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SILVIO M ASSA (%)

Generalized multicontractive mappings (**)

1 - Introduction

Let (X, d) be a complete metric space, ¢b(X) be the family of all nonempty
closed bounded subsets of X and H be the Hausdorff metric induced by d.

Let’s consider a mapping f: X — ¢b(X) which satisfies for every @,y in
A the condition ’

1.1)  H(f(2), {y) = al@, y)d(z, f@) + o' (2, y)d(y, {@))
+ b=, y)d(@, {(@)) -+ b (@, y)d(y, f(=)) + ez, y)d(z, y)

with a, ', b, b, c: XX X — R+ (1) and s(w, ) = (e +a'-+ b 4+ b'-+ ¢e)(w,y) < 1.

A previous paper (*) contains some fixed point theorems for single valued
(s.v.m.) and multi valued (m.v.m.) mappings satisfying (1.1) with bz, y)
= b(y, %), Sup a(z,y) <1 and with s satisfying a Boyd-Wong condition (3).

z,veX

In this paper we study the case when b is not symmetric and we prove
that if f satisfies a generalized Rakotch condition, then there exist fixed points
and the method of successive approximations converges. Moreover the con-
dition imposed on s cannot be weakened in the sense that it cannot be allowed
to be a Boyd-Wong condition.

(*) Indirizzo: Istibuto Matematico, Universita, Via Saldini 50, 20138 Milano, Italy.
(**) Lavoro eseguito nell’ambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 25-1X-1978.
(') Without any loss of generality we may assume that o'(z,y) = aly, z) and
b'(x, y) = bly, @).
() See [4]. This paper contains also up to date references on the argument.
(®) Le. limsup s(m, y) <1 Yd, > 0.

g
da(z.) >d
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2 - Results for single valued mappings
Let f be a s.v.m. satisfying (1.1) and set
M(w, y) = Max {d(x, y), d(=, {(@)), d(y, /®))} -
The following Theorems hold .
Theorem 1. If
2.1) sz, y) ~1 = Mz, y) >0 or oo

and there ewists ©, with bounded orbit, then | has a wnique fized point y and
(@) — .

Theorem 2. If

(2.1)' s(@,y) >1 = M(@®,y) ~o0 or dzy) 0,
(2.2) lim sup (@ + b'} ez, y) <1
d(z,y)—r0

and there exists x, with bounded orbit, then | has a unique fized point y and
(@) = 9.

Theorem 3. If
(2.1)" s(z,y) -1 = d=z,y) >0

and (2.2) holds, then for every  in X {f*(x)} converges to the unique fized point of f.

3 - Results for multi valued mappings

Let f be a m.v.m. satisfying (1.1) with ¢ = 0 and let M(, y) be as in 2.
The following Theorems hold.

Theorem 4. If f satisfies (2.1) and there exists @, with a bounded sequence
{z.} of iterates (%), then

(i) the set A of the fixed points of f is non empty,
(i) fly) =4 Vyed, a

(i) fl@.) e 4

(*) L.e. a sequence {x,} such that w,., € f(z,).
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Theorem 5. Iffsatisfies (2.1)" and (2.2) and there evists , with a bounded
sequence {x,} of iterates, then (1), (ii) and (iii) hold.

Theorem 6. If f satisfies (2.1)" and (2.2), then (i) and (ii) hold and
moreover

(i)’ Vo, € X V{x,} such that ., € f(x,), f(z.) w4

4 - Remarks

(1) (2.1), (2.1)" and (2.1)" cannot be replaced by a Boyd-Wong condition

even if a = a'=¢ = 0. Indeed let (X, d) be the subset of the points {z,}

(n=1,2,..) of I of the form «z,— e+ 3 e,/(i +1) where {e.}
i=1

de=

= {(SM oy (m=1,2,.). Let f:az, @pyp- A is a (bounded) complete

metric space, f has no fixed point and, if 2 <m, (1.1) holds with (e.g.)
bz, ) = (4(m——n)2+1)(m~—n—!—2)/5(m~n)(m—~n+1)2, b (@,, ,) = 1/5 .

(2) In Theorems 1, 2, 4 and 5 the assumption that there exists a point
with bounded orbit cannot be dropped. Indeed let X = {1,2, ..., m ..} with
the usual metric. The map f: % »» » 4- 1 satisfies (1.1) with b{n, m) = s(n, m)
= (m —mn){(m —n + 1) for n < m and has no fixed point.

(3) Theorem 1 contains the analogous theorems of [2] and (3].

(4) Theorem 1 is not contained in Theorem 2. Indeed let X = [—1, o0)

and f(#) = —1jz if —1<2<0, f(#) =0 if = 0. f satisfies the hypotheses
of Theorem 1 but does not satisfy (2.2) (consider » — —1n, n=1,2, ..
and y = 0).

(8) Theorem 2 (and its corollary Theorem 3) is not contained in Theorem 1.
Indeed consider the compact subset of C of the points 0,1, exp [im/3],
fexplin/3] and 2, =1+ 1/n (n =1, 2, ...) and let

fA) =0, f(@.) = exp [in/3], [(0) = j(exp [in[3]) = f(} exp [ix/3])
= % exp [i7/3] .

f satisfies the assumptions of Theorem 3, but does not satisfy (2.1) (consider
@ =m, and y = 1).
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(6) In Theorems 4,5 and 6, if ¢ is not identically zero, in general (ii) and (iii)
(or (iii)') fall to be true (°). The problem whether (i) holds is still open (if f
is not single valued).

5 - Proofs of the Theorems of 2

For every # in X we set O(@) = U (), d(x) = diam (O(w)) and
n=
N(z, y) = Max {d(z, ), d(z, {(@), Ay, f@), d(a @), Ay, {@)}-
It is easy to prove that (¢), for every  in X,

d(w) = Sup d(=, *(x))
and then d(f(2)) < d(=).
In order to prove Theorems 1 and 2, we observe that, if d(w,) <oo, the
non increasing sequence {8(f*(%,))} converges. Let’s suppose, by contradiction,
that its limit o is positive. Then for every » there exists m, > n such that

d(f"(%), fm"(wo)) —-4d for » — co.

‘We have

(o), f™(@0)) = s(fr=H(o), f™ (@) - O(f**o))
and then
(8.1) s(f* @), "7 (wo)) 1.

Theorem 1. As 8(m,) < oo, (5.1) implies M(f*2(a,), f™*(x,)) — 0, the-
refore
A(f* (@), F (@) = A(f"(@s), 1r=Ywg)) + A(f 1), FH(®0))
A (), (@) = 3M(f"7 (o), i ()

absurd.

(®) See [4], Remark 1.
(6) See [6], [5,], [5,] and Lemma of 6.
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Hence {f*(@,)} is a Cauchy sequence, and if y is its limit we have
’ .

aly, 1)) < Ay, 11 @) + A"+ (@), 1)) < s(f(@), ¥) N (f(2), 3) + o(1)
= s(f"(@,), ¥) d(y, f(¥)) + o(1)

and neecessarily y = f(y).

Theorem 2. d(x,) < coand (5.1) imply A(fr=w,), """ w,)) 0. We have

A(f"(@a), [™(0)) = (@ + ) (f*~Y(wo), [ (o)) A(f=2(w,), F(z0))
+ (@' B)(fHwy), 17 Hao)) d(f™ (o), F*(@0)) + o(1)

and then, from (2.2), d(f*(m,), f*(z,)) — 9, but

d(fnﬁl(mo); f"(wo)) = S(f"—z(mo)y f"—l(mo)) : 5(f"“2(.’1}0))

and this implies d(f"*(w,), f»*(x,)) ~ 0 which is absurd. Then 6 = 0 and
{f"(@,)} is a Cauchy sequence; its limit point is obviously the unique fixed

point of f.

Theorem 3. It is sufficient to prove that d(x) < co Yo e X.

Let’s suppose, by contradiction, that d(z) = co for some # in X. Then there
exist an increasing and divergent sequence of real numbers {K;} and a sequence
of integers {n}, n;, = n,(K,), such that (@, f"(@)) > K, and d(=z, f(z)) < K,

for » < m,. We have

d(w, (@) = d(w, {(2)) + A(f(@), () < d(z, {(2) + s(z, [(=)) d(z, (=) ,
50 f*Hw) -2 and (with an obvious meaning of the symbols)

d(@, (@) < d(w, f(@)) + ad(z, {(@)) + @' d(f"H @), (@) + bi(w, ()
+ b a(fNe), f@) + ed(m, fHa))

< (L + a+b)d(w, f(2)) + (@' + b)d(, (@) + o(1),

absurd from (2.2).
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6 - Proofs of the Theorems of 3

o

Let 9, be an arbitrary point in X and {3/,,}":1 be a sequence of iterates of ¥,.
The following Lemma holds.

Lemma. For n<<m we have

H(f(yn)7 f(ym)) é D{&X d(yl)} f(y;,)) .

kSm

Proof. Indeed H(f(y.),f(y.)) < Max d(y,, f(y;)) but i>n implies

ns4i,ism .
a(ye, 195) < H(f(yer), f(y;)) and we obtain, for recurrence, H(f(ya);f(yn))

< Max d(¥y., f(y;)) and Lemma follows.
n=is=m

We set 0(3,) = (Wos Yiy oovy Yns ---) = Sup &Y, f(y,)) and we remark that if

{w,y22, is a bounded sequence of iterates of ,, d(w,) < oo (indeed d(m,, f(x))
< d(wy, #,4,)) and {0(z,)} is non increasing.

The proofs of Theorems 4, 5 and 6 are now somehow similar to those of
Theorems 1, 2 and 3. Set

No(wy :’/) = Max {d(wy f(m))$ d(% f(y))y d(m: f('y))’ d(yy f(x))}

and let’s suppose, by contradiction, lim &(z,) = 6 > 0. Then for every =
there exists m,>n such that d(@.., f(z,)) — 0. As W@y, f(,,))
< H(f(2a), f(z,, ) < s(2,, 2, )0(@,) Wwe have

(6.1) . §(%n, @, ) —1.

Theorem 4.' (6.1) and d(w,) < co imply M(z.,z,) —0, therefore
No(p, @, ) =0 avd d(Ze, [(3,,)) < N, ,) = o1). Hence &=10 and
{f(,)} is a Cauchy sequence in ¢b(X) (indeed Lemma gives H (f(@a), f(=,, )
< 6(x,)). Let A be the limit (in eb(X)) of {f(z,)} and let y € 4.

H(f(?/): A) = H(f(?/)’ f(mn)) -+ H(f(wn)y A)
< s{y, @) NO(y, ©a) + o(1) = s(y, iU,,)H(f(?_/), A) + o(1),
hence f(y) = 4.

Theorem 5. (6.1) and d(x,) << oo imply d(w.,, @, )—>0 and then
d(wn+17 f(mmn)) < (a + V') (@,, wmn)d(wm f(mn))

+ (@' b)@n, @, )d(a,, [(®,) + o(1) .
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In view of (2.2) we have (@, f(x,)) - 6 which leads to the contradiction
d(@n_yy @,) = 0. Then d = 0 and {f(z.)} converges (in eb(X)) to 4. If (by con-
tradiction) H(/(y),A) >0, then (as in proof of Theorem 4)

Hjy), A) < s(y, ) H(f(y), 4) + o(1).

So s(y, x,) - 1, hence =z, ~— 9 and

H(f(y), 4) < H(j(y), f(z.)) + o(1) < a(y, )Y, 1) + &'y, @) d(w,, f(2,))
O @Ay, fn) + ¥y, @) d(wa, 1) + o1) = (a + ¥y, 1y)) - o(1)
= (@ V) H(f(y), 4) 4 o(1),
which is absurd.
Theorem 6. It is sufficient to prove that, for every x, in X and for
every sequence {z,} of iterates of @, d(z,)) < co.
As in the proof of Theorem 3, let’s suppose, by contradiction, that there
exist {K,} and {n} such that Koo and
U, f(@a)) > Koy d(y, (@) < K, tor n<n,.
We have
(@, f(wn,)) = d(‘”oy fl@)) + H(f(m,), f(wn,) = d(%; f('vo)) + $(w,, -%1:‘)(1(5”07 f(wn,)) ’
therefore Ty, —+ x, and

A, f(@)) < (14 @+ b')d(a,, f@)) + (a'4- b)d(a,, f(, ),

absurd from (2.2).
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Sunto

Siano (X, d) uno spazio melrico completo, cb(X) Vinsieme delle porti di X non vuote,

chiuse e limitate, H la distanza di Hausdorff indotia da d su eb(X). Sia f: X — cb(X)
wna multifunzione che soddisfa la condizione H(f(x), f(y)) < s(z, y) Max {d(z, ¥), d(z, f(»)),
d(y, f))s d(=, F))s Ay, f(@))} con s(w, y) <1 Vo, y € X. 8i dimostrano (per funzioni e
per multifunsiont) alouni teoremi di punio fisso, e si assicura la convergenza del metodo
delle approssimazioni successive. Inolive, nel caso delle multifunziont, si studiano le pro-
prieta dellinsieme dei punii fissi di f.



