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GIOVAMBATIISTA AMENDOLA (*)

On the thermal flux distribution

in a hollow spherical nuclear reactor (**)

1 - Introduction

In [1] we have studied the nuclear behaviour of a new spherical nuclear
reactor, bare or reflected outside the core, which has an inner cavity. The idea
of such a reactor rose in order to approximate more and more the behaviour
of the infinite slab as the radius of the cavity increases; in fact, it is well known
that, in the absence of the reflector, the ratio y = maximum flux/average flux
is maximum (y = 0.637) for the infinite plane slab and it is equal to 0.304
only for the sphere. Moreover in [1] we wanted to realize a reactor characterized
by an uniform distribution of the fuel elements, which were disposed in radial
direction. Such a situation undoubtedly presents some constructive difficulties
even if it is surely possible to solve the relative technical problems somehow,
so much so that a solution is suggested in [1]. _

In the present note, also with a view to having fewer constructive difficul-
ties, we consider a hollow spherical reactor, that be the envelope of the fuel
elements disposed now vertically on a grid plate having the shape of an amphi-
theatre such as to envelop the lower half-sphere (of radius R), that delimitates
the core; the fuel elements have a cylindrical shape and a variable height in
such a way as to envelop the two spheres (whose radii are R, and R, Ry<< R)
that delimitate the core, thus the central zone of some of them must be empty;
for example, the fuel element in the center of the reactor is empty in the zone

(*) Indirizzo: Istituto di Matematiche Applicate « U. Dini», Facolth d’Ingegneria,
Universitd, 56100 Pisa, Ttaly.
(**) Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.). - Ricevuto: 12-II11-1979,
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with # < R, and has its active part in the two zones with » € (R, R), r being
the radial distance. However the grid plate can be an usual one, if all the
fuel claddings have the same height and the fuel is disposed in them as we
have already said.

The high values of y, we can obtain also in these reactors, allow us to have
a good homogeneity for the working of the fuel elements.

Moreover we consider the inner cavity always filled with reflector mate-
rial, that on the contrary is absent in [1]; an outer reflector may be in the
zone with re[R, R -+ T)]. We study the nuclear behaviour of the reactor also
when both the reflector and the moderator (always of the same material)
change: H,0, graphite, D,O + 0.169 H,0 and D,O are considered.

The values of y, we have obtained, are greater than those derived in [1],
but now the critical radius R increases in comparison with the cases examined
in [1].

With a view to giving a first idea on the nuclear behaviour of this new
reactor, we consider the reactor homogeneous and thermal. On the other
hand, the presence of three different zones in the reactor surely does not
simplify the problem; see to this purpose Boffi and Premuda’s work [2] rela-
tive to a conventional spherical reactor.

2 « Determination of the neutron flux distribution

2(a). FPundamental relations. — Let the reactor core have the geometrical
shape of a spherical bark, delimitated by two spheres of radii B, and R (with
0 < Ry< R) and surrounded by reflector material both inside and outside.
We suppose that the inner reflector fills the whole spherical cavity, while the
outer one has the shape of a spherical bark of thickness 7, that includes the
extrapolated distance of the reflector; moreover we suppose that the two refiec-
tors and the moderator are made of the same material.

Denoting by ®,, ® and @, the neutron flux in the inner reflector, in the
core and in the outer reflector respectively, and considering the neutron dif-
fusion equation relative to the steady-state of the reactor supposed homo-
geneous and thermal, we have the following three equations (see [3], [5], [41)

(2.1) AP B2 P =0 when re[R,, E],

and

0 when re{0, R},

(2.2) 42D, — k2D, =0 with i =
when re[R, B+ T],
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where B? is the buckling of the critical reactor, » is the distance from the
center of the reactor and

(2.3) k=1/L,

is the inverse of the thermal diffusion length of the reflector.
Solving (2.1) and (2.2) in the same fashion as was done in [1] (*), we get
the following solutions

(2.4) Dr) = % [4,sin (Br) + 4, cos(Br)],
and
(2.5) /(1) = (@ exp [hr] -+ by exp [— T (i =10,1).

First of all we observe that the neutron flux must not become infinite in
the center of the reactor, and then in the expression of @,(r) we must have

(2.6) by=—a,5% 0,

hence it follows that

(2.7 Iim @y(r) = 2a,k ,
7==>0

therefore, being Py (r) a continuous function of », we have also
(2.8) Dy(0) = 2a,k .

Moreover, putting

(2.9) Oo =— (Co>0),

(*) We recall that (2.1), as well as (2.2), in spherical coordinates becomes

dzg 249
dr? + r dr

+B2d = 0.
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(2.5) with = 0 can now be written in the following form

Co .
(2.10) Dy(r) = 7" sinh (%r) , re(0, Rl -

Tt is interesting to note that @,(0) == 0, whatever the value of R, may be.

The relation (2.5), also when i = 1, can assume a form like (2.10). In fact,
from the boundary condition that the neutron flux reach zero at the extrapo-
lated distance of the outer reflector, i.e.

(2.11) D(R+-T)=10,

we obtain that

(2.12) b, = — a, exp [2k(R + 1)1 ;

hence, putting

(2.13) 0y = — 2a, exp [B(R + T)]>0 (C,=0 «T=0),

we get at last

(2.14) Dy (r) = g—l sinh [k(R -+ T —)], re[R, R+ T].

2(b) The critical equation. — Now we must lay the other boundary condi-
tions relating to the surfaces between the different zones of the reactor; they
are the continuity of the flux and the neutron current density at the inter-
faces, i.e.

) do 1D,
D(R,) = Dy(Ry) and D [TT]FRU =L [(.a'?o]mko ’
(2.15)
ad 1D
@(R) = @l(R()) and D [—a’;]r=n = -Dl ['(;(E:'l]r=ﬂ .

In these, recalling that the moderator and the two reflectors are made of
the same material, the diffusion coefficients D, D,, D, are equal (see on
page 125 of [3]); thus, with some caleuli, from (2.15) we get the following
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A, sin (BR,) + A, cos (BR,) — 0, sinh (kR,) =0,

A, B cos (BRy) — A, B sin (BRy) — 0ok cosh (kR,) = 0,
(2.16)

A, sin (BR) + A,B cos (BR) — C, sinh (ET) =0,

A, B cos (BR) — A, B sin (BR) + O,k cosh (kT) =0,

linear and homogeneous in the unknowns 4;, 4,, ¢, and ¢,. These quantities
cannot be zero, therefore the determinant of their coefficients must be zero.
This condition gives the critical equation of the reactor, that can be put in
the form

(2.17) [B? tanh (kR,) tanh (kT1') — k?] sin [B(R — Ry)] =

== kB[tanh (BR,) 4 tanh (k1')] cos [B(R— R,)],
which, observing that we cannot have in it
(2.18) sin [B(R— R,)]=0

for the right-hand side cannot vanish simultaneously (being at least R,==0),
assumes the simpler form

1 B?tanh (kR,) tanh (1) — k2

(2.19) 0ot LBUE = RBo)] = 75 ~—ant (k) + tanh (bT)

From this equation we can deduce the critical dimension R of the reactor
in terms of the other quantities in (2.19); thus we get

1 1 B?tanh (kR,) tanh (kT) — k> NI

= [t — Fint 3 [P —_—
(2.20)  B=Rot 5 oot lrm — gy Ttannern) T E

where # is an integer number such that the neutron flux is positive in the
core, i.e. for any » € [R,, R). On the other hand it is easy to verify that D(r),
which, on the ground of (2.4) and (2.16), 2, may be written in the form

(2.21) @)= ]%’ {k cosh (kR,) sin [B(r — Ry)]-+ B sinh (kR,) cos [B(r — Ry},
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vanishes af

k mm

—1 — — JER
ot [~ e Gk T B

(2.22) F= Ry + %
where m is integer.

This relation coincides with the expression (2.20) of R when 7 = 0, i.e.
in the absence of the outer reflector. We observe now that R decreases as T
increases, thus, when 7'z« 0, the first value of 7 (for m = 0) is greater than
the value of R given by (2.20) with # = 0; moreover we cannot have n >0
in (2.20), for otherwise R would be greater than the first value of 7 and this
would cause the neutron flux to become zero and then negative within the core.
Thus we can state that in (2.20) we have

(2.23) n=0.

It is very interesting to consider the following limits

. 1 1 B?tanh (k7T) — k?
_ = = cot—1[—
(2.24) Jm (B — Ry = 5 0 g = Fanh (6) 1
. 1 1 B2 tanh (kR,) — k*
lim R = Ry -+ = cot—2 [-—
(2.25) e vt 3O G T k) 1

that characterize two situations which happen in practice when the values
of R, and T are high enough to can assume respectively

(2.26) tanh (kR,) =~ 1 and tanh (kT) ~1,

that is when R,, 7 = 2-+3L,.
If the values of B, and T are such that (2.26) hold simultaneously, then
the situation expressed by the following limit

. 1 B2— |2
2.2 — . —1s
(2.27) R,,ILTOSR Ry) Beot [ 5B

7 —4o00

]

oceurs.

We note, at last, that it is easy to verify both that the thickness of the
core R— R, decreases as R, increases and that R decreases if 7' increases,
when we hold the other parameters in (2.19) fixed.
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2(c). Some remarks about the flux distributions. — Whatever the value of R,
may be, from (2.9) and (2.10) it follows that

(2.28) D,(0) 5~ 0 and D,(0) =0 ;

moreover Dy(r), being

(2.29) D, (r)>0 Vre (0, R,

is an inereasing function from @,(0) to Py(R,) and it is concave upward, being
(2.30) D,(r) >0 Vre[0, R,

as one may easily verify with the calculus.
The neutron flux in the outer reflector is expressed by (2.14), from which
we find that

(2.31) D,(r) <0 Vrel[R, R+ 17,

therefore, being from (2.2) with i =1 (see the note (%))
i 2 ! 2
(2.32) Pir) + = Dy(r) =12 Dy(r) > 0,

we have also

(2.33) Pi(r) > — -‘? &,(r)>0 Vre[R,R-+T]

and then @,(r) is a decreasing function from the value @,(R) to zero in
[R, R+ T, where it is concave upward.

It remains to examine the neutron flux in the core. From (2.29) and (2.31)
we deduce at once (see (2.15))

(2.34) D'(Ry) >0 and D'(R)< 0,
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henee in [R,, R] the function @(r) at first increases, then it has a maximum
value at » = »* and after decreases down to the value P(R). We have only
one maximum point #*; in fact in @(r) had two (or more) maximum points,
the function @(») ought to have a minimum point between them, thus would
exist an interval # over which the function would increases and be concave
upward; but this cannot be for where @'(r) > 0, on the ground of (2.1) written
in the form

2
(2.35) D'(r) + = ') = — B O(r) < 0,
there results

2
(2.36) D (r) < — - D'(r)< 0,

and not @"(r) > 0.

Thus @(r) has only one maximum point in (R,, R) and it has a point of
inflection in a neighbourhood of R that may coincide also with + = RB. The
exact calculus of this maximum point is a very hard problem, therefore we

have used a numerical method, solving the equation @'(#) =0 in (R,, R)
with the «regula falsi» [6], as we shall see later on.

3 « Neutron flux flattening

The ratio

(3.1) y = O|P

max

expresses the so called flux flattening in the core. To evaluate it we must
calculate the maximum value of the flux

C, cosh (kR . .
(32)  Pan= D) = I G i (s )

+ B tanh (kR,) cos [B(r— Ro)]}
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where #* is its maximum point, and fthe average value of the flux

— 1 .
(3.3) @ :77;! dav,
where
’ A 4 3 3
(3.4) ¥ :f’)n(R — Y

is the volume of the core.
With some calculi we get the following expression

[1]—; -+ BER tanh (ERy)] sin [B(R — R,)]

3r*
(3.5) Y =Tmrms pm - %
Brfe — F) 1—7; sin [B(r* — Ry)1 + tanh (kR,) cos [B(r*— R,)]
L= [kR — tanh (kR,)] cos [B(R — R,)] + kR,— tanh (kRo))

% sin [B(r* — R,)] 4 tanh (kR,) cos [B(r* — Ey)]

4 « Numerical calculus

As in [1], we have studied the nuclear behaviour of the reactor in function
of the various parameters we have in the deduced formulae. We have con-
sidered four different moderators (and reflectors): H,0 (L, = AL = 2.88 c¢m),
graphite (L, = 52 em), a mixture of D,0 and H,O with 0.169, of H,O
(L, = 116 cm) and at last D,O (L, = 171 cm).

For each of these four reactors, with the use of the computer we have
varied R, from 25 em to 300 em with variations of 25 cm, B from 0.005 cm™!
to 0.100 em—* with variations of P == 0.005 em~?, while the values of 7 are
different for the four moderators.

The programme in FORTRAN IV is the following.
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READ(2,1)AL,P,EPS,PG
WRITE(3,1)AL,P,EPS, PG
FORMAT(2F12.4,712.6,F'12.7)
AK=1./AL

DO 10 J=1,12

RO=25+J

RO3=R0**3

AKO0=AK*R0

TO=TANH(AKO)

DIF0=AK0—TO0

DO 10 I=1,7

T=50*I 150

TK =TANH(AK*T)

TOK =T0*TK

§=T0-+TK

DO 10 K=1,20

B=P*FLOAT(K)

AB=AK/B

BT0=B*T0

X = (B*AL*TOK—AB)/S

Y =PG/2.—ATAN(X)

R=R0-+-Y/B

RV=R**3—R03

V=4.¥PG*RV/3.

X1=R0

X2=R
T'1=AGB(X1,B,R0,AB,BT0,AK,T0)
F2=AGB(X2,B,R0,AB,BT0,AK,T0)
X3=XI1—P1*(X2—X1)/(F2—F1)
F3=AGB(X3,B,R0,AB,BT0,AK,T0)
IF(F'3)3,9,6

XE=X3—EPS
FE=AGB(XE,B,R0,AB,BT0,AK,T0)
IT(FE)4,8,5

X2=XE

F2=TE

GO TO 2

X3=(X3+XE)/2.
F3=AGB(X3,B,R0,AB,BT0,AK,T0)
GO TO 9

XE=X3--EPS
FE=AGB(XE,B,R0,AB,BT0,AK,TO)
IF(FE)5,87.

X1=XE

F1=TE

GO TO 2

X3=XE

F3=TFE

AR=B*X3—R0)

[10]

FIMED =3.*((AB+BT0*R)*SIN(Y)—(AK*R—T0)*COS(Y)+DIF0)/(B*RV)

FIMAX =B*(AB*SIN(AR)+T0*COS(AR))/X3

APP=TIMED/FIMAX

WRITE(3,91)R0,T,B,R,V,X3,F3,FIMED,FIMAX,APP
FORMAT(1X,2(F5.0,1X),F7.4,1X7(E12.4,1X)),

CONTINTE
STOP
END

FUNCTION AGB(A,B,R0,AB,BT0,AK,T0)

C=B*(A—R0)

AGB=—(AB+4BT0*A)*SIN(C)+ (AK*A—-T0)*COS(C)

RETURN
END
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In it, in particular, the values of 7 vary from 100 cm to 400 cm with
variations of 50 cm and are related only to the cases corresponding to
L,=116 em and L,=171 cm; values less than these are used in the other two
cases, for a thickness 7'= 2--3L, is almost equivalent to an infinite outer
reflector.

Moreover, in this programme, after fixing three values for R,, T and B,
we calculate the critical size R given, on the ground of (2.20) and (2.23), by

1 = (B[k) tanh (kR,) tanh (kT) — /B
= ¢ — -~ — G —1
1) RB=FR+ 55— tanh tanh (kR,) I tanh (k7T) ’

and'the volume V of the core (see (3.4)). Then, we derive the maximum point
7% of the neutron flux in order to calculate y. To do this, we consider the
function

(4.2) f(r)=— [;—; +B tanh (kRy)r]sin [B(r—R,) 1+ [kr — tanh (kR,) cos [B(r—R,)],

being, on the ground of (2.21),

Ad €, cosh (kR,
(4.3) e »._‘@M “f(r),

and then the only maximum point of @(r) in [R,, R] (see sect. 2(c)) is given
also by the equation

(4.4) fry=0, re[R,, R].
From (2.34) it follows that

(4.5) (%) >0, J(R)<0

and moreover f(r) vanishes in [E,, E] only for » = »*; thus the «regula falsi»

may be used. In this method we have put EPS = 10-¢,
At last, the programme gives the following quantities

— B
(4.6) ~FIMED = &- C, cosh (b R,)
3 k .
= BE 5 [( B + BE tanh (kR,)) sin (B(R — R,)) —

— (kR — tanh (kR,)) cos (B(R — R,)) + kR,— tanh (kRy)]
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and
B Bk
N = @ I P | By >
(4.7) PFIMAX = @, O cosh OB — 7 [B sin (B(r* — Ry))

+ tanh (kR,) cos (B(r*— Ry))] ,
hence we have

(4.8) y = APP = FIMED/FIMAX .

5 = Results

In the presence of the inner reflector, the flux in the core is more flattened
but the critical size increases in comparison with what oecurs when the inner
cavity is empty [1]. To have an idea of such variations we relate some resulfs
for the two different reactors, which we suppose both moderated and reflected
with graphite. Then, to have an immediate comparison among the values
of y relative to the conventional geometries, we consider only the case with
T = 0 cm, i.e. in the absence of the only outer reflector, and we fix B, = 25 cm,
that is the least value we have considered; as B (in em™') assumes the fol-
lowing values

B = 0.010, 0.030, 0.050, 0.070, 0.090

in [1] B (in cm) and y become
R =314.6, 108.2, 69.9, 54.8, 47.1; y = 0.312, 0.360, 0.412, 0.453, 0.483,

while now, i.e. in the presence of the reflector only in the inner cavity, we
have

R =316.3, 109.4, 70.6, 55.3, 47.4;  y=0.327, 0.373, 0.421, 0.460, 0.489 .

The values of y are, as in [1], greater than those relative to the conven-
tional geometries and increase both with E,, for any fixed B, and with B, for
any fixed R,; then they increase considerably with the thickness of the outer
reflector, for any fixed pair of values for R, and B.

As regards the critical size R, we see that it decreases as B increases, for
any fixed R,; consequently the thickness R — IR, deereases considerably and
y becomes very high.

All this holds, whatever the reflector material, we have supposed to be
the same as the core moderator material, may be, ie. for any L,.
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Then, if we vary L,, it results that, as its value inecreases, R decreases
and consequently the value of y increases, whatever the values of the other
parameters may be. To show this and to give an idea of the peculiarities of
the reactor we are considering, we relate the following numerical results.

Let us consider the case when R, = 7T = 100 cm. The values of R (in cm)
and y, corresponding to the following values of B (in ecm™?)

B = 0.010, 0.030, 0.050, 0.070, 0.090 ,

if I, = 2.88 em (H,O) are
£ = 408.4, 198.9, 157.1, 139.1, 129.2 , y = 0.528, 0.631, 0.674, 0.703, 0.727 ;
if L, = 52 em (graphite) become
I = 321.7, 139.3, 115.2, 107.9, 104.8 , y = 0.641, 0.897, 0.957, 0.977, 0.986 ;
if I, =116 cm (D,0 - 0.16 9%, H,0) result
I = 2781, 126.0, 109.6, 104.9, 103.0, y = 0.669, 0.926, 0.971, 0.985, 0.991 ;
if L, =171 ecm (D,0) are

R = 267.6,123.6, 108.7, 104.4, 102.7, = 0.671, 0.930, 0.973, 0.986, 0.991 .

Other results may be deduced from the enclosed figures, in wchich the values
of 7' are about 2L, to have an idea of the greatest savings, we may have by
the use of the outer reflector. In these figures we show the variations of R,
of the maximum point 7* of the flux and of y with B, which ranges in a very
large set (from 0.005 to 0.100 cm~'), for some fixed values of R,.
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Fig. 1. — Variations of B (—-—— Yy 7¥ (~———) and y ( ) with B for fixed values
of Ry, when H,0 (I, = 2.88 em) is used as moderator and reflector and I'> 3L,.
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Fig. 2. — Variations of R (—+—— ) ¥ (———) and y ( ) with B for fixed values

of Ry, when graphite (L, = 52 cm) is used as moderator and reflector and T' = 120 cm.
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Pig. 8. — Variations of B (—:—— }, #* (———) and y (——) with B for fixed values

of R,, when a mixture of H,0 and D,0 (0.16% of H,0; L, = 116 em) is used as
moderator and reflector and 7' = 250 ecm.
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Fig. 4. — Variations of B (—-—-+— Y ¥ (———) and y ( ) with B for fixed values

of Ry, when D,0 (L, = 171 em) is used as moderator and reflector and 7' = 350 cm.
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Sommario

In questo lavoro si riprende Vesame di un particolare tipo di reattore nucleare sferico
con una cavitd sferica centrale, gicv studiato dall’autore in wna precedente nola {11, allo
scopo di esaminare gli effetti della presenca di materiale viflettente nella cavita centrale.
Per tale studio il reattore é considerato omogeneo ¢ a neutront termict. Con Uequazione della
diffusione, relativa allo stato stazionario, si determina la distribuzione del flusso neutro-
nico nella parte attiva, nel viflettore esterno e quello interno e st mette in risalto il maggiore
appiattimento del flusso rispetto sia alle altre geomelrie convenzionali sia al reattore sferico
cavo di[1]. La presenza del riflettore interno porta ovviamente a dimensiont critiche mag-
giori di quelle ottenute in [1]. Si indica una possibile realizzazione pratica di un tale reat-
tore meno complessa di quella considerata in [1].
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