ANDRAS BLEYER and WOLFGANG PREUSS (*)

A remark to the characterization of closed derivations in C^* -algebras (**)

1 - Introduction

Let A be a topological algebra [2]. A linear mapping δ in A is said to be a derivation if it satisfies the following conditions:

- (1) the domain $D(\delta)$ is a topological subalgebra of A,
- (2) $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in D(\delta)$ (see [1], [3]). Under the additional assumptions:
 - (3) A is a C^* -algebra,
 - (4) $D(\delta)$ is a dense *-subalgebra of A,
 - (5) $\delta(a^*) = \delta(a)^*$ for all $a \in D(\delta)$,

 δ will be called a *-derivation in A [4].

Sakai has noted the following problem ([4], problem 4), which is interesting for the study of C^* -differential manifolds.

Problem (Herman-Powers). Let C[0, 1] and let δ be a closed derivation in C[0, 1]. Can we characterize δ ? (For example, $\delta = f(x)(d/dx)$, where f(x) is some function on [0, 1]).

We will give a partial answer.

^(*) Indirizzi: A. Bleyer, Technical University of Budapest, Faculty of Electrical Engineering, Dept. of Math., 1111 Budapest, Stoczek u. 2-4, Hungary; W. Preuss, Technological Institute of Wismar, Dept. of Math. and Sc., 24 Wismar, Philipp-Müller-Str., German Democratic Republic.

^(**) Ricevuto: 7-III-1979.

2 - Closed derivations

Let B be a commutative Banach-algebra. We define a derivation δ in B to be a closed derivation in B if

(6) from $a_n \in D(\delta)$, $a_n \to a$ and $\delta(a_n) \to b$ it follows $a \in D(\delta)$, $b = \delta(a)$ always (\to stands for the convergence in B).

In [1] and [3] representation theorems for continuous derivations of rings and algebras are established. Here we will prove a theorem for derivations in Banach-algebras, which are not necessarily continuous derivations.

Theorem 1. Suppose that B is a commutative Banach-algebra having the unit element e and δ_1 is a derivation in B with $e \in D(\delta_1)$ having the properties:

- (7) there is an element $x \in D(\delta_1)$ such that either condition $\delta_1(x) = e$ or $e/\delta_1(x) \in B$ is fulfilled;
- (8) for any element $a \in D(\delta_1)$ there is a sequence $(p_n(x))$ of polynomials in x with scalar coefficients such that $p_n \to a$ and $\delta_1(p_n) \to \delta_1(a)$ (obviously the set of all polynomials of this kind belongs to $D(\delta_1)$).

Now let δ be any closed derivation in B, whose domain $D(\delta)$ includes e and x. Then δ has the domain $D(\delta) = D(\delta_1)$ and the representation

$$\delta = b\delta_1,$$

where $b \in B$ depends on δ , or δ is an extension of the derivation $b\delta_1$, such that the restriction of δ to $D(\delta_1)$ has the form (9).

Proof. $D(\delta)$ is an algebra, which includes e and x. Therefore every polynomial $p(x) = \alpha_0 e + \alpha_1 x + ... + \alpha_k x^k$ belongs to $D(\delta)$. From (2) it follows $\delta(x^n) = nx^{n-1}\delta(x)$ and $\delta_1(x^n) = nx^{n-1}\delta_1(x)$, hence $\delta(x^n) = f(x)\delta_1(x^n)$ (n = 1, 2, ...), where $f(x) = \delta(x)$ or $f(x) = \delta(x)/\delta_1(x)$ (corresponding to (7)). Because of $\delta(e) = \delta_1(e) = 0$ (0 is the zero element in B) we obtain

(10)
$$\delta(p(x)) = f(x) \, \delta_1(p(x)) \,,$$

for any polynomial in x with scalar coefficients. Now let a be any element in $D(\delta_1)$. For assumption (8) we can find a sequence $(p_n(x))$ of polynomials such that $p_n \to a$ and $\delta_1(p_n) \to \delta_1(a)$. By use of (10) we get

$$\delta(p_n) = f(x) \, \delta_1(p_n) \to f(x) \, \delta_1(a)$$
.

On the other hand the derivation δ is closed, such that $a \in D(\delta)$ and $f(x) \delta_1(a) = \delta(a)$. This finished the proof.

It is well known that the linear space C[0,1] of all continuous functions f(x) on [0,1] is a commutative Banach-algebra with unit element $e=g_1(x)\cong 1$ and with zero divisors (under the topology of the uniform convergence on [0,1] and the pointwise multiplication). In fact, C[0,1] is a C^* -algebra. The derivation $\delta_1=d/dx$ with $D(\delta_1)=C^1[0,1]$ (the algebra of all continuously differentiable functions on [0,1]) is a closed derivation in C[0,1]. Obviously the function $x\in C^1[0,1]$ fulfils (7). Now let h(x) be any function in $C^1[0,1]$, then $(d/dx)h(x):=h'(x)\in C[0,1]$ can be approximated uniformly by polynomials, $p_n(x)\to h'(x)$. It is easy to see that $\int\limits_0^x p_n(t)\,\mathrm{d}t\to \int\limits_0^x h'(t)\,\mathrm{d}t$ holds too, hence $q_n(x):=h(0)+\int\limits_0^x p_n(t)\,\mathrm{d}t\to h(x)$, where $q_n(x)$ are polynomials in x and $q_n'(x)\to h'(x)$. That means that (8) holds, too.

Therefore we have

Theorem 2. Let δ be any closed derivation in C[0,1], whose domain $D(\delta)$ includes 1 and x, then $D(\delta) = C^1[0,1]$ and

(11)
$$\delta = f(x)(d/dx),$$

where $f(x) = \delta(x) \in C[0, 1]$, or δ is an extension of the derivation f(x)(d/dx).

Remark. It is possible to define closed derivations δ in C[0,1] having the form $\delta = f(x)(\mathrm{d}/\mathrm{d}x)$, where $f(x) \notin C[0,1]$ and $x \notin D(\delta)$. For example, the derivation $\delta = (1/h(x))(\mathrm{d}/\mathrm{d}x)$, $h(x) \in C[0,1]$, is a closed derivation in C[0,1] with a domain consisting of all functions $g(x) \in C^1[0,1]$ which are so that (1/h(x))g'(x) can be made to a function in C[0,1]. In fact if $(g_n(x))$ is a sequence in $D(\delta)$ with $g_n(x) \to g(x) \in C[0,1]$ and $\delta(g_n) \to \varphi(x) \in C[0,1]$, then we have $h(x)\delta(g_n) = g'_n(x) \to h(x)\varphi(x)$, too. Since d/dx is a closed derivation in C[0,1] we obtain $g(x) \in C^1[0,1]$ and $g'(x) = h(x)\varphi(x)$ such that from $(1/h(x))g'(x) = \varphi(x)$ it follows $g(x) \in D(\delta)$ and $\delta(g) = (1/h(x))g'(x) = \varphi(x)$. Hence δ is a closed derivation.

An open question is the following: Can we characterize every closed derivation in C[0,1], whose domain does not include x, in such a form, where $f(x) \notin C[0,1]$?

References

- [1] A. BLEYER and W. PREUSS, A note to general notions of the derivation and its application, Period. Math. Hungar. (1) 11 (1980), 61-68.
- [2] M. A. Neumark, Normierte Algebren, VEB Deutscher Verlag der Wissenschaften, Berlin 1959.

- [3] W. Preuss, On continuous derivations of topological rings and algebras, Manuscript for the International Conference on Operator Algebras, Ideals and their Applications in Theoretical Physics, Leipzig 1977.
- [4] S. Sakai, Recent developments in the theory of unbounded derivations in C*-algebras, Manuscript for the us-Japan seminar on C*-algebras and their applications to Theoretical Physics, held for April 18-22, 1977 at U.C.L.A.

* * *