JAMES HATZENBUHLER and DON A. MATTSON (*)

A note on countable compactifications (**)

1 - Introduction

Let X be a completely regular, T_1 -space. We say that a Hausdorff compactification αX of X is a countable compactification if the remainder $\alpha X - X$ is countably infinite. The question of characterizing when X has a countable compactification has been answered for the locally compact case by Magill in [4]. For $\alpha X = \beta X$, where βX is the Stone-Čech compactification, Okuyama [5] has provided a characterization of when βX is a countable compactification. Apparently, little is known in case X is an arbitrary completely regular space. Magill's results show that a locally compact X has a countable compactification if and only if $\beta X - X$ contains infinitely many components. In [3] it is shown that the latter condition is not characteristic of when X possesses a countable compactification when X is not locally compact.

In this paper we prove that X has a countable compactification if and only if $\beta X - X$ is a countable, disjoint union of compact sets subject to certain convergence conditions in $\beta X - X$.

2 - Characterization of countable compactifications

All spaces considered herein are Hausdorff spaces. Let N denote the natural numbers and let $R = \operatorname{Cl}_{\beta_X}(\beta_X - X) \cap X$. Then R is precisely the set of points in X which do not possess compact neighborhoods. Evidently, $R = \operatorname{Cl}_{\alpha_X}(\alpha_X - X) \cap X$, for any compactification α_X of X (see [6]).

^(*) Indirizzo: Dept. of Math., Moorhead State University, Moorhead, Minnesota 56560, U.S.A.

^(**) Ricevuto: 26-V-1978.

Suppose $\mathscr{S} = \{S_n \mid n \in N\}$ and $S = \bigcup \{S_n \mid n \in N\}$. If $\{x_\alpha\}$ and $\{y_\alpha\}$ are nets in S we say that $\{x_\alpha\}$ and $\{y_\alpha\}$ satisfy condition (*) with respect to \mathscr{S} if and only if for each index α , there exists $n(\alpha) \in N$ such that $x_\alpha \in S_{n(\alpha)}$ and $y_\alpha \in S_{n(\alpha)}$.

Theorem 1. Let X be a completely regular, T_1 -space. Then the following are equivalent.

- (A) X has a countable compactification.
- (B) $\beta X X$ is a countable, disjoint union of compact sets K_n , $n \in N$. If $\mathscr{K} = \{K_n | n \in N\}$ and $\{x_\alpha\}$ and $\{y_\alpha\}$ are nets in $\beta X X$ which satisfy condition (*) with respect to \mathscr{K} , then: (i) $\{x_\alpha\}$ converges to a point $x_0 \in R$ implies $\{y_\alpha\}$ clusters at x_0 ; (ii) $\{x_\alpha\}$ converges to x_0 , where $x_0 \in K_m$, implies $\{y_\alpha\}$ clusters at some point of K_m .
- Proof. (A) implies (B). Let αX be a countable compactification of X. Let π be the projection of βX onto αX and set $\alpha X X = \{a_n | n \in N\}$. Take $K_n = H^{-1}(a_n)$, for all $n \in N$. Since H carries $\beta X X$ onto $\alpha X X$ (see Theorem 6.12 [2]), each K_n is compact and $\beta X X$ is the (pair-wise) disjoint union of the sets K_n .

Let $\{x_{\alpha}\}$ and $\{y_{\alpha}\}$ be nets in $\beta X - X$ which satisfy condition (*) w.r. to $\mathcal{K} = \{K_n \mid n \in N\}$. Suppose $\{x_{\alpha}\}$ converges to a point x_0 and $x_0 \in R$. Then $\{y_{\alpha}\}$ has a cluster point y_0 in $\beta X - (X - R)$. Select a subnet $\{y_{\alpha_{\gamma}}\}$ of $\{y_{\alpha}\}$ which converges to y_0 . Since Π is continuous $\{\Pi(x_{\alpha_{\gamma}})\}$ converges to $\Pi(x_0)$ and $\{\Pi(y_{\alpha_{\gamma}})\}$ converges to $\Pi(y_0)$. But $\Pi(x_{\alpha_{\gamma}}) = \Pi(y_{\alpha_{\gamma}})$, for all γ , hence $\Pi(x_0) = \Pi(y_0)$. Since no point of βX distinct from x_0 is identified with x_0 under Π , it follows that $y_0 = x_0$.

Next, suppose that $x_0 \in K_m$, for some $m \in N$. Let $\{y_{\alpha_{\gamma}}\}$ be a subnet of $\{y_{\alpha}\}$ which converges to some $y_0 \in \beta X - (X - R)$. Now $\Pi(x_{\alpha_{\gamma}}) = \Pi(y_{\alpha_{\gamma}})$, for all γ , and it follows that $\Pi(x_0) = \Pi(y_0)$. Thus, $y_0 \in \Pi^{-1} \pi(x_0) = K_m$.

(B) implies (A). Let αX be the space obtained by identifying each K_n to a point a_n and leaving X invariant. Let Π be the associated projection of βX onto αX . Evidently, each fibre of Π is compact and Π is a continuous surjection whose restriction to X is an embedding of X in αX . To see that αX is Hausdorff we show that Π is a closed mapping.

Let F be closed in βX and consider $\Pi^{-1}(\Pi(F))$. Now $F = (F \cap X) \cup (F \cap \beta X - X)$ so that $\Pi^{-1}(\Pi(F)) = \Pi^{-1}[(\Pi(X \cap F) \cup \Pi(F \cap \beta X - X))] = F \cup \Pi^{-1}(\Pi(F \cap \beta X - X))$. Set $S = \Pi^{-1}(\Pi(F \cap \beta X - X))$. Let x_0 be a cluster point of $\Pi^{-1}(\Pi(F))$. If x_0 is a cluster point of F, then $x_0 \in F$ so that $x_0 \in \Pi^{-1}(\Pi(F))$. Otherwise, x_0 is a cluster point of S. Let $\{x_\alpha\}$ be a net in S which converges to x_0 .

Case (i). $x_0 \in R$. Now there exists $n(\alpha)$ such that $x_\alpha \in K_{n(\alpha)}$, for each α . Since $H(S) = H(F \cap \beta X - X)$, there exists a net $\{y_\alpha\}$ in $F \cap \beta X - X$ such that $H(y_\alpha) = H(x_\alpha)$, for all α . Then $\{x_\alpha\}$ and $\{y_\alpha\}$ satisfy condition (*) so that by B(i), $\{y_\alpha\}$ clusters at x_0 . Since $\{y_\alpha\}$ is a net in F, $x_0 \in H^{-1}(H(F))$.

Case (ii). $x_0 \in K_m$, for some $m \in N$. As in case (i) choose $\{y_\alpha\}$ in $F \cap \beta X - X$ such that $\Pi(x_\alpha) = \Pi(y_\alpha) = a_{n(\alpha)}$, for all α . By B(ii), $\{y_\alpha\}$ clusters at a point $y_0 \in K_m$. Since $\{y_\alpha\}$ is a net in F, $y_0 \in F$. Thus $\Pi(y_0) \in \Pi(F)$, so that $K_m = \Pi^{-1}(\Pi(y_0)) \subseteq \Pi^{-1}(\Pi(F))$. Hence $x_0 \in \Pi^{-1}(\Pi(F))$ and $\Pi^{-1}(\Pi(F))$ is closed. Now Π is a perfect map so that αX is a countable Hausdorff compactification of X.

This completes the proof.

With appropriate modifications of the proof of Theorem 1, it can be seen that if R is compact and if each point of R has a countable base of neighborhoods in X, then the conditions concerning nets in Theorem 1 can be replaced by conditions involving sequences. Thus, we obtain

Theorem 2. Let X be a completely regular, T_1 space with R compact. If each point of R has a countable base of neighborhoods in X, then the following are equivalent.

- (A) X has a countable compactification.
- (B) βX − X is a countable, disjoint union of compact sets K_n, n∈ N, and if {x_n} and {y_n} are sequences which satisfy (*) relative to ℋ = {K_i | j ∈ N}, then: (i) {x_n} converges to a point x₀ ∈ R implies that x₀ is a cluster point of {y_n};
 (ii) if all cluster points of {x_n} lie in some K_m, then {y_n} has a cluster point in K_m.

References

- [1] R. E. CHANDLER, Hausdorff compactifications, Marcel Dekker, Inc., New York 1976.
- [2] L. GILLMAN and M. Jerison, Rings of continuous functions, The University Series in Higher Math., Princeton N.J. 1960.
- [3] J. HATZENBUHLER and D. A. MATTSON, On Hausdorff compactifications of nonlocally compact spaces, Internat. J. Math. and Math. Sci. 2 (1979), 481-486.
- [4] K. D. Magill Jr., Countable compactifications, Canad. J. Math. 18 (1966), 616-620.
- [5] A. OKUYAMA, A characterization of a space with countable infinity, Proc. Amer. Mat. Soc. 28 (1971), 595-597.
- [6] M. RAYBURN, On Hausdorff compactifications, Pacific J. Math. 44 (1973), 707-714.

* * *

