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K. B. LAL ana SHAFIULLAH (¥)

On wave solutions of Kilmister and Newmann’s

weakened field equations in general relativity (**)

1 - Introduction

Einstein’s field equation of general relativity in empty space is given by
(1.1) Ry=0.

Kilmister and Newmann [1], [2] have proposed an alternative set of field
equations in vacuo which are given by

(1.2) T = R®

iiksa

=0,

(1.3) e = (— 9)¥(gg*™— Lgtg™ — 1g™g*)R,,, + R(B"— }g"R)] =0,
with the properties (a) & = &, (b) e, =0 and

(1.4) H)=Ri, =0,

where a semi-colon (;) denotes covariant differentiation with respect to Chris-
toffel symbols {fj} These field equations are weaker than (1.1) in the sense
that they admit a class of solutions for which (1.1) holds. They have called
such field equations « Weakened field equations ».

(*) Indirizzi: K. B. Law, Department of Mathematics and Statistics, University,
Gorakhpur 273001, U.P. India; SEAFIULLAH, Department of Mathematics, Shibli Na-
tional PG College, Azamgarh, U.P. India.

(**) Ricevuto: 1-I1I1-1978.
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Thompson [7] has investigated these field equations and found different
static spherically symmetric solutions. Further D. Lovelock [5],. has
solved these field equations and obtained a static spherically symmetric solu-
tion. TLal and Singh[3] have obtained cylindrical wave solutions of the field
equation (1.2) which include as a particular case, the solutions of the empty
space field equation (1.1) of general relativity. Recently Lal and Srivastava [4]
have found plane wave solutions of the weakned field equations.

In this paper the authors propose to consider & spacetime whose metric
is given by

(1.5) dst = — (1— A)dst— (1 + A)dy* — Cde® + Ods* 4 2Bdwdy,

where A, B are functions of &=2—1, C = 0(z1), (det. (g,;) = — mC?,
m =1— A* — B?), and to obtain the solutions of the weakned field equations.
The metric (1.5) reduces to Rao and Pandey [6] plane wave metric, if ¢ =1
and plane wave is taken along negative #-axis direction.

2 - Curvature properties of the metric (1.5)

The non-vanishing components of eontravariant tensor g9 in the me-
trie (1.5) are '

1 |
(2.1) gllz-—--—-—’_—,;’—li-’ gl‘-’-:g21::__

. 1—A o :
y = m g = — gt = —

iw

and the non-vanishing Christoffel symbols of second kind are

1, 1, Q+4A+BB 1, 1,  (+A)B—BA
gt =—hJ=— 2m ggh=—lg =~ am ’
2, .2, (1—A4)B+BA 2 .2,  (1—4)A—BB
gt ==t =~ s logt Tl 2m ’

(2.2)

3 3 4 4 A
{ il

3 , B
=t =4 =1y} = 50 Lot =19} =3¢

3 3 4 C, 3 4 4 C,
- {33} = {0 = {3 ~50" {0 =g =4} =50

where the indices 3, 4 attached to ¢ denote its partial derivatives with reSpect
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to z and ¢ respectively. A overhead bar denotes partial differentiation with
respect to &.

The non-vanishing components of the curvature tensor R,;,, obtained with
the help of (2.2) are as follows

P 4
Rygpy = — Rypag = Buyg = 9! Rigeg = — Bigos = Bygps = ‘22‘ ’
(2.3)
L Cpy— C C:— (2
Bogay = — HRygag = — Rogpq = ‘—Z e = 9 = + 320 =N ’
where
= 9BAB 4 A*Br+ A(A*—B) | A(C,— 0y
P ——-“"A'— 27”’ + 20 )
0——5— 2A4AB— B(A® — B?) L B(C;— C,)

The non-vanishing components of the Ricci tensor R,; obtained either from
its expression or from (2.3) on contraction with the help of (2.1) are given by

N , , N
(2.4) Ry=M—2,  Ry=—DM, R‘M:M—{—%,

where

Az + B
m

M = [A(P + L) +2BQ — 1/2m .

It can easily be shown that the non-vanishing components of R! and Rt
are given by

¥, ¥ u M, N
(2.5) (a) R§=—~—5+@, R =—R} = R3:6+“<1‘2’

¥ N o M M N
(2.5) (b)Rasz*c-,—z——é;:A.,RM‘:RHZ‘@E:Y,RG“:—C—?‘—*"E’;247
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and the scalar curvature R is given by

2N

(2.6) R="%.

3 - Solutions of the weakened field equations

(a) Solution of the field equation (1.2). The curvature tensor R?

the Bianchi identity

(3'1) s!k 2 + Rikl i + Rzlz H

[4]

satisfies

Let us put @ =1 and sum with respect to a and remembering that R, 18

skew-symmetric in §, & we obtain
R?jk;a =+ Rik;i — Riyjp=0 or R?yk.u
Therefore the weakened field equation (1.2) reduces to

(3-2) Rii;k - Rik;j =0,

Using (2.4) in (3.2), we have two equations

2
(3.3) Rogpu— Bygpn = M, +- —W[r"‘% + lggal =0,
2NC
(3.4) “3Rm~M+M+~—7f=m
Substracting (3.4) from (3.3), we get (k= 3, 4)
2N oN 2N oC
Mot Ni= G (G+0) or 55 ="7 5"

which on integration yields

= Rt‘:’;k - Rik;i .

(3.5) N = AC? (A congtant of integration).
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Using (3.5) in (3.3) or (3.4), we obtain M, + M, = 0, which on integra-
tion gives
(3.6) M = flz—1),
which gives a definite relation among all the components A, B, ¢ of the fun-

damental tensor.
From (2.3) and (3.5), we have

_On—Ou | G—Ci

5 Y AC®, i.e.
; L0200 20,
(3.() —-(/”8;; +C 6t2 + ( ) _(""‘ }'ICFl

where 2, == 24, Equation (3.7) is a linear partial differential equation of second
degree, which on integration gives

(3.8) 0 = ipale + 1) — @ale— 1)] -

Hence the mefric (1.5) represents the plane wave solution of the field equa-
tion (1.2) under the conditions (3.6) and (3.8).

(b) Solution of the field equation (1.3). The non-vanishing components of

ers = (____ g)w}[(gngtu_, {)‘grt‘qsu”~ %grugsz)R;"‘ + R(Iﬂsrm i‘gsrR)]

are as follows

1
8115%[ (12, +R4) (1+A)(b44_R "‘T)]?
1 R0
81‘*——6215—\7‘ [‘" (s + R,) — (R;‘m'_R;sa_'T”v
1 4 ‘ ) R0
gt = W [— 5 (By + By) — (1 — 4) (Ryy— Ryp— 1 ),
(3.9) _ _

oo = 11 (44 + BB)(R, + R,) 1 l - B
& .-:\/'mC [~— m02 4——‘0‘5R;44TR(R +E)]1
g3 == g4 =4/ [00 s - RR%),

(A4 + BB)(R, + R,) B

et = Vi O — oz By + R (B8 —

mQ* C2 40)]
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Using (3.9) in (1.3) we have the following equations

y R:C
(a) 5 (By + Ry) — (1 + A)(R;M—R;sa"'T) =0,
B o R:C
(b) 2’“ (Ba -+ R4)'_B (R;M—‘R;aa_ 1 ) =0 3
A R:C
(¢) b} (By 4+ By} + (1 —A4) (Ryy— Ry — 1 )=0,
(3.10)
(A4 - BB)(R,+ R, 1 R
(@ — e — B+ RBP4 =0,
1
(e) @ R;zu -+ RE® =0 y
(A4 +BB)(R, + R, 1 R,
{f) poen -—-*UER;:;:;%“R(R“—E) =0.

Multiplying (3.10) (a), (b), (¢) by (1 — 4)/2, — B, — (144)/2 respectively
and adding, we get

AA + BB)(R, + R, R2C .
AL IMETR) | (B — B = =0, .
(44 + BB)(B; 4 R,) _ R:C

(3.11) m —2 [(Rjuq— Byss) — T] .

Subtracting (3.10) (d) from (3.10) (f), we obtain

2(44 +BB)( By + By | 1 R
( + )£ + 4)+——(Rm—R;aa)‘f‘R(R“—Rm——‘)_C_'):0'

3.12
( ) mC? C:

&

From (3.11) and (3.12), we have

3

. B2
(8.13) — g Wi Byss) + B(R“—B*) + 50=Y"

Adding (3.10) (2) and (3.10 (¢), we obtain

R:C
(3.14) Ros— Ryps = =1 -



[7] ON WAVE SOLUTIONS OF KILMISTER AND NEWMANN'S ... 21

Using (3.14) into (3.13), we obtain N3 = 0. But ( = 0 and therefore

_ ) Cy— Oy O — (2
(3.15) N=0, i.e. — 332 g 320 !

=0,
which on integration yields log ¢ = {p, (2 4 t) + @.(z — 1)}, i.e.

(3.16) C = exp-{pi(s -+ 1) + P22 — 1)} .

From (3.10) (e), we have

4 MN

(3.17) B, G0+ R, Cy = o

which establishes a definite relation among A4, B, C.
Hence g;; given by (1.5) represents the plane wave solution of the field
equation (1.3) under the conditions (3.16) and (3.17).

(¢) Solution of the field equation (1.4). The non-vanishing components of
HJ = R#, are given by

H23§X3+3§3+%@’ P=x, +‘—¥9‘+
Yo, X0, ZC Yo, X0, ZcC
- 34 4 4 34 . _ Y 4 3 3
B18) HS=Yot =+ 55 +5p A=Y+ 5 +55 + 56
Z0, | YO Z0, | YO
Wi =Zo+ —5 + =5, Hi'=Z,+=7 + =

Using (3.18) in (1.4), we have six equations as follows

M, MG, N, 3NC, MO
O

M, MC, N, 2NC, MC

® G- et m e =0
M, MC, MC
9 ) G T =0
3.1
(5-19) M, MC, MC,
W e e =0

M, MC, N, 2NC, MC,
© G Te e T =0
_llI_‘i MO, 21\704 MC,
o (s 01 I 03

=0.
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Subtracting (3.19) (e) from (3.19) (a) and (3.19) (f) from (3.19) (b) we get
respectively

_ 4NC, . 4NC
—2N, + C“:o, — 2N, + C‘:o.
Adding these two equations, we get
2N . oN 2N oC
Ny+ No= 5 (G + C) or = O 3 (k=3,4),
which on integration gives
(3.20) N = AC? (A constant of integration) .

Adding (3.19) (¢) and (3.19) (4), we get M,+ M, =0, which on integration
gives

(3.21) M= flz—1).

The equations (3.20) and (3.21) are same as the equations (3.5) and (3.6) re-
spectively.

Hence the metric (1.5) represents the plane wave solution of the field equa-
tion (1.4) under the conditions (3.6) and (3.8).

Tt is interesting to note that the above plane wave solutions of the weakened
field equations include, as a particular case, the solutions of the empty space
field equation (1.1) of general relativity.
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Summary

Lilmister and Newmann have proposed an alternative set of field equations of general

relativity in emply space which are called weakened field equations.

Thompson, D. Lovelock have obtained static spherically symmetric solutions of these

equations. Lal and Singh, Lal and Srivastava have oblained wave solutions of these field
equations in varius space-time.

In this paper plane wave solutions of weakened field equations have been investigated

in a space-time which is more general than Pandey and Rao plane wave metrie. It has
been shown that the plane wave solutions exist.






