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On the partial stability

of the non-linear abstract Chauchy problem (**)

1 - Introduction

The technique of obtaining most results on stability or asymptotic stability
consists of dividing the neighbourhood of some kind of invariant set or any
other convenient set into suitable subsets and then showing that either the
solutions cannot leave such sets or estimate the escape time. This idea suggests
that an efficient method of generalizing stability results is to establish some
general results in terms of arbitrary sets in Euclidean spaces [3], (4], [5] or
Banach spaces [1],, and apply then to study the various problems of stability
and boundedness of differential equations in such spaces.

The theory of partial differential equations as is well-known play a key
role in many fields of mathematical applications, for example, control process,
waves, etc. The problem of Lyapunov stability and asymptotic behaviour of
solutions is of particular interest. On the other hand, certain classes of partial
differential equations can be formulated as operator differential equations in
2 suitable Banach space and it turns out to be advantageous to handle such
operator equations with a view to transfering results so obtained to the original
partial differential equations. It is therefore of considerable interest tostudy
stability properties of differential equations in Banach spaces.

In the last 15 years, Lyapunov stability results have been refined and further
generalized in several directions. One such generalization is the concept of
partial stability of differential equations in Fuclidean spaces, which has been
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studied by several authors [2]; ., [9], [10]. This type of stability is useful from
the practical point of view since in certain situations one may be interested
in the behaviour of only some of the variables of the solution.

In this paper, we wish to introduce the concept of partial stability of dif-
ferential equations in an infinite dimensional Banach space, and obtain suf-
ficient conditions for such econcepts to hold. Our results are naturally in the
framework of the Lyapunov function theory and the comparison technique.
We approach the problem by first obtaining global results of general character,
which generalize our earlier results in [1];, and then applying these results to
obtain sufficient conditions for the partial equistability, partial uniform sta-
bility, partial uniform asymptotic stability and partial boundedness of solu-
tions of the non-linear abstract Cauchy problem.

2 « Main results

We shall introduce and study the concept of partial stability for the non-
linear abstract Cauchy problem

d
(1) =AWz + Pl e, sl = %eDAW)],

where z€Z is an infinite dimensional Banach space, R* = [0, co) and
PeCR+>Z,Z); the Banach space of continuous functions from R*xZ
into Z. For each ¢ e B*, A() is a closed linear operator in Z, with dense time-
varying domain D[A(f)] and generally unbounded. We shall assume the
existence of solutions of the system (1) for all ¢>1¢,. '

Congsider along side (1) the scalar differential equation

da !
it = g(t, @), #(ty) = @, ,

—
Lo
~—

where ge C(Rt+x R, R); the space of continuous funections from R*X R into
R = (— o0, c0), and let x(t,t,, ) denote any solution of (2) through (%, )
while 2(t, ,, %) is any solution of (1) through (f,, 2).

In what follows, we take W to be a closed subspace of Z and P to be the
projection operator from Z onto W.
We also denote by @, 0Q and PQ, the closure, the boundary and the projection
of @ onto W respectively for any set @ c Z. '

In the following theorem we present a general set of sufficient conditions
which prevents the solutions of (1) which has its origin in a given set Qc Z
from passing through any given part of the boundary 0.PQ.
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Theorem 2.1. Assume that

(i) Ve Cl+xX B, R) and V(t 2) is locally Lipschizian, in z;

(ii) for a Banach subspace W C Z, theve exists sets I,,I,c Bt, QcZ and
Gc W such that I, N I,550, Qc K and GcCoPQ;

(iii) @ € C(BR*, k) and V(t,2)>a(l) for (,2) € R} H, where H = {z e B:
Pz e G

(iv) 2,€Q, toel, and V(ty, 2) < a(ty);

(v) g€ C(B+*X R, R) and for (t,z)e R*XJ, where J = {z€ E: Pze PQ},
DV (t, 2) = Hmsup (1/R)[ V(t + h, 2 + B2, 2)) — VI, 2) | <g{t, VL, 2));

r—0*
(vi) for each te R+ and all h>0 (h sufficiently small), the operator
Blh, At)] = [I —RhA@)]™ exists as a bounded operator defined on Z and for
each ze Z, im R[h, A(t)]z = z;
h—=0

(vii) any solution a(t, s, x,) of the scalar differential equation (2) satisfies
the inequality x(ty by, v,) < a(t), 11, provided v, < a{t,) and ty e I,.

Then there exists no t%>1ty, t,el = I, NI, such that 2(t,t,,2)ed for
L€ [ty, 1*) and 2(t%, 1y, 2,) e H.

Proof. Assume that 3t* > ¢, such that t, e I, 2(t, b, z) € J for t €[t,, t%)
and z(1%, 1), 2)) € H. Then hypothesis (iii) implies V(t*, 2(t*%, 1y, 2,) > a(t*). Let
xy = V{ty, 2) for t,el, then 2z(t, 1, 2,) € J for te[t,, t*) together with (v), (vi)
and arguments parallel to those in theorem 2.2 of [1], implies

V{1, 2(t, by, 20)) <¥(t, to, ) TOr tE [y, %),

where 7(¢, 1y, &) is the maximal solution of (2). Letting x, € ¢, and using (iv),
(vil) along with arguments similar to the concluding part of the proof of
theorem 2.2 of [1],, we arrive at a contradietion and the result follows.

Remark. Theorem 2.1 contains corollary 2.3 of [1], as a special case if
we take I, = I, = B+ and W = Z, so that the projection operator P becomes
the identity operator. We also note that if we use vector Lyapunov functions
in Theorem 2.1 instead of scalar Lyapunov functions, the proofs can be con-
structed with obvious modifications and we thus obtain a natural generalization
of Theorem 2.2 of [1];. This result also generalizes a theorem of Ladde and
Leela [3] obtained in the case Z = R».

The next result gives a set of sufficient condifions required for the solu-
tions of (1) which start in a given set to reach another given set in a finite time
and remain there for all future time.
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Theorem 2.2. Assume that

(ii) there ewist sets A c B, Q,c B, I, c B+ such that z,€ A, t, € I, implies
that 2(t, &, %) € B for t>1, where B = {z € B,: Pz€ PQ,};

(ili) g€ C(B*X R, R) and for (t,2z)€ R*XB, D*V(t,2)<g(t, V(t,2));

(iv) there exists a set D C @y such that Dc Q, and V(t,2)>a(t) for (¢, 2)
€ Rt D,, where ae C(R*, R) and Dy = {z€ E: Pze P(Q,~ D)};

(v) for ecach te R* and all h>0 (h sufficiently small) the operator
R, A®)] = [I —hA(t)] exists as a bounded operator defined on Z and for each
zeZ: imR[h; A(t)]z = #;

h~>0

(vi) there ewists a set I,c R+ such that I =I1,NI1,0 and a number
Lo = To(ley @) > 0, tye I, 2y>> 0 such that for any solution z(t,ty, xs) of (2) the
relation, x(l,t,, ¥)) < a(t), t>1, + Ty, tye L, holds, provided my << a(t,).

Then there exists a real number T = T'(t,, 2,) such that zo€ A, tye I = I, N1,

implies that Pz(t, 1y, 2,) € PD for t>1,+ T.

(i) Ve C(R+*x H, R) and V(i,z2) is locally Lipschitzian in z;
)

Proof. Let 2,4 and f,€l, then by (ii) 2(fty, %) € B for t>1,. Set
@y = Vb, 2)y el and T = T(ty, 2) = To(te, Vs, %)). By (i), (iii) and (v)
together with arguments parallel to that of theorem 2.1 of [1], we obtain,
V{1, 2ty to, 20)) < 7(%, Lo, @), t>>1,, Where 1(t, 8, 2,) is the maximal solution of (2)
through (i, ).

Let {tk} be a sequence such that £, >%, -+ 7, t,e€l and {,— oo as bk — co
and assume that z(t;, t,, 2,) € D, for #,>1, + 1. Proceding as in the conelud-
ing part of Theorem 2.1 leads to a contradiction and hence the results.

Remark. 1If we take I, = I, = R+ and W = Z, then the projection op-
erator P becomes the identity operator and so theorem 2.2 of [1], is included
in the last Theorem. It is well-known (ecfr. [4],) that the use of vector Lyapu-
nov functions is advantageous in certain situations. 1f in Theorem 2.2 we use
vector Lyapunov functions instead of scalar Lyapunov functions our result
generalizes theorem 2.1 of [1],. Our result is also a generalization of a similar
result of [3] obtained in the case Z = R

3 - Application of main results

We shall introduce in this section refined concepts of stability for the ab-
stract Cauchy problem (1). In particular, we shall apply our results in sec-
tion 2 to cover several situations of partial stability and boundedness criteria
of solutions of (1).
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Let X and Y be infinite dimensional Banach spaces and let Z = X% ¥
in (1) with the norm of Z defined as follows

[y 0], = o] + o]y -

Clearly with this norm Z becomes an infinite dimensional Banach space, and
the abstract Cauchy problem (1) is therefore equivalent to the system

d d
(3) a%b = A@®)w + 1t u, v), ;ii; =

Ao + g(t, u, v) ,
where ne X, veY, fe C(R*xZ,X), ge O(R*xZ,Y) and Fe C(R+XZ, Z).
We shall assume conditions on F' which gnarantee the existence of solution of (1).

Definition 3.1. (i) The set 2 =0 is said to be partially equistable or
equi-stable with respect to the u-component if given &> 0 35(t,, ¢) > 0 such that
o]l x + [[wo]lx < & implies u(t, by, 20)|x <& for t>1,.

(ii) The set z = 0 is said to be partially uniformly stable or uniformly
stable with respect to the u-component if ¢ in (i) is independent of t,.

(iii) The set z = 0 is said to be partially asymplotically stable if for each
¢ >0, t,€ B there exists positive numbers ¢ = 6(%,) and T = T(4, ¢) such
that for t>4, + T and |y + [[vofly < boy [ult, to, 2)]|x < &

(iv) The set z = 0 is said to be partially uniformly asymptotically stable
it 0 and 7' in (iii) arc independent of #, and (ii) also holds.

Definition 3.2. (i) The solutions of (1) are said to be partially equi-
bounded if for each >0, and ¢, € R* there exists a positive function g = B(4,, «)
which is continuous in 7, for each o such that [ue|x -+ ||oly<a implies
let, foy 20) | x << B for t>1,.

(if) The solutions of (1) are said to be partially uniformly bounded if the
f in (i) is independent of %,.

Other partial boundedness properties could be formulated similar to the
corresponding definitions of stability as in Definition 3.1. We omit details.

We now state sets of sufficient conditions for the partial stability and
boundedness properties of Def. 3.1 and 3.2 to hold for the system (1). Denote
by 8,(u) the set {ueX: |uly < o}

Theorem 3.3. _Assume that

(i) Ve C(R+x8,(u)~ {0} XY, R), V(t,u,v) is locally Lipschitzian in
(w, v) and V(t, u,v) >—oco as |u|x+ |v]r—0, and t — oo; :
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(i) b € C([0, 0], R) and for (t,u,v) € R*X8,(u) ~ {0}XY, V(,u,v)
= 0(Jul);

(iii) ge C(RT X R, R) and for (i, u,v) € B*X8,(u)~ I{O}X Y, DtV(¢,u, )
= lim sup (1/R)[ V(¢ + h, R[h, A(t)]w -+ hf(t, u, v), R[h, Ao -+ kg, u, v))
— ?f(;, 1, 0) ) < gl{t, V(t,u,v);

(iv) for each teR* and h >0, the operator R[h, A(t)] exists as a
bounded operator on Z = X XY and, for each (u,v)e X XY, lim (R[h, A(t)]u,

Rk, A(t)]v) = (u, v); . A—0™
(v) for (’verv/ 7 €(0,0) there ewists a 1(r)>0 such that any solution
a(t, ty, ) of (2) satisfies @(t, by, 3,) < b(r) for t=t=1(r) provided a, < b(r).

Then the set 2z = 0 is partially uniformly stable.

Proof. Let 0 < g < p, then there exists d(g)> 0 and z(g)> 0 such that
(1o, Vo) E Ny(w) ~ {0} >< Y, ty=1(s) implies V(ty, ug, v6) < b(g) by assumption (i).
Now set B - S, u)~{0} XY, @ = {(u, v): Jlullx+ |v]v G = PoQ
={ueX: |uly= 80} and W =X. In addition set a() = b(s) and I,
= I, = [7(g), 00). With these choices, the hypothesis of Theorem 2.1 are
all satisfied and hence the uniform partial stability of the set z == 0 follows.

Remark. Assume that the set 2 = 0 is self-invariant with respect to (1)
and suppose we assume that V(t, u,v) —~—oco as |ullx+ [v}r—0 for each
i e Rt, with ©(r) = 0 for every » such that 0 <# < p, then following the argu-
ments of the above theorem we have the partial equistability of the set z = 0
with respect to the problem (1). On the other hand if we assume in Theorem 3.3
that the set z = 0 is an asymptotically self-invariant set (see [4]; for definition
of asymptotically self-invariant set), then the stability of the asymptoticaliy
self-invariant set # = 0 is also called the eventual stability of the set ([4], 4.7),
and so the conclusion of Theorem 3.3 in that case implies the partial eventual
uniform stability of the set £ == 0 with respect to the Cauchy problem (1).

Let M,= {ueX: |u|.>0}, we now give a set of sufficient conditions for
the pfutlal uniform boundeness of solutions of (1).

Theorem 3.4. Assume that

(i) Ve C(R*XM,x Y, R), V(t,u,v) is locally Lipschitzian in wu,v;
(ii) be C([o, o), R) and for (t,u,v)e R*X M, XY, V(, u,v)=>b(|ulx);
(iii) for every (t,7)e R*X(g, 00), there exists f(r)>p such that [u]y
= o]y implies V(t, u, v) < b(f(?));
(iv) ge C(R*X R, R) and for (4, u,v) e R* XM, XY, DV, u,v)
<, Vit u,0));
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(V) for each te R+, h> 0, the operator R[h, A(t)] satisfies eondition (iv)
of Theorem 3.3;

(vi) for every 0 <r < g, 3t(r) > 0 such that any solution @(t, 1y, 2,) of (2)
watisfies w(t, by, 20) < b(B(r)) for t>t,>1(r) provided x, < b(B(r)).

Then the solutions of (1) are partially wniformly bounded.

Proof. Leta>pandi, e R¥, then 3f(w) > ¢ such that [usx + ||vfy<
implies V(ty, 1o, vo) < b(S(x)). Setting B = M, XY, @ = {(u,0): |ullx + |v]r<f}
and ¢ = PoQ = {ueX: |u[r =4}, W=2X and a(t) = b(B(x)), then we see
clearly that [uy]x -+ ]y <« implies |[u(t, t, 2)]x < f for all t>1,, using The-
orem 2.1.

Theorem 3.5. Assume that in addition to the hypothesis of Theorem 3.3,
(i) b(s) is non-decreasing in s and for every 0 < r < 0, there exists ¢ T = T(r) > 0
and T'(r)> 0 such that every solution x(, %, x,) of (2) satisfies a(t, ty, wq) << b(r)
for >ty + Ty with ty>v. Then the set 2 = 0 is partially uniformly asymptotically
stable.

Proof. By Theorem 3.3, the set z = 0 is partially uniformly stable,
hence for ¢ = g, there exists ¢, = (p) > 0 such that o x + ooy <9 im-
plies that (s, toy %) € S,(u) for i>%,. Now in Theorem 2.2, set 4 — S, (),
Qo=E = S,(u)~{0}xY, D = S, ()XY for any & e(0,p) and a(t) = b(e).
We see that conditions (ii) and (iv) of Theorem 2.2 are satisfied. Other hypo-
thesis of the theorem are also clearly satisfied, hence an application of the
theorem implies that if [u]x+ |volly <0, then (u(t, t,, ), v(t, tyy %)) €D
which implies that w(t, t,, %) €8, (u) for t>1t, 4 T, thus establishing the par-
tial asymptotic stability of the set z = 0.

Remark. We can formulate sufficient conditions for the other types of
partial stability and boundedness properties of the set z = 0 of the abstract
Cauchy problem (1). All that is required to establish such results reduces to
making appropriate choices of eertain invariant sets parallel to the proofs of
our results. We leave details of such formulations since they are fairly straight-
forward and parallel to our results here in this paper.
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Riassunto

L'autore di condizioni sufficienti per parziale stabilita e limitatezzca delle soluziond
del problema di Cauchy.



