COSTANZA BORELLI FORTI (*)

Some classes of solutions of the functional equation

$$f(L + x) = f(L) + f(x)$$
 (**)

1 - In this paper we consider the functional equation

$$(*)_m f(L+x) = f(L) + f(x), x \in L,$$

where L is an open convex cone in \mathbb{R}^n (with the euclidean norm) with the vertex at the origin and $f: L \to \mathbb{R}^m$ (the symbol $(*)_m$ points out this fact) (L+x) has the usual algebraic meaning and f(L+x), f(L) denote the f-transforms of L+x and L respectively).

The solution of $(*)_1$ were extensively studied in [1], $[3]_{1,2}$ and the equation $(*)_m$ has been studied, looking for some special class of continuous solutions, in [2].

In this paper we characterize completely some classes of solutions of $(*)_m$, where L is a proper cone in \mathbb{R}^2 (i.e. L is not a half-plane).

From now on L is a proper cone in \mathbb{R}^2 and r, s are the generatrices of L. In \mathbb{R}^2 we introduce a system (x_1, x_2) of coordinates, for which r is the positive x_1 -axis and s is the positive x_2 -axis. The cone L, as usual, induces in \mathbb{R}^2 a partial order, that is $x \geqslant y$ if and only if x = y or $x - y \in L$; we assume that \mathbb{R}^2 is ordered as above and we denote with the same symbol $(x \geqslant x)$ the natural order on x and x. For every $x \in L$, let

$$R(x) = \{ y \in L : \ y < x \} = L \cap (x - L)$$

then R(x) is open. Observe that a set $A \subset L$ is bounded in the sense of the norm if and only if $A \subset R(x)$ for some $x \in L$.

^(*) Indirizzo: Istituto Matematico, Università, via C. Saldini 50, 20133 Milano, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 2-VI-1978.

We use the following notations: L_x instead of L + x; \mathscr{A}^+ is the set of the continuous solutions of $(*)_1$, bounded from below and without zeros (see [3]₁, theorem 1); \mathscr{N}^+ is the set of the solutions of $(*)_1$, bounded from below and with zeros (except $f \equiv 0$) (see [3]₂).

We recall that if $f = (f_1, ..., f_m)$ is a solution of $(*)_m$, then f_i (i = 1, ..., m) is a solution of $(*)_i$ (see [2]).

2 – In this section we assume that $f = (f_1, f_2)$ is a solution of $(*)_2$, where $f_2 \in \mathcal{N}^+$ and f_1 is a solution, bounded from below, of $(*)_1$, $f_1 \not\equiv 0$. We denote by M_0 and N_0 the sets of the zeros of f_1 and f_2 respectively (M_0 may be empty).

Theorem 1. Let $f = (f_1, f_2)$ be a solution of $(*)_2$ and $N_0 \setminus M_0 \neq \emptyset$; then N_0 is unbounded.

Proof. Let $x_0 \in N_0 \setminus M_0$, then $(f_1(x_0), 0) \in f(L)$ and $f_1(x_0) \neq 0$; by $(*)_2$, $f(L) + f(x_0) \in f(L)$; therefore $(nf_1(x_0), 0) \in f(L)$ for every positive integer n. Hence $\sup f_1(N_0) = \infty$ and N_0 is unbounded, otherwise there exists $\overline{x} \in L$ such that $N_0 \in R(\overline{x})$, so $\sup f_1(N_0) \leq f_1(\overline{x})$.

Remark 2. If $N_0 \setminus M_0 \neq \emptyset$ and $M_0 \setminus N_0 \neq \emptyset$ then N_0 and M_0 are unbounded.

The following examples show that if $N_0 = M_0$ every situation can occur.

Examples. (1) Let $L = \{(x_1, x_2) : x_1 > 0 \text{ and } x_2 > 0\}, \ f_1(x_1, x_2) = [x_1], f_2(x_1, x_2) = \alpha[x_1], \text{ where } \alpha > 0 \ ([x] \text{ is the greatest integer not exceeding } x); \\ N_0 = M_0 = \{(x_1, x_2) : 0 < x_1 < 1\}. (2) \text{ Let } L = \{(x_1, x_2) : x_1 > 0 \text{ and } x_2 > 0\} \\ \text{and let } S_{i,j} = \{(x_1, x_2) : i \leqslant x_1 < i + 1 \text{ and } j \leqslant x_2 < j + 1\} \cap L, \text{ where } i, j \text{ are non-negative integers. Let } f_1(x_1, x_2) = i + j \text{ if } (x_1, x_2) \in S_{i,j} \text{ and } f_2(x_1, x_2) = 2i + j \text{ if } (x_1, x_2) \in S_{i,j}.$

 $f(L) = \bigcup_{h=0}^{\infty} \bigcup_{k=h}^{2h} (h, k); \text{ if } x \in L \text{ and } f(x) = (\overline{h}, \overline{k}) \text{ where } \overline{h} \leqslant \overline{k} \leqslant 2\overline{h}, \text{ it is } f(L)$ $+ f(x) = \bigcup_{h=\overline{h}}^{\infty} \bigcup_{k=\overline{k}+h-\overline{h}}^{\infty} (h, k) = f(L+x), \text{ so } f \text{ is a solution of } (*)_2 \text{ and } N_0$ $= M_0 = S_{0,0}.$

Theorem 3. Let $f = (f_1, f_2)$ be a solution of $(*)_2$ and $N_0 \setminus M_0 \neq \emptyset$; then for every $u \in f_2(L)$ and every $x \in f_2^{-1}(u)$, $L_x \cap f_2^{-1}(u)$ is unbounded.

Proof. As we have seen in the proof of Theorem 1, $f_1(N_0)$ is unbounded. For every $x \in N_0$, it is $f_1(L_x \cap N_0) = \{t: (t, 0) \in f(L_x)\} = \{t: (t, 0) \in f(L)\} + (f_1(x), 0)\} = \{t: (t - f_1(x), 0) \in f(L)\} = f_1(N_0) + f_1(x)$, so f_1 is unbounded on

 $L_x \cap N_0$, therefore $L_x \cap N_0$ is unbounded, otherwise $L_x \cap N_0 \subset R(\overline{x})$ for some \overline{x} and $\sup f_1(L_x \cap N_0) \leqslant f_1(\overline{x})$.

Let $u \in f_2(L)$, $u \neq 0$, and $x \in f_2^{-1}(u)$; because $f_1(L_x \cap f_2^{-1}(u)) = \{t: (t, u) \in f(L_x)\} = \{t: (t, u) \in f(L) + (f_1(x), u)\} = \{t: (t - f_1(x), 0) \in f(L)\} = f_1(N_0) + f_1(x), f_1 \text{ is unbounded on } L_x \cap f_2^{-1}(u), \text{ thus } L_x \cap f_2^{-1}(u) \text{ is unbounded.}$

Remark 4. The Theorems 1 and 3 hold even if $L \subset \mathbb{R}^n$.

Theorem 5. Let $f = (f_1, f_2)$ be a solution of $(*)_2$ and $N_0 \setminus M_0 \neq \emptyset$, then $N_0 = L \setminus \overline{L}_{n_1}$ $(n_1 \in \overline{L})$.

Proof. For every $x \in N_0$, the set $L_x \cap N_0$ is unbounded (Th. 3); for a fixed $x \in N_0$ it is either

- (a) $\sup \{x_2: (x_1, x_2) \in L_x \cap N_0\} = + \infty$ or
- (b) $\sup \{x_1: (x_1, x_2) \in L_x \cap N_0\} = + \infty.$

If (a) holds then $s + x \in N_0$, indeed, for every $y \in s + x$, $f_2(y) \geqslant f_2(x) = 0$, by

- (a) there exists $z \in L_x \cap N_0$ such that z > y, so $f_2(y) \leqslant f_2(z) = 0$ and $f_2(y) = 0$.
- If (a) holds for every $x \in N_0$, then $N_0 = \bigcup_{x \in N_0} (s+x) = L \setminus \overline{L}_{n_1}$, where $n_1 = (n_{1,1}, 0)$ and $n_{1,1} = \sup \{x_1 : (x_1, x_2) \in N_0\}$.
- If (b) holds for every $x \in N_0$, then $N_0 = L \setminus \overline{L}_{n_1}$ where $n_1 = (0, n_{1,2})$ and $n_{1,2} = \sup \{x_2 : (x_1, x_2) \in N_0\}$.

If there exist $v, w \in N_0$ such that (a) and (b) hold respectively, then for every $x \in R(v) \cap R(w)$ we have $r + x \in N_0$ and $s + x \in N_0$; therefore $N_0 = L \setminus \overline{L}_{n_1}$ where $n_1 = (n_{1,1}, n_{1,2})$ and $n_{1,1} = \sup \{t_1 : (t_1, t_2) \in N_0 \text{ and } \sup \{x_2 : (x_1, x_2) \in L_{(t_1, t_2)} \cap N_0\} = +\infty \}$, $n_{1,2} = \sup \{t_2 : (t_1, t_2) \in N_0 \text{ and } \sup \{x_1 : (x_1, x_2) \in L_{(t_1, t_2)} \cap N_0\} = +\infty \}$.

Theorem 6. Let $f = (f_1, f_2)$ be a solution of $(*)_2$ and $N_0 \setminus M_0 \neq \emptyset$; then f_2 is constant on ∂N_0 and $f_2(L)$ is the semigroup generated by $f_2(\partial N_0)$. (∂N_0) is the boundary of N_0 in L).

Proof. If f_2 is not constant on ∂N_0 , then there exist $z, w \in \partial N_0$ and $w \in \partial L_z$, such that $f_2(w) > f_2(z)$. (If $N_0 = L \setminus \overline{L}_{n_1}$, where $n_1 \in L$, we can choose as z the point n_1). For every $x \in N_0$ it is, by theorem 6 in $[3]_2$,

$$\inf \left\{ f_2(\partial N_0) \right\} = \inf \left\{ f_2(L_x) \diagdown \left\{ 0 \right\} \right\} = \inf \left\{ f_2(\partial N_0 \cap L_x) \right\}.$$

The shape of N_0 implies the existence of $x \in N_0$ such that $w \notin L_x \cap \partial N_0$ and

 $\partial L_z \supset L_x \cap \partial N_0$, so

40

$$f_2(w) \leqslant \inf\{f_2(L_x \cap \partial N_0)\} = \inf\{f_2(L_x) \setminus \{0\}\} = \inf\{f_2(\partial N_0)\} \leqslant f_2(z)$$

i.e. $f_2(w) = f_2(z)$; a contradiction.

If $f_2(\partial N_0) = \{a\}$, by theorem 8 in $[3]_2$, it is $f_2(L) = aN$.

We denote by N_k the set $f_2^{-1}(ka)$, $k \in \mathbb{N}$, whenever $f_2(L) = a\mathbb{N}$. Analogously, if $f_1(L) = b\mathbb{N}$, we shall denote by M_k the set $f_1^{-1}(kb)$.

Theorem 7. Let $f = (f_1, f_2)$ be a solution of $(*)_2$ and $N_0 \setminus M_0 \neq \emptyset$. Then $N_k = (\overline{L}_{n_k} \setminus \overline{L}_{n_{k+1}}) \cap L$, where $\{n_k\}$ is an increasing sequence in r (or in s) such that $n_k \to +\infty$ for $k \to +\infty$.

Proof. We prove the theorem by induction.

Let k=1; it is, by Th. 5, $N_0=L \setminus \overline{L}_{n_1}$. Assume that $n_1 \in r$. For every $x \in N_1$ either

- (a) $\sup \{x_2 : (x_1, x_2) \in L_x \cap N_1\} = +\infty;$
- (b) $\sup \{x_1: (x_1, x_2) \in L_x \cap N_1\} = + \infty \text{ hold.}$

For a fixed $x \in N_1$, assume that (a) holds, then, as in the proof of Th. 5, we have $s+x \in N_1$ and every $y, \ y < x, \ y \in L, \ y \notin N_0$, is in N_1 , because $0 < f_2(y) \leqslant a$, so $f_2(y) = a$. If for every $x \in N_1$ (a) holds, then $N_1 = (\bar{L}_{n_1} \setminus \bar{L}_{n_2}) \cap L$, where $n_2 \in r$, $n_{2,1} = \sup \{x_1: (x_1, x_2) \in N_1\}$ and $n_{2,1} > n_{1,1}$.

If there exist $v, w \in N_1$ for which (a) and (b) hold respectively, then every $x \in \{R(v) \cap R(w)\} \setminus N_0$ satisfies both (a) and (b), so there exists $n_2 \in L$, $n_{2,1} > n_{1,1}$, such that $N_1 = (\overline{L}_{n_1} \setminus \overline{L}_{n_2}) \cap L$.

Theorem 6 and theorem 3 in $[3]_2$ imply that the set of the second coordinate of points $x \in N_1 \setminus \partial N_0$ is unbounded; then for some of such points (a) holds, otherwise $N_1 = L \setminus N_0$ contradicting the fact that $f_2(L) = aN$. We have an analogous result if $n_1 \in s$. Now we assume that $n_1 \in L$; then there exists $v \in N_1$ for which (a) holds and $w \in N_1$ for which (b) holds, so $N_1 = (\overline{L}_{n_1} \setminus \overline{L}_{n_2}) \cap L$, where $n_2 > n_1$. In all cases dealing as in the proof of Th. 6, we obtain $f_2(\partial L_{n_2} \cap L) = \{2a\}$. Let now $\overline{k} > 1$; if for every $k < \overline{k}$, $n_k \in r$, then, as for k = 1, it is $n_{k+1} \in r$ or $n_{k+1} \in L$ and $n_{k+1,1} > n_{k,1}$. If there is $k < \overline{k}$ such that $n_k \in r$ and $n_{k+1} \in L$, $n_{k,1} < n_{k+1,1}$, then $n_{k+1} \in L$ and $n_{k} < n_{k+1}$.

It is $n_{k,1} \to +\infty$ or $n_{k,2} \to +\infty$, otherwise if $n_{k,1} < H_1$ and $n_{k,2} < H_2$, every $x = (x_1, x_2) \in L$ with $x_1 > H_1$ and $x_2 > H_2$ is such that $x \notin N_k$ for every $k \in \mathbb{N}$. We now prove that actually for every k, $n_k \notin L$. We assume that $n_{k,1} \to +\infty$. If $n_{k+1} \in L$, then, for every j > 0, $n_{k+j} \in L$; let $z, y \in N_k$ with

 $z_2 < n_{k+1,2}$ and $y_2 < n_{k+1,2}$, then for every j large enaugh it is $L_z \cap N_{k+j} = L_y \cap N_{k+j}$.

$$f(L_z \cap N_{k+j}) = \{(u, (k+j)a) : (u, (k+j)a) \in f(L_z)\}$$

$$= \{(u, (k+j)a) : (u-f_1(z), ja) \in f(L)\}$$

$$= \{(u, (k+j)a) : (u-f_1(z), ja) \in f(N_j)\}$$

$$= \{(u, (k+j)a) : (u, ja) \in f(N_j) + (f_1(z), 0)\} = f(L_y \cap N_{k+j})$$

$$= \{(u, (k+j)a) : (u, ja) \in f(N_j) + (f_1(y), 0)\};$$

hence, being $f_1(N_j)$ bounded from below, it is $f_1(z) = f_1(y) = \alpha$. Now let $w \in N_k$, $w_2 \ge n_{k+1,2}$ and $f_1(w) = \beta$; if we take $z \in N_k$, with z < w and $z_2 < n_{k+1,2}$ and $y \in N_k$, with $y_2 < n_{k+1,2}$, $y_1 > n_{k+1,1}$, it is $(\beta, ka) = f(w) \in f(L_z) = f(L_y)$, (being f(z) = f(y) from above), but $f(L_y \cap N_k) = \{(\alpha, ka)\}$, so $\beta = \alpha$. We have proved that if $n_{k+1} \in L$ then f_1 is constant on N_k ; so if $n_1 \in L$, f_1 is constant on N_0 , but $\inf f_1(L) = \inf f_1(N_0) = 0$, then $M_0 \supset N_0$; so $n_1 \notin L$.

By the hypothesis there is $x \in N_0$ such that $f_1(x) \neq 0$, so $(f_1(x), 0) \in f(L)$ and $(nf_1(x), 0) \in f(L)$, i.e. f_1 is unbounded on N_0 .

If $n_{k+1} \in L$, then for every $x \in N_0$ there is $y \in N_k$ such that x < y, so $f_1(x) \le f_1(y)$, but f_1 is constant on N_k , then we have a contradiction. Thus for every k, $n_k \notin L$.

3 – In this section we use the previous results on the structure of the sets N_k and M_k to characterize completely the solutions of $(*)_2$ when $f_2 \in \mathcal{N}^+$ and $f_1 \in \mathcal{A}^+$ or $f_1 \in \mathcal{N}^+$ and $N_0 \neq M_0$.

Theorem 8. Let $f = (f_1, f_2)$, where $f_1 \in \mathcal{A}^+$ and $f_2 \in \mathcal{N}^+$. Then f is a solution of $(*)_2$ if and only if f_1 and f_2 depend only on x_2 and x_1 (or x_1 and x_2) respectively.

Proof. The «if» part follows from the fact that if f_1 and f_2 depend on different variables then for every set $A \in L$ it is $f(A) = f_1(A) \times f_2(A)$. Now assume that f is a solution of $(*)_2$; by Th. 7, for every $k \in \mathbb{N}$, $n_k \in r$ or $n_k \in s$; we suppose that $\{n_k\} \subset r$. For a fixed \bar{k} and every $y = (y_1, y_2) \in N_{\bar{k}}$, it is $f(L_y) = f(L) + f(y) = f(L) + (f_1(y), \bar{k}a)$.

Now let $y'=(y_1',y_2') \in N_{\overline{k}}$ with $y_2'=y_2$, then for every $k > \overline{k}$ we have $L_v \cap N_k = L_{v'} \cap N_k$, so, as in the proof of Th. 7, we have $f_1(y) = f_1(y')$, i.e. f_1 does not depend on x_1 in $N_{\overline{k}}$. Since \overline{k} was arbitrary, then $f_{1|x_2=c}$ is a step function and, by the continuity, $f_{1|x_2=c}$ is constant, i.e. f_1 depends only on x_2 in L.

If for every $k \in \mathbb{N}$, $n_k \in s$, we have the same result with x_1 in place of x_2 .

Lemma 9. Let $f = (f_1, f_2)$ be a solution of $(*)_2$, where $f_i \in \mathcal{N}^+$ (i = 1, 2). If $N_0 \setminus M_0 \neq \emptyset$ and $M_0 \setminus N_0 \neq \emptyset$, then for every $k \in \mathbb{N}$, $N_0 \cap M_k \neq \emptyset$ (so $m_k \in N_0 \cup \partial L$) and $M_0 \cap N_k \neq \emptyset$ (so $n_k \in M_0 \cup \partial L$).

Proof. $M_0 \setminus N_0 \neq \emptyset$ implies, by Th. 6, that $f_1(L) = bN$. Let $y \in N_0 \setminus M_0$ and $f_1(y) = b$, then $(b, 0) \in f(L)$ and, by $(*)_2$, $(kb, 0) \in f(L)$ for every $k \in N$, i.e. $N_0 \cap M_k \neq \emptyset$. Similarly we have $M_0 \cap N_k \neq \emptyset$ for every $k \in N$.

Theorem 10. Let $f = (f_1, f_2)$, where $f_i \in \mathcal{N}^+$ (i = 1, 2) and $N_0 \setminus M_0 \neq \emptyset$, $M_0 \setminus N_0 \neq \emptyset$. f is a solution of $(*)_2$ if and only if f_1 and f_2 depend only on x_2 and x_1 (or x_1 and x_2) respectively.

Proof. The «if » part is obvious.

42

Now let f be a solution of $(*)_2$. If $\{n_k\}$ and $\{m_k\}$ are the sequences that characterize the sets $\{N_k\}$ and $\{M_k\}$, then, by Th. 7, $\{n_k\}$ and $\{m_k\}$ are contained in r and s. If $\{n_k\} \subset r$, then $N_0 \cap M_k \neq \emptyset$ for every k (Lemma 9) implies that $\{m_k\} \subset s$. Analogously if $\{m_k\} \subset r$ then $\{n_k\} \subset s$. Thus f_1 and f_2 depend only on one variable and the theorem follows.

Theorem 11. Let $f=(f_1,f_2)$, where $f_i \in \mathcal{N}^+$ (i=1,2) and $M_0 \in N_0$ $(M_0 \neq N_0)$. Then f is a solution of $(*)_2$ if and only if there exist two real increasing sequences $\{u_k\}$, $\{v_k\}$, $u_0=v_0=0$, $u_k \to +\infty$, $v_k \to +\infty$, and three positive real numbers a,b,c such that

$$\begin{split} f_1(x_1,\,x_2) &= hb + jc & \quad \text{if } (x_1,\,x_2) \in L & \quad \text{and } u_i \leqslant x_1 < u_{i+1} \,, \qquad v_h \leqslant x_2 < v_{h+1} \,, \\ f_2(x_1,\,x_2) &= ja & \quad \text{if } (x_1,\,x_2) \in L & \quad \text{and } u_i \leqslant x_1 < u_{i+1} \,, \\ \left(\text{or } f_2(x_1,\,x_2) = ha & \quad \text{if } (x_1,\,x_2) \in L & \quad \text{and } v_h \leqslant x_2 < v_{h+1} \right). \end{split}$$

Proof. Let f be a solution of $(*)_2$. By Th. 6, $f_2(N_j) = ja$, a > 0, and, by Th. 7, $N_j = (\overline{L}_{n_j} \setminus \overline{L}_{n_j+1}) \cap L$, $\{n_j\} \in r$ (or in s). Assume that $\{n_j\} \in r$, then $u_j = n_{j,1}$. As in the proof of Th. 8 we can prove that f_1 in N_k does not depend on x_1 , so there is v_1 such that $M_0 = \{(x_1, x_2) : (x_1, x_2) \in N_0 \text{ and } x_2 < v_1\}$. Let b be the value assumed by f_1 on the set $\{(x_1, v_1) : 0 < x_1 < u_1\}$; then there is $v_2 > v_1$ such that $f_1^{-1}(b) \cap N_0 = \{(x_1, x_2) : (x_1, x_2) \in N_0 \text{ and } v_1 \leqslant x_2 < v_2\}$. We claim that f_1 on the set $V_{2,0} = \{(x_1, v_2) : 0 < x_1 < u_1\}$ takes the value 2b. Let $y \in V_{2,0}$, there is $x \in f_1^{-1}(b) \cap N_0$ such that x < y; by $(*)_2$ there is $z \in L$ such that f(y) = f(z) + f(x), i.e. $f(z) = (f_1(y) - b, 0)$; therefore $z \in N_0$ and $f_1(z) = f_1(y) - b$, but $f_1(z) \geqslant b$ so $f_1(y) \geqslant 2b$. $(b, 0) \in f(L)$ implies that $(2b, 0) \in f(L)$,

so, f_1 being not decreasing, $f_1(y) \leq 2b$, then $f_1(y) = 2b$. Then, by induction, we obtain an increasing sequence $\{v_h\}$ such that if $0 < x_1 < u_1$ and $v_h \leq x_2 < v_{h+1}$ then $f_1(x_1, x_2) = hb$.

Now let $x \in N_1$, then $f(x) = (\gamma, a)$. $f(L_x \cap N_1) = f(N_0) + f(x)$, then $f_1(L_x \cap N_1) = \bigcup_{n \in \mathbb{N}} \{\gamma + hb\}$. If $y \in N_1$ and y < x, then $\gamma = f_1(y) + h_0 b$, i.e. $f_1(y) = \gamma - h_0 b$; thus f_1 takes a minimum value, say c > 0, on N_1 and there is v_1 such that $f_1^{-1}(c) \cap N_1 = \{(x_1, x_2) : (x_1, x_2) \in N_1 \text{ and } 0 < x_2 < v_1\}$. $v_1 = v_1$: if $v_1 > v_1$, we take $x \in f_1^{-1}(b) \cap N_0$ and $y \in f_1^{-1}(c) \cap N_1$ such that x < y; then $f(y) - f(x) \in f(L)$ implies the existence of z such that f(z) = f(y) - f(x) = (c - b, a), but c is the minimum of f_1 in N_1 , so we have a contradiction. If $v_1 < v_1$, we take $x \in N_0 \cap M_0$ such that $x_2 > v_1$, then $f(L_x) = f(L)$, but $(c, a) \in f(L)$ and $(c, a) \notin f(L_x)$; a contradiction.

Then, by induction, we have $f_1(x_1, x_2) = hb + c$ if $u_1 \leqslant x_1 < u_2$ and $v_h \leqslant x_2 < v_{h+1}$. $f_1(L)$, by th. 8 in [3]₂, is the semigroup generated by b and c, then, in the same way, we obtain that $\min f_1(N_2) = 2c$ and, by induction on j and h, the proof follows. By a simple verification, the «if » part follows, indeed

$$f(L) = \bigcup_{\substack{j \ge 0 \\ h \ge 0}} \{(hb + jc, ja)\}, \qquad f(x) = (h_0 b + j_0 c, j_0 a),$$

$$f(L_x) = \bigcup_{\substack{j \geq j_0 \\ h \geqslant h_0 \\ h \geqslant 0}} \{ (hb + jc, ja) \} = \bigcup_{\substack{j \geq 0 \\ h \geqslant 0}} \{ ((h + h_0)b + (j + j_0)c, (j + j_0)a) \} = f(L) + f(x) .$$

Remark 1.2. The value c in Th. 11 can be of the form $\overline{h}b$.

4 – In order to explain the way of using the previous results, we give a theorem concerning the solutions $f = (f_1, ..., f_m)$ of $(*)_m$ when some f_i are in \mathscr{N}^+ and some are in \mathscr{N}^+ .

Before we need the following

Lemma 1.3. Let $L=(0,+\infty)$ and $f=(f_1,f_2)$, where $f_i \in \mathcal{N}^+$ (i=1,2). Then f is a solution of $(*)_2$ if and only if $f_2(x)=kf_1(x)$ for some $k \in \mathbb{R}^+ \setminus \{0\}$.

Proof. We recall that if $L=(0,+\infty)$, $g\in \mathcal{N}^+$ if and only if g(x)=nq if $x_n\leqslant x< x_{n+1}$, $q\in \mathbb{R}^+\setminus\{0\}$, where $\{x_n\}$ is an increasing sequence such that $x_0=0$ and $x_n\to +\infty$ (see [1]). The «if » part of the theorem is obvious.

Let f be a solution of $(*)_2$ and let $\{x_n\}$ and $\{y_n\}$ be the sequences of f_1 and f_2 respectively. It is enough to prove that for every $n, x_n = y_n$. $x_1 = y_1$, otherwise Th. 1 and Remark 4 imply that either $f_1 \equiv 0$ or $f_2 \equiv 0$. We assume $x_k = y_k$ for every $k \leqslant n$ and we prove that $x_{n+1} = y_{n+1}$. If $x_n < y_{n+1} < x_{n+1}$,

then $(nq_1, nq_2) \in f(L)$ and $(nq_1, (n+1)q_2) \in f(L)$ $(q_1 = f_1(x_1), q_2 = f_2(y_1))$, so $(2nq_1, 2nq_2) \in f(L)$, $(2nq_1, (2n+1)q_2) \in f(L)$, $(2nq_1, 2(n+1)q_2) \in f(L)$. $(2nq_1, 2(n+1)q_2) \in f(L)$. $(2nq_1, 2(n+1)q_2) \in f(L)$, then $((2n+1)q_1, (2n+1)q_2) \in f(L)$ and $((2n+1)q_1, 2(n+1)q_2) \in f(L)$, thus $x_{2n+1} \in y_{2n+2}$; a contradiction. Then $y_{n+1} \geqslant x_{n+1}$ and, by simmetry, $x_{n+1} \geqslant y_{n+1}$, so $x_{n+1} = y_{n+1}$.

Theorem 1.4. Let $L \in \mathbb{R}^2$ and $f = (f_1, ..., f_j, g_1, ..., g_n), n + j = m,$ where $f_i \in \mathscr{A}^+$ (i = 1, ..., j) and $g_k \in \mathscr{N}^+$ (k = 1, ..., n). Then f is a solution of $(*)_m$ if and only if $f_i(x) = \alpha_i p(x)$, where $p \in \mathscr{A}^+$, $\alpha_i \in \mathbb{R}^+ \setminus \{0\}$ and p depends only on x_1 (or x_2) and $g_k(x) = \beta_k q(x)$, where $q \in \mathscr{N}^+$, $\beta_k \in \mathbb{R}^+ \setminus \{0\}$ and q depends only on x_2 (or x_1).

Proof. Let f be a solution of $(*)_m$ and fix f_i and g_k ; by Th. 8, g_k depends only on one variable, say x_2 , and f_i depends on x_1 . Changing k, we have that every g_k depends on x_2 and, analogously, every f_i depends on x_1 . The function (g_1, \ldots, g_n) is a solution of $(*)_n$, then, by Lemma 13, $g_k(x) = \beta_k g_1(x), \beta_k > 0$.

 (f_1, \ldots, f_j) is a solution of $(*)_j$, then by corollary 7 and theorem 13 in [2], $f_i(x) = \alpha_i f_1(x)$, $\alpha_i > 0$.

Now let $f = (\alpha_1 p, ..., \alpha_i p, \beta_1 q, ..., \beta_n q), p \in \mathscr{A}^+$ depending on x_1 and $q \in \mathscr{N}^+$ depending on x_2

$$\begin{split} f(L_x) &= \{(\alpha_1 p, \, ..., \, \alpha_j p)(L_x)\} \times \{\beta_1 q, \, ..., \, \beta_n q)(L_x)\} \\ &= \{(\alpha_1 p, \, ..., \, \alpha_j p)(L) \, + \, (\alpha_1 p(x), \, ..., \, \alpha_j p(x))\} \times \\ &\qquad \qquad \times \{(\beta_1 q, \, ..., \, \beta_n q)(L) \, + \, (\beta_1 q(x), \, ..., \, \beta_n q(x))\} \\ &= \{(\alpha_1 p, \, ..., \, \alpha_j p)(L)\} \times \{\beta_1 q, \, ..., \, \beta_n q)(L)\} \\ &\qquad \qquad + \, (\alpha_1 p(x), \, ..., \, \alpha_j p(x), \, \beta_1 q(x), \, ..., \, \beta_n q(x)) \, = \, f(L) \, + \, f(x) \; . \end{split}$$

(The second equality follows from corollary 7 in [2]).

References

- [1] A. D. ALEKSANDROV, On a certain generalization of the functional equation f(x + y) = f(x) + f(y), Siber. Math. J. 11 (1970), 198-209.
- [2] C. Borelli Forti e G. L. Forti, Vector-valued solutions of a functional equation, Boll. Un. Mat. Ital. (5) 16-B (1979), 266-277.

- [3] G. L. Forti: $[\bullet]_1$ On the functional equation f(L+x) = f(L) + f(x), Ist. Lombardo Accad. Sci. Lett. Rend. A, 111 (1977), 296-302; $[\bullet]_2$ Bounded solutions with zeros of the functional equation f(L+x) = f(L) + f(x), Boll. Un. Mat. Ital. (5) 15 A (1978), 248-256.
- [4] J. TÄUBER: [•]₁ Eine neue Klasse von Lösungen einer Funktionalgleichung, Bul. Sti. Tehn. Inst. Politehn. Timisoara, Ser. Mat. Fiz. Mec. Teoret. Apl., (30) 16 (1971), 193-199; [•]₂ Über die Lösungen einer von A. D. Aleksandrov verallgemeinerten Cauchyschen Funktionalgleichung, An. Univ. Timisoara, Ser. Sti. Mat. 11 (1973), 175-182.

Sunto

In questa nota vengono caratterizzate alcune classi di soluzioni non continue dell'equazione funzionale f(L+x)=f(L)+f(x), dove L è un cono aperto convesso in \mathbf{R}^2 , $x\in L$ e $f\colon L\to \mathbf{R}^2$. I risultati trovati sono poi utilizzati per determinare una particolare classe di soluzioni della stessa equazione, quando f assume valori in \mathbf{R}^m .

* * *

