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CosraANzA BORELLI FoOoRTI (%)

Some classes of solutions of the functional equation

HL + @) = (L) + f(@) (*%)

1 — In this paper we consider the funetional equation
j¢

(*)m f(L+(B)=f(L)+f((U), {Y)EL,

where L is an open convex cone in R» (with the euclidean norm) with the
vertex at the origin and f: L — R (the symbol (x), points out this fact)
(L + =« has the usual algebraic meaning and f(L - ), f(L) denote the f-trans-
forms of L 4- « and L respectively).

The solution of (), were extensively studied in [1], [3],,. and the equa-
tion (), has been studied, looking for some special class of continuous solu-
tions, in [2].

In this paper we characterize completely some classes of solutions of (3 ) g
where L is a proper cone in R? (i.e. L is not a half-plane).

From now on I is a proper cone in R? and r, s are the generatrices of L.
In R® we introduce a system (@, @,) of coordinates, for which r is the posi-
tive @;-axis and s is the positive z,-axis. The cone L, as usual, induces in R?
a partial order, that is o>y if and only if # =y or # — y e L; we assume
that R* is ordered as above and we denote with the same symbol « > »
the natural order on » and s. For every € L, let

Rex)={yel: y<a}=LN (@— L),

then R(x) is open. Observe that a set 4 ¢ L is bounded in the sense of the
norm if and only if A c R(x) for some z e L.

(*) Indirizzo: Istituto Matematico, Universitd, via C. Saldini 50, 20133 Milano,
Ttaly.
(**) Lavoro eseguito nelPambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 2-VI-1978.
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We use the following notations: L, instead of L -+ @; «/* is the set of the
continuous solutions of (%),, bounded from below and without zeros (see [3],,
theorem 1); A4 is the set of the solutions of (x),, bounded from below and
with zeros (except f = 0) (see [3],).

We recall that if { = ({1, .-, Jm) IS & solution of (%),,, then f; ( = 1, ..., m)
is a solution of (%), (see [2]).

2 — In this section we assume that f = (f;, f.) is a solution of (x),, where
fo€ A+ and f, is a solution, bounded from below, of (%),, f; 52 0. We denote
by M, and N, the sets of the zeros of f, and f, respectively (M, may be empty).

Theorem 1. Let f= (fi, f.) be a solution of (%), and N\ M, 0; then
N, is unbounded.

Proof. Let a@,e No\M,, then (fi(z,), 0) € (L) and fi(ws) 5= 0; by (%),
L) + f(@) c f(L); therefore (nfy(%o), 0) e /(L) for every positive integer n.
Hence sup f,(N,) = oo and N, is unbounded, otherwise there exists Ze€ L
such that N, c R(E), so sup f(No) <f4(F).

Remark 2. If No M, 0 and M) N, 0 then N, and M, are un-
bounded.

The following examples show that if N, = M, every situation can occur.

Examples. (1) Let L= {(®@, 2): 2> 0 and @,> 0}, (w1, 2) = [@4],
fal@y, @) = o[@,], where o> 0 ([#] is the greatest integer not exceeding @);
No= My= {{@;, @,): 0 < @, < 1}. (2) Let L= {(@, @): @, >0 and > 0}
and let §;; = {(wl, To): <<y, <t-+ 1 and j<w,<<j 4 1} N L, where 4, j are
non-negative integers. Lt fy(@y, 2s) =1 4 j if (2, @) € 8;; and [y(w, @)
=21+ j if (@, @) eS,;.

oo 2k

=UU W, ¥); if eeL and f(@) = (h, k) where h<lk<2h, it is f(IL)
he=0 L=h
oo EFt2(r—n)
+ flz) = U U (hy k) = f(L -+ @), so f is a solution of (), and N,

k=3 =g Fh—F

= My= S,p.

Theorem 3. Let f= (fi, ) be @ solution of (%), and NN\ M, = 05 then
for every wefo(L) and every w€f; (), L,N {7} (w) is unbounded.

Proof. As we have seen in the proof of Theorem 1, f,(¥,) is unbounded.
For evely relN,, ib is fulLe OV NG) = {t: (8, 0) € f(L.)} = {t: (¢, 0) e {(L)
0)} = {t: (t— ful@), 0) € /(L) } = /(N,) + fi(w), s0 f, is unbounded on
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L, N N,, therefore L, N N, is unbounded, otherwise L, N N, c R(Z) for some %
and sup f,(L, N Ny) < f1(Z).

Let wefy(l), us0, and @ e f7u); beea,u%e fu(Le O f74w)) = {t {t, u)
ef( L)} = {t: (4, w) e f(L) + (fulw), u)} = {t: (t— ful@), 0) € (L)} = F(No) + fulee

f1 is unbounded on L, N fj‘('u) thus L, N {74 (w) is unbounded.
Remark 4. The Theorems 1 and 3 hold even if Lc R».

Theorem 5. Let f = (f;, f,) be a solution of (%), and N\M,s= 0, then
No=INL,, (neL).

Proof. For every xe N,, the set L,N N, is unbounded (Th. 3); for a
fixed x € N, it is either

(a) sup {w: (@, @) € L,N No} = + oo or
(b) sup {"1315 (w1, @) € Ly N 1\70} = -4 oo.

If (a) holds then s 4- » c N,, indeed, for every y es + @, fo(y)>fale) = = 0, by
(a) there exists z € L, N N, such that 2>y, 50 fu(y)<fu(2) = 0 and f2 (y) = 0.
If (a) holds for every we N,, then N, = U(s -+ z) = L\Lnl, where =,
ZEN,
= (0,1, 0) and n,, = sup {w;: (v, ) € Ny}

It (b) holds for every x e N,, then N, = L\L where n;, = (0, n,,) and
Moo = SUP {&o: (@, m5) € N}

If there exist v, w € N, such that (a) and (b) hold respectively, then for
every € R(v) N R(w) we have r 4+ 2c N, and s+ wcN,; therefore N,
= INL,, where n, = (n, 4 M) and g, = sup {t;: (4, t,) € N, and sup {z,:
(@1, @) € L, t)(‘\ Ny} = + oo}, Mg = SUDP {ta: (4, &) € Ny and sup {@: (2, )
€ L(,l M ND = oo}

Theorem 6. Let f= (f, f.) be a solution of (%), and N\ M, = a5 then
/1 is constant on ON, and fo(L) is the semigroup generated by f2(0N,). (0N, is
the boundary of Ny in L).

Proof. If f, is not constant on oN,, then there esist 2, w e oN, and

w € 0L,, such that fo(w) > f,(2). (If Ny = INL, 1y Where n, € L, we can chooge
as z the point n,). For every e N, it is, by theorem 6 in [31,

inf {f,(0N,)} = inf {f(LJ\{0}} = int {f,(N, N L,)} .

The shape of N, implies the existence of # € N, such that w ¢ L,N oN, and
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oL, > L, N 0N, so
faltw) <int {fo( L, O 2N )} = inf {fo(LINJO}} = inf {£,(8N0)}<1a(2) ,

i.e. fo(w) = fy(#); & contradiction.
If f (0N,) = {a}, by theorem 8 in [3],, it is fo(L) = alN.

We denote by N, the set f;'(ke), ke N, whenever f,(L) = alN. Analo-
gously, if f,(L) = bN, we shall denote by M, the set f'(kb).

Theorem 7. Let = (fi, f») be a solution of (), and N\ DM, 0. Then
N, = (I_J,,‘,;\I—/.,lh a0 L, where {n,,.} is an increasing sequence in 1 (ov in 8) such
that n, — - oo for k — -+ co.

Proof. We prove the theorem by induction.
Let k= 1; it is, by Th. 5, Ny = INL,,. Assume that n,er. For every
x € N, either

(a) sup {ws: (@, @) € L, N Ny} = - oo;

(b) sup {m: (2, @) € L, N N} = + oo hold.

For a fixed x € N,, assume that (a) holds, then, as in the proof of Th. 3,
we have s 4+ xc N, and every y, y<<z, yeL, y¢ Ny, is in N,, because
0 < fy(y)<a, 80 fuly) = a. If for every we XN, (a) holds, then N, = (L
\I:ne) N L, where n, €7, 5, == sup {mlz (), xs) €N ,} and g, > Ny,

If there exist v, w € N, for which (a) and (b) hold respectively, then every
re {R(v) N R(w)}\N0 satisfies both (a) and (b), so there exists n,€ L, Ny,
> myy, such that Ny = (L, \Lu,) N L.

Theorem 6 and theorem 3 in [3], imply that the set of the second coordi-
nate of points z e N\0N, is unbounded; then for some of such points (a)
holds, otherwise N, = INXN, contradicting the fact that f,(L)=alN. We have
an analogous result if », €s. Now we assume that n, € L; then there cxists
ve N, for which (a) holds and we N, for which (b) holds, so N, = (an
NLiw,) N L, where 7, > n;. In all cases dealing as in the proof of Th. 6, we
obtain f,(6L,, N L) = {2a}. Let now k> 1; if for every k <k, n,er, then,
as for k = 1, it is ng,, €7 or n5,; € L and 75,,, > 95, If there is k < k such
that n,er and n €L, n, ;< ,, then ny, €l and n <ng, .

It is e, = 4 oo OF 95 — + oo, otherwise if n;, < H; and ., < H,,
every @ = (#,, ®,) € L with @y, > H, and @, > H, is such that ¢ N, for every
e N. We now prove that actually for every k, w,¢ L. We assume that
fyy — + oo, I my 1 € L, then, for every j> 0, ;€ L; let 2,y € N, with

721
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Zy << Myyze a0d gy, <y s12, then for every j large enaugh it is LN,
_ -L,u N ATI;.H"

F L Ney)= {(u, (k& + j)a): (u, (& + j) )a) € f(L.)}

= {(u, (& + ) a): (u— fi(2) ,ja) e }

= {(u: k--19) “) ('u’_ f1(=) y]“) €f }

= {(w, (b +j)a): (w, ja) e (V) + (f1 &)y 0} = f(L, N Ny,,)

= {(u, (k + §) a): (u, ja) e {(V,) + (Fu(y) , 0)} 5
hence, being f,(¥;) bounded from below, it is f,(z) = = [1(y) = «. Now let
we N, Wy > Nypa e a0d fi(w)= f; if we take z & N, with 2 < w and zq< pp1e
and y e N,, with Yo <Mayaz, Y1> Mgy, it I8 (B, ka)= f(w) € f(L.) = H(L,),

(being f(2) = f(y) from above), but F(L,N N,) = = {(o, ka)}, so /5’ =0 We
have proved that if n,., € L then f, is constant on Ny; so it m, € L, f, is con-
stant on N,, but inf f,(L) = inf f(N,) = 0, then 3,2 Ny; so n, ¢ L.

By the hypothesis there is e N, such that fi(@) == 0, so (fi(z), 0) € (L)
and (nfy(x), 0) € (L), i.e. f, is unbounded on N,.

If «n, +IEL then for every we N, there is y e N, such that =< g Y, SO
f1(@) < fly), but f, is constant on N, then we have a contradiction. Thus for
every k, n,_, ¢ L.

3 - In this section we use the previous results on the structure of the
sets ¥, and M, to characterize completely the solutions of (%), when f, e 4™
and f, € &+ or fy e /™ and N, M,.

Theorem 8. Let f = (f,, f.), where f,€ <7+ and foe N, Then f is a
solution of (), if and only if f, and f, depend only on @, and x, (or =, and ,)
respectively.

Proof. The «if» part follows from the fact that 1f f. and f, depend on
different variables then for ev ery set AcL it is f(A) = f(4d) Xf.(4). Now
assume that f is a solution of (x),; by Th. 7, for every 7., eN, n.er or n, €s;
we suppose that {n,jcr. For a fixed k£ and every y = (41, %) € N, it is
HL,) = J(L) + f(y) = f(L) + (f(y), ka). ~

Now let y'= (y,, v,) € N, with Y. = Y,, then for every k> k we have
L,NN,= L,NN,, so, as in the proof of Th. 7, we have f,(y) = fy(y'),
i.e. f; does not depend on m, in N.. Since k was arbitrary, then filowms 18 @
step function and, by the contmmty fijes=e 1S constant, i.e. f; depends only
on z, in L.
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Tt for every ke N, n; €s, we have the same result with z, in place of x,.

Lemma 9. Let f = (f, f.) be a solution of ()., where fie A+ (i=1,2).

If NNM,y5= 0 and MNN, 5 0, then for every keN, Non M. 0 (so my
e N,u aL) and M,N N, 50 (so ny€ My oL).

Proof. MNN, 0 implies, by Th. 6, that f,(L)= bIN. Let y € N\ M,
and f,(y) = b, then (D, 0) € f(L) and, by (x)., (kb, 0) e f(L) for every ke N,
i.e. Ny M, 0. Similarily we have M, N N, =0 for every ke IN.

Theorem 10. Let f= (fi, f.), where f, e A+ (i = 1, 2) and No\JM, = 9,
MNNow= 0. fis a solution of (%), if and only if f and f, depend only on Z,
and 2, (or x, and »,) respectively.

Proof. The «if» part is obvious.

Now let f be a solution of (%),. If {nk} and {mk} are the sequences that
characterize the sets {N,} and {J,}, then, by Th. 7, {m} and {m,} are con-
tained in » and s. If {nk}cr, then N, N M, 0 for every k¥ (Lemma 9) im-
plies that {m,}cs. Analogously if {m;}cr then {n,}cs. Thus f, and f, depend
only on one variable and the theorem follows.

Theorem 11. Let [ = (fs, f.), where f,e A+ (i=1,2) and M,C N,
(M, Ny). Then f is a solution of (). if and only if there exist two real in-
creasing sequences {u.}, {v.}, U= vo =0, w, = + oo, v, — + oo, and three
positive real numbers a, b, ¢ such that

ful@y, @) = Bb -+ je  if (@1, %) € L and u; <@, <M1, <Ly TVny1;
fo@y, @) = ja if (@, x)el  and u;<®<Uj,

(or fol@y, @) = ha if @, m)el  and 0<B<Vpya)

Proof. Let f be a solution of (%),. By Th. 6, fo(V;) = ja, a >0, and,
by Th. 7, ¥y = (La\L,,+) N Ly {n}cr (or in s). Assume thab {n;}cr, then
u; = n;,. As in the proof of Th. 8 we ean prove that f; in N, does not de-
pend on ,, so there is v, such that M, = {(wl, Xy): (@1, %) € Ny and @, < 'v]}.
Let b be the value assumed by f, on the set {(wl, y): 0 <@y < u,}; then there
is 9, > v; such that 7(B) N Ny = {(@1, @): (@1, @) € Np and v,<m, < vg5. We
claim that f, on the set V,, = {(acly D) 0 <y < u]} takes the value 2b. Let
y € Vy,, there is zef* () N N, such that # < y; by (%), there is z€ L such
that f(y) = f(z) + f(x), i.e. f(2) = (fily)— D, 0); therefore ze N, and f,(2)
= f(y) — b, bub f,(2)>b so f,(y)>2b. (b, 0) ef(L) implies that (2b, 0) (L),
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s0, f, being not decreasing, f,(y)<2b, then f,(y) = 2b. Then, by induction,
we obtain an increasing sequence {'v,,} such that if 0 <o < w, and v, <2, << v, 41
then f,(w,, @) = hb.

Now let w € Ny, then f(&) = (y, a). f(L, N Ny) = f(N,) + j(x), then filL,
NN,)=Ufy +m}) If ye N and y <w, then y=f(y)+ hb, ie. f,(x)
helN

=y — hob; thus f, takes a minimum value, say ¢ > 0, on N, and thexe is n
such that f;'(e) N N, = {(aol, Tt (@1, @) €Ny and 0 <@y <w}. v, = v: 1t
v >, we take zef'(b)N N, and yef*c)nN N, such that & <<y; then
fg/) — f(#) € f(L) implies the existence of =z such that Jj(z)= fly) — f=)

(c—— b, a), but ¢ is the minimum of f, in ¥,, so we have a contradiction.
If 7) <, we take we NyN M, such that %>7)1, then f(L,) = f(L), but

a) € f(L)y and (¢, @) ¢ f(L,); a contradiction.

Then, by induetion, we have fi(x;, ®,) = hb + ¢ if Uy < By << Uy and v,
<@ < Uiy [(L), by th. 8 in [3],, is the semigroup generated by b and ¢, then,
in the same way, we obtain that min f,(N,) = 2¢ and, by induction on j
and h, the proof follows. By a simple verification, the «if» part follows,
indeed

:.U{(hb -+ je, jaf)}y fl@w) = (hed -+ Jot, Jo ) s

= U{(hd + je, ja)} = U{ b+ k)b + (5 + do) e, (5 + jo)a)} = H(L) + f(x) .
f>2o

Remark 1.2. The value ¢ in Th. 11 can be of the form Jb.

4 — In order to explain the way of using the previous results, we give
a theorem concerning the solutions f = (f,, ..., f.) of (%), when some f: are
in A and some are in o7+

Before we need the following

Lemma 1.3. Let L= (0, + o) and f = (f1; fa), where f, e ™ (1 = 1, 2).
Then f is a solution of (x), if and only if f,(x) = kf(x) for some k € R™N\{0}.
Proof. We recall that if L = (0, + o0), g € 4™ if and only if g(x) = ng
i @, <& <@, ¢eRN{0}, where {2,} is an increasing sequence such that
@y =0 and @, = 4 oo (see [1]). The «if» part of the theorem is obvious.
Let f be a solution of (%), and let {w.} and {y,} be the sequences of fi and 7§,
respectively. It is enough to prove that for every =, #, = Yu. T = 7Y, other-
wise Th. 1 and Remark 4 imply that either f, = 0 or f: =0. We assume
@ = 9, for every k<n and we prove that w, =Y. Lo, <y, <2, L1
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then (ng:, ngs) € f(L) and (ngy, (0 + 1)g) €/(D) (G = fal@n); G = faltn)), s0
(2nq,, 2ngs) € f(L), (2nq, 2n + 1)ge) €/(D), (2ngs, 2(n + 1)) € f(L). (2nqy, 2
(n - 1)q,) € f(L) implies that Yanye < Tanya; SiCE (G1) ¢) ef( , then ((2n
+ 1)@, @n+ 1)) ef(D) and ((2n 4 1)g, 2(n + 1 V) € L), thus &y
<Yange; & contradiction. Then ¥,,:>®ny and, by simmetry, @,.1>¥Yau1, SO

wn+1 - :I/n+1 .

Theorem 1.4. Let LCR® and f= (fay «oy fisy G1y ooy Gu)y W —FJ =My
where fi€ A+ (i =1, ..,J) and gre #F (k=1, .., n). Then f is a solulion
of (%), #f and only if f('v = o p(m) where p € o7+, o, € RIN{0} and p depends
only on m, (or @) and gu(@) = frq(®), where ge N, Bre RN\J0} and q depends
only on x, (or @;). ‘

Proof. Let f be a solution of (), and fix f; and gi; by Th. 8, g, de-
pends only on one variable, say @, and f, depends on #, . Changing k, we
have that every g, depends on @, and, analogously, every f; depends on .
The function (g, ..., g) is a solution of (x),, then, by Lemma 13, gu(@)

= fr (), B> 0.
(f1, .-, 15) is @ solution of (:),, then by corollary 7 and theorem 13 in [2],

fm) = a;fy(@), ;> 0.
Now let [ = (0P, ...y %Dy P10y -y Puq)y P € /T depending on and ¢
e A+ depending on @,
(L) = {(061]), ey Oij)(Lz)} x{ﬂlfl; veey ﬂnQ)(Lz)}
= {(D‘lp’ seey “ip)(L) -+ (“11’(“1’)7 seey OC,{p((D))}X
X{(ﬂlq’ ey B2 (L) + (ﬂlQ(w)y cery ﬂﬂQ(m))}
= {(051]9, ceey OCJP)(L)} X{ﬁlfb ey ﬂn(I)(L)}
-+ (“1?(9”): XX} “Jp .51(1 wey ,3,;({(50)) - f(L) -+ f(w)

(The second equality follows from corollary 7 in [21).
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Sunto

In questa nota vengono caratterizzate alcune classi di soluzioni mon continue dell’equa-
zlone funzionale f(L + =) = f(L) + f(x), dove I & un cono aperto convesso in R?, xe L
e f: L —R2 I risultati trovati sono poi utilizzati per determinare una particolare classe
di soluzioni della stessa equazione, quando f assume valori in Rm™.






