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Equivalences,

congruences and decompositions in semigroups (**)

A Grorecro SESTINI per il suo 70° compleanno

Introduction

In 1 an equivalence relation g, is considered in a semigroup § which is useful
in different lines (magnifying elements, topological semigroups, etc.) and we
study some basic properties of this equivalence. In 2 we assume that S has
a subsemigroup S with given property and we show that g, is a congruence
relation and we introduce a quotient semigroup of 8.

In 3 necessary and sufficient conditions are given in order that S be a
subsemigroup of § with prescribed property.

Remark. K(S8) will denote a minimal ideal of 8, E(S)—the set of all
idempotent elements of S. Moreover, if A, B are subsemigroups of §, then
A c B means that 4 is a proper subset of B.

1. — Let § be a semigroup.

Definition 1.1. Let ae€§. We define a relation p, by

20,y <= ax = ay (2, ye8).

0. 15 an equivalence relation.

(*) Indirizzo: Istituto di Matematica, Universitd, Via del Capitano 15, 53100 Siena,
Ttaly.
(**) Lavoro eseguito nell’ambito del G.N.8.A.G.A. (C.N.R.). — Ricevuto: 26-11-1979.
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Let C(a, 2) = {y € 8 |az = ay} the equivalence class of #. The equivalence
0. defines a partition m.(S) of § where the parts of 7,(S) are the elements of
the quotient set S/p, = {C(a, x)|x € S}.

Theorem 1.2.
(i) C(e, x)C C(sa, x), Yse 8.
(i) If a is a left cancellable element of S, then every class C(a, ®) consists
of a single element.
(i) If 8 s left simple, then m(S) = m(S) for all a,beS.
(iv) If az = bz holds for all @ € 8, then m.(8) = m(S).

Proof. (i) is evident.
(i) aw = ay implies # = y, thus C(a, 2) = {z}, Yz € S.

(iii) It holds Sa = 8 for all a€ S. Let y € C(a,2). Then for any ele-
ment b of § there is an element s€ S such that b = sa. Hence C(a, 2)
€ C(b, ®) by (i). The converse inclusion can be obtained similarly, and thus
C(a, ) = C(b, 2) for each @ e §, that is 7,(8) = m(S).

(iv) Let y e C(a, %), i.e. ay = ax. But ez = bxr and ay = by, whence
bx = by, y € C(b, ) and C(a, x) C C(b, x). Similarly, C(b,x)C C(a,z) and we
get O(a, ) = O(b, x) for all x€ 8. Thus Theorem 1.2. is proved.

Remarks. (a) In general, 7,(S)=n,(S) does not imply az = bz,
VoeS.

(b) If § is a left zero semigroup, then aw = ay = «, Yy € § and thus
C(a, z) = S, Va, € S, that is m(S) has a single class (Va € S).

() Let a be a left magnifying element of 8, i.e. aM = 8§ holds for a
proper subset M of §. Then every class C(a, ) of m.(S) contains at least one
element of M. Indeed, there is an element m € 3 such that ax = am, whence
m e C(a, #). Choosing an element 7, in CO(a, z;) (4 1), then M= {m;;iel}
is a minimal subset of § having the property al = S (cfr. also[2]).

Theorem 1.3. Let S be a semigroup, e € E(S) such that Se is a minimal
left ideal of 8. If s is an element of S such that es = ese, then 7w,(S) = 7,s(8).

Proof. We have to show that esz = esy (x, y € 8) implies ex = ey and
conversely. Let esz — esy. Since Se is a minimal left ideal of 8, eSe is the
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maximal subgroup of § containing e. Denote (ese)-! the inverse of ese in eSe.
Then ex = (ese)~!esex = (ese)~Lesw = (ese)~tesy = (ese)~'esey — ey.
Conversely, let ez = ey. Then esx = es(ex) = es(ey) = (ese) y = esy.

Theorem 1.3. is completely proved.

The converse of Theorem 1.3. holds if S is right reductive, i.e. aw = bw
(Vz € 8) implies a = b (a, b e 8).

Theorem 1.4. Let 8 be a right reductive semigroup, ec E(S). If s is
an clement of S such that g,C p,., then es = ese.

Proof. By hypothesis, ex = ey implies esz = esy (#,y € S). Hence for
each # €8 we have ex = e(ex), i.e. (es)x = (es)ex = (ese)x. Since § is right
reductive, we get es = ese.

Theorem 1.3. and Theorem 1.4. imply the following
Theorem 1.5. If 8 is a right reductive semigroup and ee E(S) such
that Se is a minimal left ideal of S, then the following conditions are equivalent
(1) es = ese;
(i) 7(S) = ms(S) (seB).
The next result is known (see [1], theorem 1.17), we prove it for the sake
of completeness.
Theorem 1.6. Let K(S) be a completely simple minimal ideal of 8. If
e € B(K(S)), the following are equivalent
(1) es e Se,
(ii) es = ese,
(iii) LsC L, where L = Se is a minimal left ideal,
(iv) fse€8f for all fe B(L) = B(XK(S)) N L.
Proof. (¢) = (ii). (i) implies that there is an element v €S such that
es:= ve. Thus ese = (ve)e = ve = es.
(i) = (iii). Since es = ese, we get Ls = Ses = Sese C Se = L.

(ili) = (iv). If fe B(L), then L = 8f and fse Ls C L = 8f.
Finally, (iv) implies (i) evidently.
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By Theorem 1.3., any of conditions (i)-(iv) of Theorem 1.6. implies 76(8S)
= 7,s(8). If S is right reductive, then Cle, @) C C(es, @), Yz e 8 implies (i)-(iv)
of Theorem 1.6. by Theorem 1.4.

Theorem 1.7. Let S be a right reductive semigroup containing a com-
pletely simple minimal ideal K(S). If e€ B(E(S)) and s€ S the following are
equivalent:

es € Se,

68 == ese,

)
)
(iii) LsC L, where L = 8¢ is a minimal left ideal,
) fse8f for all fe B(L),

) 7e(8) = m,o(S).

Proof. By Theorems 1.5. and 1.6.

Theorem 1.8. Let K(S) be a completely simple minimal ideal of a semi-
group S. Let ¢ € B(K(S)) and thus I = Se is a minimal left ideal. Then L = K(S)
tmplies 7w,(8) = 7..(8), Vs € 8. Conversely, if S is right reductive and o, C g,.,
Vse 8, then L = Se = K(8).

Proof. If L = K(8), then L is a right ideal and Ls C L. By Theorems 1.6.
and 1.3. we obtain z,(S) = 7,(8), VseS. Conversely, if C(e, ») C C(es, ),
Vz,se S and S is right reductive, then Theorems 1.4. and 1.6. imply LsC L,
Vs € 8, that is, L (= Se) is a right ideal of 8. But L is minimal, and hence it
follows that L = K(S).

2. — The equivalence relation g, defined in 1 will be a congruence relation
under certain conditions.

Suppose that a semigroup § has an element @, such that #,8 = S c 8, and
(a) Szy=8; (b) ss' = ss" implies s’ = s" for all s,8,8"€8. Let us consider
the classes C(w,, %) of the relation 0,,- Let us fix an element %, (iel) in
every class. Then S = {J C(w,, y,), where C(x,,y,) N Oy, y;) = ¢ (¢ #9).

t€L

Theorem 2.1. Eovery class Gy, y,) contains at most one element of S

Proof. If s,s,e8 and 2,5, = o8y, then ags, = xls,, and in view of (b),
81 = 8, follows (z} e S).

Theorem 2.2. If S is a finite or a right simple semigroup, then every
class C(xy, y;) contains exactly one element of 8.




[5] EQUIVALENCES, CONGRUENCES AND DECOMPOSITIONS IN SEMIGROUPS 749

Proof. If S is finite, then z,8 = §. For if s,, s, arve different eclements
of S, then s, # %8, by Theorem 2.1., whence 2,8 = § because of |S|=|z,S]|.
Thus every class (x,, ¥,) contains exactly one element of S. If S is right simple
then 2,8 = 8. For a class C(x,,y,) we have my;€8. Hence 238 = S and
there is an element s € § such that i = weY ., that is xy(w,8) = @y, whence
zos € C(wy, ¥;). But xeseS.

Theorem 2.3. C(x,,y;) = C(s,¥,) for all s€8 (iel).

Proof. Let @y, =s, (s;,€8); xe C(xy,y,;) if and only if zz =s,. Let
s, €8. For any element @ of C(s,%,, ¥;) it holds s,m@ = s,s,. Hence it follows
that ax = sy, i.e., & € C(x,, ¥:). Thus C(s.2%, ¥:) = C(x,, ¥,), where s, € §. But
Sz, = S by condition (a) and C(s, y.,) = C(@,, ¥:)-

Evidently, if y, # y; (that is, y; € C(#,, y.), 4, j € I) then C(s, y,) # C(s', ;)
(s,s'€8). For if C(s,y,;) = C(s’, y;) then it follows that C(z,,y;) = C(w,, ¥,)
which is a contradiction. Thus the classes C(s, .), s € S are different when y,
runs over different g, equivalence classes.

By Theorem 2.3. ((s, y;) is a function of g, but it is independent from s,
we can write C(y;) instead of C(s, y.).

Theorem 2.4. There exvists y,c8 (keI) such that Ywe Cly,) and Yy
€ Cly;) (4, §el) it holds xy e C(y,).

Proof. We have 2y = @y; = s; €S and y e C(y;) implies y € C(s, ¥,),
that is sy = sg,;. In this case x(ay) = sy = sy, = %(yy,;), le ay
€ O(2o, y:4;) = C@y, 92) = Clsi, y) = Clyx) (k€ ), that is yr0,(y:Y5)-

Corollary 2.5. g, is a congruence relation on S, ie. Sfp, = {CW )} ies
is @ quotient semigroup C with property C(y,)C(y;) = O(yy), where C(yy)
= C(WJ:-) (7.’7 7 kel).

Theorem 2.6. Let C* be a subset of C consisting of classes C(y,) which
have an element of 8. Then C% =~ S.

Proof. By Theorem 2.1. the class C(y;) (¢ € I) has at most one element
of §. If s;e C(y,) and s,e8, then C(y,) = C(s;). The mapping ¢: C* — S,
@(C(s:)) = s, is an isomorphism, because of C(s;)C(s;) = C(s.s;) by Theorem 2.5.,
and C* is a subsemigroup of C.

Theorem 2.7. C*=C if and only if ®,8 =8 (i.e. mScS implies
¢t cO). :
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Proof. €% =C if and only if every class C(y;) has an element s, e S.
When y; runs over the different classes C(y,), #,y; describes 2,8 = S. Thus
2,8 = 2,8 = 8. Hence it follows that C*c J if @8 c 8. Conversely, if @, S
= 2,8 = S, then by Theorem 2.2. ¢* = (.

Remark. We can obtain analogous theorems if Sz, =ScS and
() @S =18, (b) s's=s"s = s' =s", Vs,s',s" 8 hold instead of (a), (b).

3. — We shall give necessary and sufficient conditions for the existence

of subsemigroups S c 8 satisfying conditions (a) and (b) of 2. We start from
the following decomposition [3]

(1) S:USiy

where

2 8= {ae8; aSc 8 and Iwe S — {0} so that az = 0},
2 Sh={ae8;a8=28 and JyeS§— {0} so that ay = 0},
2. Se={aec8S—(8UB8); aScS and Iz, meSs,

so that @, # z,, am, = am,} ,
2); S={aeS—(85US8,); eS8 =28 and Iy, 9,8,

so that y; = v,, ml:d?z}a
3
2 Sy={ae8~US8; al8cs},
i=0

3
25 S={ee8—-US; a8 =48}.
=0

The sets 8; (1 =0,1,2,3,4,5) are disjoint subsemigroups of S and the
following relations hold '

3) 8,8:C8:, 8:8C8  (0<i<5),
(3), 8,8,C 8, 8,8C8, S8CH,,
), 8,8, C 8y, 8,8,C8,, 88 CH,.
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We obtain a similar decomposition
5
(4) S = UDz y

if in (2); (¢ =0, ..., 5) the multiplication by @ is on the right.

The result of this § 3 is the first step in this field of research.

Any semigroup with at most one O annihilator has a unique decomposi-
tion (1) as well as one of type (4). Let 2,8 = S c 8. Let us consider the decom-
positions (1) and (4) of S

(5) S:G&=

L Cw

Di-

i

It is easy to see that property (a) holds if and only if #*e D, U D, U D;.
For #*e 8 and Sz, = z,8%,C 2,8 = S.

On the other hand, if s}e D, U D, U D;, § = Sz2c Sz, whence Sx, = S
and (a) holds. Conversely, if (a) holds, then Sz? = § and #2e D, U D, U D;.
If § = 8, U 8; then 55, = 55, implies 5, = 5, forall5 € §, 5,, 5, € § (property (b)).
Conversely, if S has the property (b), then for every element 5e S we have
5€8,UB8;, that is § = §, U §;. Therefore we obtain the following

Theorem 3.1. The semigroup x,8 = S c § has properties (a), (b) if and
only if #2e D, UD,UD, and § =8, US;.

Remark. The decomposition (5) of S isn’t independent on the decom-
position (1) and (4) of 8. This problem will be discussed later on.
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Sunto

8i studiano (1) certe propriela generali, in un semigruppo 8, della relazione di equiva-
lenza o, (a € 8) definita da wo,y < ax = ay (w,ye8). Se in S esiste wn soltosemi-
gruppo proprio § con certe proprietd, o, risulla una congruenza; st studia il semigruppo
quoziente Sfp, (2). Infine in 3 si determina una condisione necessaria e sufficiente affinché
in S esista un sottosemigruppo S con le proprield richieste, ricorrendo alla decomposizione
di Szép di un semigruppo.
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