty _ 2op o 202+ p)
£ By v msiTgn VEEL CSTenT g
and putting
1 1 2 1
b= (g gt $ g st
1 9 3 1
5% + [y +5 —81/)21,} ;
by (9) we have
de
) G+ A=) [glVe) +(V0)1dR < e+ [grep?dQ + [ F @, 1) ndX.

From (10), by the use of the well known Gronwall’s 1emma, it follows con-
tinunous dependence for the solutions of (1) belonging to 7 and such that

1) sup {|Vu|, |V-ul|, m, [VO]} < (H > 0),

with respect to the norms

LMy q), LMLyreg),  [gedQ + (1—<U)Qf gl(Vu)* + (V6)*1dQx,

of initial data, body force and solutions, respectively.
By (10), as a consequence, we get the following uniqueness theorem.

Theorem 1. If in  there is a flow (v, o, T) with initial data Vy = (v,,
00y To), boundary data (vs, oz, Ts) and body force f(P, o,1), it is unique.
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4 - Continuous dependence with respect to non weighted metries

Concerning the above type of continuous dependence, we should remark
that it have not much meaning from the physical point of view, since the
weighted-norm ¢ is not a suitable measure of the perturbation U. Neverthe-
less, from (10) we can get continuous dependence upon data for solutions
of (1) belonging to J in the sense of (IIT), and in L®norm. Precisely, the
following theorems hold.

Theorem 2. If a solution of (1) with initial date V, and boundary data
Vz belongs to I with e (1,2) and (11) holds, then it depends continuously on
the initial data, boundary date and body force im the semse of (III).

Theorem 3. Let V, and V4 U be two solutions of (1) belonging to 7.
If uyy 00, Toe L3 Q) and < € L), then

u,0,0 e L*(0,7; L¥2)), Vu, VheIL2:)

lim B2 { (u* 4 62)dX, = 0.

R—yc0 Zp
If e€(1,2) we increase the term gep-u of (5) by using (3)

£ 2
gop-u< I g<p 4 oreew? egr gu

Now, if we add (cgreou®)/2 to o(u?/4)(dg/ot) and choose a suitable ¢, we getf;
a nonpositive term since 7+ re.
Therefore the relation (10) implies

(12) % + [gl(Vu)2 ++ (V0)2]dQ < & -+ [ F(w,1) - ndo -+ fgprdQ.
02 P o -

Integrating (12) from ¢ = 0 to t = 7, we have

JgedQ + [g[(Vu): + (V0)*1d0. < jg (@, 0)e(x, 0) AR+ j'g(p 4.0, 4 _fJf ndX;.
2 2,
Taking into account that [1],

+o :
!!ng<4n Jexp[—atyrtlr2dr < «®*,  sup {|u,|+ |uz]+ ||} < &,
0
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for o = R-*, R = §, s < 3/2 we obtain
[edQ 4 [dt [[(Vu): + (V0)1AQ < [82B* + 6], Vte[0,7];
'QE 0 Qﬁ

from this relation we easily recover the Theorem 2.

We should remark that such type of continuous dependence may be re-
formulated in terms of metrics, by introducing suitable families of quasi-
metries [1];.

In order to prove the Theorem 3, we notice that, after a simple integration,
the inequality (12) yields

(13) [edQ + fdt[[(vu)2+ (VO)R]dQ < exp [aRE(t, -+ 7)7] | e(e, 0) AR
o, 6 9 2

+Qf¢p‘~’d.Qr+ sup |uz|-+ sup |0z}~ sup |oz|.

Now, inequality (13) is similar to (14) of [1]; and so, proceeding as in [1],,
the Theorem 3 is recovered (?).

In conclusion, the author expresses his sincere thanks to Professor S. Rio-
nero for his guidance in his research.
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- .
Soanlnlal'lo

Usando il metodo della funzione peso si dimostrano dei teoremi di dipendenza continua
per le soluzioni regolari delle equazioni dei fluidi wiscosi compressibili senza richiedere
che la densita sia inferiormente limitata da una costante positiva e con velocild, tempera-
tura, densita e lovo derivate prime anche non limilate. Si migliora, inoltre un precedente
teorema di unicita.
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