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J. ACHARI (%)

On fixed points of operators (*¥)

1 — In recent years many extensions and generalizations of Banach’s fixed
point theorem had been done by many authors. But in all the cases the
mapping under consideration contains only two points of the space. Until
recently Pittnauer [3]; and also Rhoades [4] studied contractive type map-
pings involving three points of the space. Pittnauer [3], also studied contrac-
tive type mappings involving four points of the space.

The aim of this paper is to establish a fixed point theorem for contractive
type mapping involving six points of the space. We have then extended the
result to family of mappings. Finally we have shown that our result contains
as special cases that of Hardy and Rogers [1], Reich [53] and Kannar [2].

2 — Let (X,d) be a complete metric space. Let u,;: P— [0, co) (i = 1,
2, ..., B) (P is the range of d and P is the closure of P) be upper semi-con-
tinuous functions from the right on P and satisfy the condition
(1) p{t) < 1[5 for >0 and u,(0)=0 (1=1,2,3,4,5).
Also let f be a mapping of X into itself such that (uy, u., ts, U, U5, %) €X .
(2) d(fus, fus) <y[d(uy, us)] 4 pald(ay, fus)]

+ psl (s, fres)] 4 pald(us, fua)] 4 psld(we, fus)] s
(*) Indirizzo: Munshifdanga, P. 0. Raghunathpur (Pin: 728133), Dist. Purulia

(W.B.), India.

(**) This work was carried out under the C.N.R. (Italy) fellowship. — Riecevuto:
23-X1-1978.



212 J. ACHARI [2]

Theorem 1. If f be a mapping of X into itself satisfying (2), then f
has a unique fized point.

Proof. Let #,y€ X and we define
=, w=f, w=y, w=r, U=/, u;=7Fy.
Then the inequality (2) takes the form
(3) d(f*@, fry) <pddlfe, fy)] + puld(fo, fy)] + pold(fa, fy)] -
Let @y e X be an arbitrary point. We shall show that the iterated sequence

{,} = (w, = fr@, n=10,1,2,...) is Cauchy. Let us take x = fr—2z,,
y = f*~1a,, then we have from (3)

(4) A(fr @y, fHia) <yn[d(f*ay, foe)] + Wl A(f* 200, fr@o)] -+ wald(f" 2y, [ ,)].

We denote by f,,.=d(f*x,, f**'z,). We have from (4)

(5) ﬂn+1 —_ d(f"él/‘o, fn+1m0) <7/J1(ﬂn) + "Pz(ﬂn) + "/)3<ﬁn) -

From () it is clear that f, decreases with » and hence f, — B say as n -+ co.
If possible, let f > 0. Then y, is upper semi-continuous, we obtain, as n —> oo,
B <) -+ pa(B) -+ ws(B) < (3/5)f, which is impossible unless = 0.

We shall now show that the sequence {»,} is Cauchy. Let us assume that
it is not so. Then there exists an ¢> 0 and sequences of positive integers
{m(k)}, {n(k)} with m(k) > n(k)>Fk such that

(6) Ok = d(ﬁm(k” mn(k))>6 (k = 1, 2, 3, ...) .

If m(k) is the smallest integer exceeding n(k) for which (6) holds, then from
the well ordering principle, we have

(7) YD1y Zna) < & .

and whence we derive that

O < UTmiiery Bmper—1) + UBrmirry Tngry) < ,B'm(k) +e<Pte.
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This implies €, —>¢ as k —oo. Also we have
Ck :d(m1117 "Bn) <d(w1wzy mm-{-l) + d(mm+1) a;n-q.l) "{"‘ d(wny wn-{.l)

'\\/\ﬂm_g.l "l‘ ﬁn+1 + d(fm-{-lmo’ fn—HxO) <ﬂm+1 + ﬂn.\Ll + w1[d(fmw07 f"wo)]

+ wuld(fmay, fra)] -+ wald(fr oy, fra,)]
4 pald(frrem,, frtiag)] 4 psld(frr2m,, frtra,)],

(by putting u, = fraz,, w, = frw,, w = fr1 Ty, Uy == 1@y, wy = frit g,
ue = 2y in (2))

Ok </3m+1+ ﬂn-;.l + Q/’l(GL) + 7/’4(,31714-2) + V)E(lgn-;-z) .

Letting & — co in the above inequality we derive
(8) 8<7/)1(8)<8/5 ’

which is impossible. Thus the sequence {«,} is Cauchy and since X is com-
plete so limo, =z X. We shall now show that z is the fixed point f.

Putting w; = @y, 4. =2, wy = f*"1m,, u, = iz, u; = P22y, Uy = f"*?wo
in (2) we get
a(f+ray, f2) <pild(fra,, )] + Yald(f" o, [7,)] + uld(z, fr+2m,)]

+ pald(f 1@, @)1 A ys[d(fr 2, f2))

<yuld(F* o, 2)] -+ pold(2, f*r2a0)] + pald(fr=1a,, fr+2a0)] + pld(f 2, f2)]
letting » — co in the above inequality we get
d(z, fz) <wysld(z, fo)] < d(z, f2)[5 ,
which is a contradiction. Hence z = fz. Next we shall show that 2z is the

unique fixed point of f. Let z and w be fixed points of f and 2z~ w. Then
putting u; = w4, = w4, = 2, U = Uy = Uy = w in (2) we get

Az, 0) = d(fe, fo) <yild(z, ©)] + pald(z, 0)] 4+ pld(e, w)] < (3/5)d(z, w)

which is a contradiction and hence #z = w. This completes the proof of the
theorem.
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Note. Itisremarkable to note that in establishing this theorem we have
considered the functions u.{), upper semi-continuous on the right instead of
continuous on the right used by Pittnauer [3],.

Theorem 2. Let f, (k=1,2,...,n) be a family of mappings of X into
itself. If {f.Jr., satisfy the conditions

(9) rfi="1t (k=1,2,...,n),

there exists a system of positive integers my, Mq, ..., M, such that

(10) A(fIfme L g, f e L ) <wnld(wa, we)] 4 weld(uy, 74102 o frmus)]
+ pal@(ts,y P52 on frnwa)] + pal s, [72 15 o0 fimn)] 4 wold(ue, F7152 0 imue)]
Proof. Let f=fmfrefrs... f7=, then (10) takes the form

(11) A(four,y fun) <pd(as, we)] -+ wold(us, fus)]

+ pald(ata, fr00)] - pald(us, frea)] 4 psld{ae, fus)] .

By Theorem 1, f has a unique fixed point 2. Then
(12) filfe) = frz, =1, 2,...,n).

By commutativity of {f.}, (12) implies f(fy2) =fiz (k=1,2,..., n).

Since f has a unique fixed point 2, we get fre =2, k=1,2,...,n. Hence z is
a common fixed point of the family {f;}. Let 2,  be common fixed points
of the family {f,} with 23 . Then putting u;=1w,=u,=2, U= Us=1Up=0
in (11) we get

Az, @) = d(fz, fo) <pild(z, ©)] + pold(z, )] + pa[d(2, ©)] < (3/5)d(z, w)

which is a contradiction. Hence 2z = w. This completes the proof of the
theorem.

We shall now show that our result contains some well known fixed point
theorems as special cases.

If we define the functions w.(t) by wi(f) = asf, p.(t) = ax?, yws(t) = ast,
Wa(t) == aat, ps(t) = a5t with 0 <<a;+ a, - a3+ @, + a; <1, then we have the
following theorems as special cases.
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(a) If we pub us = 4y = w, and w; = 4, = u, in Theorem 1, we get the
results of Hardy and Rogers [1].

(b) If we pub uy = u, and u, = u,, a, = @y Gy ==b, ag=1¢, Gy = 5 =0
in Theorem 1, we have the results of Reich [5].

{¢) If we put u; = », and u, = Ugy Oy ==y = @A, 0= @, = a3 = 0 in
Theorem 1, we get the results of Kannan [2].
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Abstract

In this paper fized point theorems for contractive type mappings involving six points
of the space have been studied. This result includes many well-known fized point theorems
as special cases. As a consequence this can be applied to various discontinuous mappings:
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