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Nonlinear weak generalized interpolation (**)

Introduction

Very often, the same operator is investigated on several different function
spaces. Thus, it is valuable to have theorems which give relationships be-
tween properties of the same operator considered in different function spaces.
The well known Marcel Riesz interpolation theorem [19] which was published
in 1926 is a nontrivial example of such a theorem.

Since 1926, much work has been done in interpolation theory. A. P. Cal-
deron [4], in 1964, used Banach space valued functions on the strip § in the
complex plane to construct his complex interpolation spaces, (X,, X,),.

Lions-Peetre [13], in 1964, used Banach space valued « weighted » fune-
tions with real domain to construct their « mean » spaces, Sy = S(Po, By, Xo,
P 19 El} Xy).

Later, M. Schechter [21],, in 1967, used Banach space valued functions
defined in the complex strip together with a two-dimensional distribution 7'
with compact support to construct interpolation spaces, (X,, X,),, which gen-
eralize the Calderon interpolation spaces above.

More recently, V. Williams [23];, in 1971 defined a generalized interpolation
space, X ), which generalized each of the above-mentioned interpolation

(*) Indirizzo: Dept. of Math., Jackson State University, Jackson, Mississippi
39217, U.S.A.

(**) Terms used in the introduction will be defined in the paper. This paper was
made possible in part by the fellowships received from The Sothern Fellowships Fund
of Atlanta, Georgia. The author, however, and not The Southern Fellowships Fund,
is wholly respounsible for the statements made herein and for their publication.

Ricevuto: 9-X-1978.



112 R. GENTRY {21

spaces. Also, a generalized interpolation theorem is proved in [23], which
generalizes the Calderon, Lions-Peetre, and Schechter interpolation theorems.

Interpolation theory is very useful; as consequences, we get the classical
theorems of Riesz [19] and Marcinkiewiez [14].

Also, complex interpolation theory has applications in differential equa-
tions (see [21]; ).

Up to now, most of the work in interpolation space theory has been con-
cerned with obtaining bounded linear operators between interpolation spaces.
Tt is natural to ask if there is also a compact interpolation theory.

Compact interpolation theory has been considered by several authors.
In 1960, M. A. Krasnoselskii [11] studied compact interpolation between
L7 spaces. In 1963, A. Persson [17] studied compact interpolation by using
a compactness theorem of Lions-Peetre [13] together with a special H con-
dition.

In 1964, Lions-Peetre [13] stated two compactness theorems where certain
classes of Banach spaces are considered.

More recently, in 1974 R. K. Juberg [10] studied compact interpolation for
a special operator between L” spaces in which he presented in a paper at the
January, 1974, Mathematics Meeting in San Francisco.

Compact interpolation theory can be applied directly to the study of
compactness of certain integral operators.

In addition to the applications, the reader will note that a lot of elegant
mathematics is used in compact interpoation theory.

The -object of this paper is to consider nonlinear interpolation, where all
the operators involved are not necessarily linear.

We also consider the case where all spaces are not necessarily Banach.
Boundedness and compactness are considered for nonlinear operators; fixed
point propositions are considered for nonlinear operators; finally, we consider
nonexpansive operators in the nonlinear case.

This nonlinear paper is significant because Theorem 1 generalizes the gen-
eralized interpolation theorem for linear operators [23];.

This paper also motivates the following definition.

Definition. Let X be a normed linear space. Let T be a bounded linear
operator from a Banach space C into X, then the Banach space T(C) = {7(f):
f € O} under the norm '

|zl = inf {|fc: T(f) = =},

fec

is said to be a weak generalized interpolation space in X (relative to T' and (),
which is denoted, ,,,X(T,C).
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The word « weak » is used because the interpolation space is no longer in
a Banach space necessarily.

Clearly, generalized interpolation spaces are weak generalized interpolation
spaces.

As a consequence of V. Williams’ work [23],, Theorem 1 generalizes the
interpolation theorems of Calderon [4], Lions-Peetre [13], and Schechter [21];.
Tt follows from the work of the author [9] where a new diagram proof of
Riesz’s classical interpolation theorem is given that Theorem 1 also gener-
alizes the classical Riesz interpolation Theorem, the Hausdorff-Young theo-
rem, and Young’s inequality. -

Theorem 2 generalizes a generalized compactness proposition in [9].

Propositions 3 and 4 give sufficient conditions for an operator on a weak
generalized interpolation space to have a nonzero fixed point and for the oper-
ator to be nonexpansive respectively.

There ave corollaries for the theorems and propositions for the Calderon,
Lions-Peetre, and Schechter interpolation spaces which give sufficient condi-
tions for operators on all three of the aforementioned interpolation spaces to
have nonzero fixed points.

We begin with the following definitions and notation.

Tf ¥ and Y are normed linear spaces, then L:X — ¥ is bounded (not
necessarily linear) if there is a constant M >0 such that |Laly<M|a]x for
every € X. Clearly, L takes bounded sets to bounded sets.

Detfinition. A compatible triplet {Xy, X1, xo) consists of two Banach
spaces X, and X, which are continuously embedded in a Hausdorff topo-
logical vector space x,.

From [4], we define the Calderon interpolation space

(1) X, -+ X, with norm defined by
]y, = 0E {{0]lx,+ ledx) (o= a0+, zieXs, i=0, 1]

is a Banach space.

(2) X,N X, with norm defined by

g, = % {7y, l0al)

is a Banach- space.

Let S be the open strip between 0 and 1 in the complex plane, that is,
the set of complex numbers with real part greater than zero and less than 1.
Let H(X,, X;) be the set of all functions f from the closure of S to X+ Xy
which satisfy: (a) f is analytic in S, (b) fis continuous and bounded on the
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closure of 8, (c) for j = 0, 1, there exist constants k; such that |[f(j + it)x, <k;
for all real . Then

(3) H(X,, X,) is a Banach space under the norm

1 llzrcey, xp = max {sup |7(j + it)]x,} -
¢

7=0,1

Let 0<s<1 be fixed, then
(Xo, Xu)s = {&: @ = f(s), for some fe H(X,, X,)}

is a Banach space under the norm
!Emu(xo,xl)s: inf {nfﬂﬂ(‘\'o,ll'l)} [f(s) =, feH(X,, X,)].

We now define the Lions-Peetre [13] « mean » interpolation space.

Let {X,, X,, xo} be a compatible triplet; X, -+ X, and X,N X, are as
above.

Let 1< Py, Pi<oo. Let B, and B, be real numbers such that B, B, < 0
(say, E,>0 and F, <0).

Let Wy= W(P,, By, X,, P, I}, X;) be the set of all functions f with
domain R, the set of reals, and have range values in X, + X, such that
(a) e®'fe L™(X,), (b) e®ffe L*(X,). Then W, is Banach under the norm

Iflwy=max [e*'f],Po(y,), 16%F1, P (x,] -

For each fe Wy, [ f(t)dt converges in X, 4+ X,.

Let 8y = S8(Py, By, X,, Py, By, X)) = {we X, + X;: @ = [f(}) dt, where f € Wy}.
Sy is Banach under the norm

sy = it {|f e & = [7(2) 4t} .

fewx il

In the special case where X,==1X,, we write Syy= Sy, and Wy, = W,.
Now, we define the Schechter [21], interpolation space.

Let {X,, X,, %o} be a compatible triplet. X, -+ X;, X, N X,, and H(X,, X,)
are defined as for the Calderon interpolation space. Let T be a two-dimen-



[5] NONLINEAR WEAK GENERALIZED INTERPOLATION 115

sional distribution with compact support in the open strip 8, and have range
wvalues in X, -+ X;. Then

(Xoy Xo)o = {L(1): € H(X,, X,)}
is a Banach space under the norm
Ei{vH(XO’XI)T: inf {\m[mxo,xl); fe H(X,, X)), w = 1f} .

As defined above, (X, X}),, Sy, and (X,, X); are the Calderon, Lions-
Peetre, and Schechter interpolation spaces respectively.

Definition [23];. X o is a generalized interpolation space in X (relative
to I and (), that is, ¢ and X are Banach spaces and 7': ¢ — X is a bounded
linear operator, and X o= {7'(f): fe C} is Banach under the norm

[#hay =t |flc, [Lf=2,€C].

The norm on X is referred to as the generalized interpolation norm
(or for brevity, interpolation norm).

By [23);, the Calderon, Lions-Peetre, and Schechter interpolation spaces
are all generalized interpolation spaces, that is, (X,, X)), = (Xo+ Xi)z, nexg,x s
Sy = (X, -+ JYl)(Te,an and (X, Xy)p = (X, + Xl)(Ta,mxo,.\'l)), where 1';: H(X,, &})
> Xo-+ Xy, To: Wy — Xo-+ Xy, and 1, H(X,, X;) - X, + X, are all bounded
linear from one Banach space to another Banach space (see above remarks),

and they are defined by T.(f) = f(s), Tu(g9) = [g(»)dw, and T4(h) = T'(h) for
e H(X,, X,), g Wy, and h e H(X,, X,). -

Other notation is standard: if X and Y are normed linear spaces, then
B(X, Y) is the set of all bounded linear operators from X to Y. If X = ¥,
we write B(X).

Throughout this paper, when we speak of a two-dimensional distribution
with compact support in the open strip § contained in the complex plane
which has values in X, -+ X, and Y, Y, we assume that 7 is of the form

7

my
T=73 Y a0,

k=1 {=0

where 2, 2,, ..., 2, are prescribed points in the open strip § and the a,; are
fixed complex constants.

The following theorem generalizes the generalized interpolation theorem
for linear operators [23],.
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Theorem 1. (Weak generalized interpolation theorem for bounded
nonlinear operators). Let wX(ThC) and “,Y(Tg’ o be weak generalized interpolation
spaces. If L': C — D ds bounded (not nmecessarily linear) such that LT, = T,I’
then L: W Xip, o) =0 Yz, py s bounded, with |L|<|L'].

Proof of Theorem 1. We have diagram

Y
T4 Iz
D

LT = T,I’, thus L: wXery o) = w ¥z, 00

By the definition of the interpolation norm on ,UX(TLC,, for every v € , X 1,0
and for every >0, there exists fe € such that T,(f) =z and |f[|c<]=] Xz T &
Thus,

x
\/

O
\J

1l vy, o= 1P Ty = 1T L f i <1 F < 12 e
<|Z'|(]x “w‘(r o + &) . e>0 is arbitrary, thus
[ Le] , x Xr, oy < < |- ””hw‘(r " for every #€ X, o -

Thus, L is bounded and |L} < |L'], and Theorem 1 holds.

Remark. (1) It is clear that if X and Y are Banach spaces, and if L
and L’ are linear in Theorem 1, then we get the generalized interpolation
theorem for linear operators in [23];.

‘We now have a definition.

Definition. Let X and Y be normed linear spaces, L: X — Y is com-
pact (not necessarily linear), if for every bounded sequence {z,} € X, the se-
quence {Lx,} has a convergent subsequence in Y.

Note. X and Y are not necessarily Banach spaces, and we do not assu.
me that I is continuous.
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Clearly, if L is compact then it takes bounded sets in X to precompact
(relatively compact) sets in Y.

Next, we give an example of a nonlinear compact operator which is also
continuous.

This example was given by Roger Nussbaum in his « Nonlinear Functional
Analysis » 511 course during the fall of 1973 at Rutgers University.

We consider the Urysohn-integral operator (one of its many variants).

Let A" = the Banach space of continuous real valued functions on [0, 1],
C[0,1] with the usual sup norm. Let 7: [0,11%[0,1]xX R* —-R! be a contin-

1
uous map. Define: I': X — X by (I1,)(s) = J1(s,t, #(?)) &, then F is a non-
linear continuous compact operator. ¢
The following theorem generalizes a generalized compactness proposition
in [9].

Theorem 2. (Weak generalized compactness interpolation theorem for
nonlinear operators). Let oy 0) and wY(r, ;m be weak generalized interpolation
spaces. Let L: X — Y (not mecessarily linear), and let I': ¢ — D (not meces-
sarily linear) be compact and such that LT, = T.L', then L: '”X(Tva) = w¥(r, m)
is compact.

Proof. LT, = T,I/, thus, L: wXry o= w¥a ;. Let {v,}e wXr, o be an
arbitrary bounded sequence. We show {Lz,} has a convergent subsequence
in 1,,1’(%1,).

There exists M >0 such that

|, “wX(T 0= inf |[f.le<M  for n=1,2,... [Tifn= @, f,eC].
Claim 1. There exists a sequence {f,,} € ¢ such that 7,(f,) = =, for
every positive integer n, and |f,]c.<M+1, for n=1,2, ....

Proof of Claim 1. By a property of infimum, for &= 1> 0, and
for every positive integer n, there exists /. € C such that 7,f, = w,, and

”fﬂ”c<”$ﬂ{; X —|—1<]¥[+1, for n=1, 27-'--

W (ry,0)

Thus, |fle<M+1, for n=1,2, ..., and Claim 1 holds.
L' is eompact, by hypothesis, thus, the sequence {L'f.} has a convergent
subsequence, {L'f,}, in D. Thus {L'f,} is Cauchy in D.

Claim 2. {Lw,} = {LT,f,} is Cauchy in w ¥z, )
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Proof. By construction,

| L, — L, | = |LIvf, — LT4f |

¥

-
W7 (T4,D)

— Es 7] VELI fﬂ — 112LI fvl H — “ 112 [L/ '.fv — Ll fu'] ‘[

w¥ (1,,0) w¥ (1,0

< ”L’ fr— Llfv' HD'—)’O as v, P -~ oo
(by definition of ,Y¥(r, p norm), since {L'f,} is Cauchy in D.
Thus, {L:z:l,} is Cauchy in the Banach space Yz, m, and Claim 2 holds.
Thus, L, is a subsequence of L, which converges in ,, Y (ry, D)+ Thus, the theo-

rem holds.

Next we consider fixed point theorems.

Proposition 3. (Nonlinear fixed point proposition for weak gener-
alized interpolation spaces). Let X o be a weak generalized interpolation
space, where C == {0}. Suppose T, is 1-1, and L: X — X (not necessarily linear),
and I': C — C (not necessarily linear) is such that LT, = T,L', and L' has «a

nonzero fized point, then L: wX o —> WX (1 0 has a nongero fized point.

Proof. We have diagram
X X

Tq T4
LI
c

C P~

LT, =1L, thus, L: Xz, o)~ X, o0-

By hypothesis, there exists /s 0 € ¢ such that L'(f) =f. Now,
TLf=T(LfH=T() = v, € X 0, for some point € ,,,X(Th(,.,. Now,
2, % 0 as an element of , X, o), since
= inf |flle, [T4f =, feC] (since T, is 1-1)

P

= [flle7 0.
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Thus, ey) = L(1,f) = LT,f=T,I'f = T(L'f) = 1T\f = a;, and, 2, € wX (g, 00
is the nonzero fixed point of I, and Proposition 3 holds.

A corollary of Proposition 3 is now stated with three parts which corre-
spond to the Calderon, Lions-Peetre and Schechter spaces respectively.

Corollary 3. Let {X,, X,, yo} be a compatible triplet. Suppose L: X,
+ X, = X, + X islinear,and Le B(X,, X)), i = 0, 1.

(1) Let 0<s<1 be fiwed. Suppose H(X,, X,) = {0}, and T,: H(X,, X,)
— Xo -+ Xy 45 1-1, where T, is defined by T,(f) = f(s). Suppose L': H(X,, X,)
— H(X,, X)) has a nonzero fized point, where L' is defined by L'(f) = Lof,
then L: (X, X1), = (X,, X)), has « nonzero fized poini.

(2) Suppose W, {0}, and Ty: W, — X, + X, is 1-1, where T, is defined
by T.(f) = [f(w)de. Suppose L': Wy — Wy has a nonzero fized point, where L'
is defined by L'(fy = Lof, then L: Sy — Sy has a nonzero fived point.

(3Y Let T be a two-dimensional distribution with compact swpport in the
open strip Sc¢, and have range values in X, + X,. Suppose H(X,, X,) # {0},
and Ty: H(X,, X)) - X, + X, is 1-1, where T, is defined by Ty(f) = T(f). Sup-
pose L': H(X,, X;) — H(X,, X;) has a nonzero fized point, where L' is defined
by L'(f) = Lof, then L:(X,, X,)p — (X,o, X1)r has a nonzero fized point.

Proof of Part 1. Consider diagram

L
XO+X1 .>)(o+)(1
74 T
H(X~, X.) L Hix., X.)
0’ M > '

(Xoy X1)oe = (Xy + Xi)ry mx,,x,n 18 2 generalized interpolation space, and thus
a weak generalized interpolation space. By V. Williams [23],, LT, = T, I/,
thus, the hypothesis of Proposition 3 holds, and therefore, IL: (X,, X,),
— (Xo, X1), has a nonzero fixed point, and Part 1 of Corollary 3 holds.

In a similar fashion, Parts 2 and 3 of Corollary 3 hold.

Finally, we consider nonexpansive maps.
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Definition. Let (X, d) be a metric space, let ¥ be a nonempty subset
of X, f: Y — X, then f is nonexzpansive if for every pair of elements o, 7. € ¥,
A(f(Ya)y 1(51)) <AYos ¥2)-

Note. In other words, nonexpansive maps are Lipschitzian with Lipschitz
constant 1.

Contractive maps arve nonexpansive. However, a nonexpansive map is not
always a contractive map. Isometries are nonexpansive maps.

Consider C,, the Banach space consisting of convergent sequences of scalars
with limit 0. C, has the usual sup norm. f: ¢, - C, defined by f(w, @, ...)
= (1, @, @y, ...) 18 a nonexpansive map.

The analogue of the Contraction Mapping Theorem (Principle) which says
that every contraction on a complete metric space has a unique fixed point,
does not hold for nonexpansive maps.

The map f above, is nonexpansive from 0, to C,, but f has no fixed point,
sinee f(z) = f((w;, @, ...)) = (1, @1, @,, ...) would mean @, = @, = ... = 1, if f had
a fixed point, but sequence (1,1, ...) is not in C,.

If X is a normed linear space, and if L: X — X is bounded linear with
IL]<1, then L is nonexpansive.

It is also significant to note that all the bounded algebra homomorphisms
listed by the author in [9], from one interpolation Banach algebra to another
interpolation Banach algebra, have norm <1, and thus are nonexpansive
operators when the domain and range are the same.

A nonexpansive proposition is now stated.

Proposition 4. (Nonexpansive proposition for weak generalized inter-
polation spaces). Let X o be a weak generalized interpolation space. Let
L: X — X (not necessarily linear), and let L': C — C (not necessarily linear) be
nonexpansive and such that LT, = T, L .

(a) If T, is 1-1, then L: ,UX(TI,C) = Xy, 0 1S NONETPANSIVE.

(b) If L is Unear and L'(0) = 0, then L: w1y 00 —> 1,,X(TLC) is linear and
RONETPANSIVE.

Proof of Part (a). We have diagram
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LT, =TI, thus L: wXir, o = wXir,0- Let Dc wXr, ), Where D is any non-
empty set, then we have to show that | Lz — Ly gy o< 2 — ] for
1s

w‘Y(Th(j)
every w,yeD.

Let 6> 0 be given; for any z,yeDc ,OX(TI’C), by the definition of wal,m,
there exists f, ge ¢ such that T,f =, T,g = 9, and thus

fif—Tygy=T(f—9 =a—y.

Now, (x—y) ¢ wX(r o) 80, there exists h e ¢ such that 7,(h) = (¢ — ), and
IMle<l?— 9] %z, 0 + & By hypothesis, 7, is 1-1, thus, h — f— g. Now

|- — Ly ”wX(TuC) = [ LT.f — I’Tlguw"'(m,c)
== ” TlLlf - Tlngu w‘Y(T“L')
= TulZ'f = L)y, o

< |L'f— L'glle (by definition of wX(r,, ¢y OTM)

<|f—gle=lhle<]z—y loxes o € (since I” is nonexpansive),
where ¢ > 0 is arbitrary. Thus
| L — Ly ”?UX(TX,C)< |z — vy H,wX(T,,c) for @,y e D.

Thus, I is nonexpansive.

Proof of Part (b). Since the restriction of a linear map is linear, and
LT, =T, L', then L: ,UX(TLC) ->«UX(T1,C) is linear.

Now we show L is nonexpansive. Let Dc wd(r,c» b6 any nonempty set,
and let x,y D be arbitrary; (z— ¥) € wXw, 0, and thus, for every &> 0,

there exists ke ¢ such that 7y(h) =z — v, and Al < |o—y] ¥z, T & NOw
| Lo — Ly lox(g, o= 1z — ) ”w“'(r,,c)
= |LT] = 1T L R,

< JL'h)c  (by definition of wX(ry,c) DOTM)
= |L'h— 0= |L'h— L'0| (by hypothesis)
< |h— 0], (since L' is nonexpansive)

= [Blo<lo—ylox, , + e

(71,0)

Thus, L is nonexpansive.
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Remark. A nonexpansive corollary for Proposition 4 holds for the Cal-
deron, Lions-Peetre, and Schechter interpolation spaces just as Corollary 3
holds for Proposition 3.
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Abstract

This paper deals with nonlinear inlerpolation, where all the operators involved are no.
necessarily linear. We also consider the case where all spaces are not necessarily Banacht
Boundedness and compactness are considered for nonlinear operators. This serves as «
germ for the definition of a weak generalized interpolaiion space. A fterwhich, a theorem
is stated which generalizes the interpolation theorem of V. Williams, and thus the inter-
polation theorems of A. P. Calderon, Lions-Peetre, and M. Schechier. It can be shown
from the Ph. D. Dissertation of the author that the aforementioned theorem also generalizes
the classical Riess Inierpolation Theorem, the Hausdorff-Young Theorem, and Young's
Inequality. Finally, sufficient conditions are given for an operator on o wealk generalized
interpolation space lo have a nonzero fized point, and jor the cperalor to be nonexpansive.
There ave fized point and nonempamsive corollavies for the Calderon, Iions-Peetre ard
Schechier interpolation spaces.






