BRIAN FISHER (*)

On fixed point mappings and constant mappings (**)

In a recent paper, see [1], M. S. Khan considers two mappings S and T on a metric space X satisfying the inequality

$$d(Sx, Ty) \le c \left\{ \frac{d(x, Sx) d(x, Ty) + d(y, Ty) d(y, Sx)}{d(x, Ty) + d(y, Sx)} \right\}, \ 0 \le c < 1.$$

In the following theorem we consider two mappings S and T on a metric space X, satisfying a similar type of inequality.

Theorem 1. Let S and T be mappings of the complete metric space X into itself satisfying the inequality

$$d(Sx, Ty) \leqslant \frac{b d(x, Sx) d(x, Ty) + c d(y, Ty) d(y, Sx)}{d(x, Sx) + d(y, Ty)}$$

if $d(x, Sx) + d(y, Ty) \neq 0$ and the equality

$$d(Sx, Ty) = 0$$

if d(x, Sx) + d(y, Ty) = 0, for all x, y in X, where $b, c \ge 0$ and bc < 1. Then S and T have a unique common fixed point z.

Proof. Let x be an arbitrary point in X and put

$$u_{2n} = d\big((ST)^n x, \, T(ST)^n x \big) \;, \quad u_{2n+1} = d\big(T(ST)^n x, \, (ST)^{n+1} x \big) \qquad (n = 0, \, 1, \, 2, \, \ldots).$$

^(*) Indirizzo: Department of Mathematics, University of Leicester, England.

^(**) Ricevuto: 29-VII-1977.

Then

$$u_{2n}(u_{2n-1} + u_{2n}) \leq bu_{2n-1}d(T(ST)^{n-1}x, T(ST)^nx) \leq bu_{2n-1}(u_{2n-1} + u_{2n})$$

whether $u_{2n-1} + u_{2n} = 0$ or not, and so $u_{2n}^2 + (1-b)u_{2n}u_{2n-1} - bu_{2n-1}^2 \le 0$. This implies that $-u_{2n-1} \le u_{2n} \le bu_{2n-1}$; but since $u_{2n} \ge 0$, we must have $u_{2n} \le bu_{2n-1}$, or equivalently

$$d((ST)^n x, T(ST)^n x) \leq bd(T(ST)^{n-1}x, (ST)^n x) \qquad (n = 1, 2, ...)$$

We can prove similarly that

$$d(T(ST)^{n-1}x, (ST)^nx) \le cd((ST)^{n-1}x, T(ST)^{n-1}x)$$
 $(n = 1, 2, ...)$

and so for n = 1, 2, ...

$$d((ST)^n x, T(ST)^n x) \leq bd(T(ST)^{n-1}x, (ST)^n x) \leq (bc)^n d(x, Tx)$$
.

Since bc < 1, it follows that the sequence $\{x, Tx, STx, ..., (ST)^n x, T(ST)^n x, ...\}$ is a Cauchy sequence in the complete metric space X and so has a limit z in X. If now $Tz \neq z$, we have

$$d((ST)^n x, Tz) \leqslant \frac{bu_{2n-1}d(T(ST)^{n-1}x, Tz) + c d(z, Tz) d(z, ST)^n x)}{u_{2n-1} + d(z, Tz)}$$

and on letting n tend to infinity we see that $d(z, Tz) \le 0$, which implies that we must in fact have Tz = z.

Similarly, by considering $d(Sz, T(ST)^n x)$, it follows that Sz = z and so z is a common fixed point of S and T.

Now suppose that T has a second fixed point z'. Then we will have d(z, Sz) + d(z', Tz') = 0 and so d(Sz, Tz') = 0.

It follows that z=z' and so the common fixed point z of S and T is unique. On putting S=T in the theorem we have the following

Corollary. Let T be a mapping of the complete metric space X into itself satisfying the inequality

$$d(Tx, Ty) \leqslant \frac{b d(x, Tx) d(x, Ty) + c d(y, Ty) d(y, Tx)}{d(x, Tx) + d(y, Ty)}$$

it $d(x, Tx) + d(y, Ty) \neq 0$ and the equality

$$d(Tx, Ty) = 0$$

if d(x, Tx) + d(y, Ty) = 0, for all x, y in X, where $b, c \ge 0$ and bc < 1. Then T has a unique fixed point z.

When b = 0 in Theorem 1, we have the following stronger result

Theorem 2. Let S and T be mappings of the complete metric space X into itself satisfying the inequality

$$d(Sx, Ty) \leqslant \frac{cd(y, Ty) d(y, Sx)}{d(x, Sx) + d(y, Ty)}$$

if $d(x, Sx) + d(y, Ty) \neq 0$ and the equality

$$d(Sx, Ty) = 0$$

if d(x, Sx) + d(y, Ty) = 0, for all x, y in X, where $c \ge 0$.

Then S and T have a unique common fixed point z and S is a constant mapping with Sx = z for all x in X.

Proof. By Theorem 1, S and T have a unique common fixed point z. If now $Sx \neq x$, we have

$$d(Sx, z) = d(Sx, Tz) < \frac{c d(z, Tz) d(z, Sx)}{d(x, Sx) + d(z, Tz)} = 0$$

and so Sx = z. If for some x, $Sx = x \neq z$, we have d(x, Sx) + d(z, Tz) = 0 which implies that d(Sx, Tz) = 0 = d(x, z).

It follows that x = z, giving a contradiction. Thus S is a constant mapping with Sx = z for all x in X.

On putting S = T in the theorem we have the following

Corollary. Let T be a mapping of the complete metric space X into itself satisfying the inequality

$$d(Tx, Ty) \leqslant \frac{c d(y, Ty) d(y, Tx)}{d(x, Tx) + d(y, Ty)}$$

if $d(x, Tx) + d(y, Ty) \neq 0$ and the equality

$$d(Tx, Ty) = 0$$

if d(x, Tx) + d(y, Ty) = 0, for all x, y in X, where $c \ge 0$. Then T has a unique fixed point z and Tx = z for all x in X.

We finally prove an analogous result to Theorem 1 for compact metric spaces.

Theorem 3. Let S and T be continuous mappings of the compact metric space X into itself satisfying the inequality

$$d(Sx, Ty) < \frac{c^{-1} d(x, Sx) d(x, Ty) + c d(y, Ty) d(y, Sx)}{d(x, Sx) + d(y, Ty)}$$

if $d(x, Sx) + d(y, Ty) \neq 0$ and the equality

$$d(Sx, Ty) = 0$$

if d(x, Sx) + d(y, Ty) = 0, for all x, y in X, where c > 0. Then S and T have a unique common fixed point z.

Proof. Suppose first of all that there exists $b < c^{-1}$ such that

$$d(Sx, Ty) \leqslant \frac{b d(x, Sx) d(x, Ty) + c d(y, Ty) d(y, Sx)}{d(x, Sx) + d(y, Ty)}$$

for all x, y with $d(x, Sx) + d(y, Ty) \neq 0$. The result then follows from Theorem 1. If no such b exists, let $\{b_n\}$ be a monotonically increasing sequence of positive real numbers converging to c^{-1} . We can then find sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$d(Sx_n, Ty_n) > \frac{b_n d(x_n, Sx_n) d(x_n, Ty_n) + c d(y_n, Ty_n) d(y_n, Sx_n)}{d(x_n, Sx_n) + d(y_n, Ty_n)}$$

for n=1,2,... Since X is compact, we can find convergent subsequences $\{x_{n(r)}\}=\{x_r'\}$ and $\{y_{n(r)}\}=\{y_r'\}$ of $\{x_n\}$ and $\{y_n\}$ converging to x and y respectively. Putting $\{b_{n(r)}\}=\{b_r'\}$, we have

$$d(Sx'_r, Ty'_r) > \frac{b'_r d(x'_r, Sx'_r) d(x'_r, Ty'_r) + c d(y'_r, Ty'_r) d(y'_r, Sx'_r)}{d(x'_r, Sx'_r) + d(y'_r, Ty'_r)}$$

for r = 1, 2, ... If $d(x, Sx) + d(y, Ty) \neq 0$, we have on letting r tend to infinity

$$d(Sx, Ty) \geqslant \frac{c^{-1}d(x, Sx)d(x, Ty) + cd(y, Ty)d(y, Sx)}{d(x, Sx) + d(y, Ty)},$$

since S and T are continuous, which gives a contradiction. It follows that x = Sx, y = Ty, Sx = Ty and so x = y = z is a common fixed point of S and T. The uniqueness of z follows immediately.

Corollary. Let T be a continuous mapping of the compact metric space X into itself satisfying the inequality

$$d(Tx, Ty) < \frac{c^{-1}d(x, Tx) d(x, Ty) + c d(y, Ty) d(y, Tx)}{d(x, Tx) + d(y, Ty)}$$

if $d(x, Tx) + d(y, Ty) \neq 0$ and the equality

$$d(Tx, Ty) = 0$$

if d(x, Tx) + d(y, Ty) = 0, for all x, y in X, where c > 0. Then T has a unique fixed point z.

Reference

M. S. Khan, A fixed point theorem in bi-metric spaces, Riv. Mat. Univ. Parma,
4 (1978), 41-44.

Sommario

Si dimostra che, date due applicazione T ed S di uno spazio metrico completo $\langle X, d \rangle$ in sè, se

$$d(Sx, Ty) \leqslant \frac{bd(x, Sx)d(x, Ty) + cd(y, Ty)d(y, Sx)}{d(x, Sx) + d(y, Ty)}$$

per
$$d(x, Sx) + d(y, Ty) \neq 0$$
, $(b, c \geq 0; bc < 1)$,

d(Sx, Ty) = 0 per d(x, Sx) + d(y, Ty) = 0,

allora S e T hanno un unico punto unito, il medesimo per entrambe.