Riv. Mat. Univ. Parma (4) 6 (1980), 161-165
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A fixed point theorem (**)

1 — The well-known Banach’s fixed point theorem states that if 7' is a
self mapping of a complete metric space M into itself such that

(1) (T, Ty) <o d(w, y)

for all #,ye M and 0<a <1, then T has a unique fixed point in M. A num-
ber of recent generalizations of this theorem may be seen in [1], [2], [3], ., [4],

(6], [7], [10].
If T satisfies a more general condition

(2) ATz, Ty) <a,d(z, y) + a,d(z, Tx)
+ a;d(y, Ty) + a.d(x, Ty) + asd(y, Tx) ,

5
for all #, y e M where a,>0 and » a;<1, then condition (2) reduces to (1), if
sl
a;=0,t=2,..,5; it reduces to a condition of Reich [9],,; if &)= a; =10
and to a condition of Kannan (7}, if ¢, = a, = a; = 0, a, = a; = 1/2.

If in (2), > a, is allowed to be equal to 1, then in a uniformly convex
i=1

Banach space a fixed point theorem has been obtained in [5] which is an exten-

sion of a theorem of Soardi [12] and in a reflexive Banach space, a fixed point

theorem has been obtained in [2] by assuming > a,<1 which is an extension

ie=1
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of a theorem of Kirk [8] who obtained the same result with a, = a; = a,
= qz; = 0,

Kirk [8] used the notion of normal structure to obtain his theorem while
Kannan [7], limited the superior of the expression |y — Ty| to prove his
theorem. In this paper, we obtain a fixed point theorem in a reflexive Banach
space taking advantages of both Kirk’s notion of normal structure and Kan-
nan’s limitation of |y — Ty|. The method of proof of the theorem is pat-
terned after the paper [8] with necessary modifications as required in the more
general settings.

2 — Definition [8]. A bounded convex set K in a Banach space X is
said to have normal structure if for each convex subset § of K which con-
tains more than one point, there exists « € § such that sup o — y| < 6(9),
8(S) being the diameter of S. ves

Theorem. Let X be a reflexive Banach space and K be « non-empty closed
convex bounded subset of X. Suppose thai T is a mapping of K into itself such
that

(A) [To— Ty| <max {Jo—y|; |o— Ta||; |y— Ty[} for every x, ye I,

(B) K has normal structure ,
(©) sup |ly — Ty <L 6(F) for every non-empty closed convew subset I' of K,
YEF

containing more than one element and mappcd into dtself by T .

Then T has a fized point in K.

Proof. Let Y denote the family of all non-empty closed convex subsets
of K which are mapped into itself by T. By Smulian’s result [11], i.e. X is
reflexive if, and only if, every decreasing sequence of non-empty bounded
closed convex subsets of X has a non-empty intersection and by Zorn’s lemma,
it follows that Y has a minimal element F, say. If I’ contains only one ele-
ment, then that element is a fixed point of 7. We prove that ' contains only
one element. We suppose, therefore, that I contains more than one element
and we obfain a contradiction.

Let A = sup [Ty — y|, then by the condition (C), A<4d(F). Let further
for wel?, ¥

yo(I') = max {(sup [ — y||: y € F); 4},
y(F) =inf {y.(F): we I,
r, = {melf’: Yo F) = y(F)} .
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We show that F, is non-empty, closed and convex. For positive integer »
and for we F, let

Fle,n)={yeF: |a—y|<p@) + 1n},  Co=NF(,n).
ZEF

It is clear that C, is a non-empty closed convex set and C, €0, More-
over, because y(I')>A4 and A <L1dé(F), we have

and so F, is closed convex and by Smulian’s result [11], non-empty.

Next we show that J(F,) < §(F). Since K has normal structure and
A <§6(F), there exists a point z € F such that p,(F) < &F). If «, and a,
are any two points of F,, then |ja,— x| <y, (F) = p(F). So

OI,) = sup {Jlan— o] 5 11, 3 € B} <p(F) <p(F) < §(F) .

Now, if zeF, then for y e F

[To — Ty| <max {Jo— y|; |To— 2|, | Ty — y|} <max {|a— y, sup | Ty — y|}

VEF

< max {le— y||, A} <yp(F) = p(F).

So, T(F) is contained in a closed sphere U, say with centre at Tz and
radius y(F). Since T(F N U)c PN U and F is minimal, it follows that Fc U
and so {sup [|[To—y|: ¥ eF}<y(F).

Now

Vel F) = max {(sup | To — y|; y € F); A}
<max {y(F); 4} = p(F), because 4 <p(I) .

Hence y,, (F) = y(F). So, Tw € F,. Therefore F, is a non-empty closed convex
subset of F' which is mapped into itself by 7' and because §(F,) < &(F), F,
is a proper subset of . This contradicts the minimality of . Hence F con-
tains only one point which is a fixed point of 7. This proves the theorem.

Recently, Ciri¢ (3], obtained a fixed point theorem in a metric space by
considering two more terms |z~ Ty| and |y — Tw| within the bracket of
the right hand side of (A), but he used a non-negative multiplier ¢ which is
less than 1 to the maximum of the terms |z —y|, [o— Ta|, |y — Ty,
o~ Ty| and |y — Ta].
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We now exhibit some examples showing the different possibilities on the
conditions (A) and (C), where in each case the norm is the usual norm of the
real numbers.

Example 1. Let K=1[0,1] and Tz =1 — 2. Here the mapping 7T
satisfies the condition (A) for arbitrary @, y € [0, 1]. The condition (C) is not
satisfied.

Example 2. Let K = [0, 1] and T = (1/2)@ -} 1/4. Here the condi-
tions (A) and (C) are both satisfied. The example also shows that there may
exist a pair of points (in this case 2 =0, y = 1/8) 2 and ¥ such that
max {!w—y], [Te — x|, | Ty —y[} may be greater than |z — gy|, where all
the conditions of the theorem are satisfied.

Example 3. Let K =[—1/4,1] and To =1/2 for 0<a<l, v +#1/2,1/4;
To =8[9 for = 1/2; Tw = — 1[4 for e =1/4; Te = 1/4 for — 1/d<w < 0.
Here the condition (C) is satisfied, but for @ = 1/4, y = 1/2, the condition (A)
is not satisfied.
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Abstract

The paper contains a theorem on fimed point of operators that may be considered as

an extension of a theorem of Kirk [8]. Some examples have also been exhibited showing
the different possibilities on the conditions of the theorem.






