F. MIGLIORINI and J. SZÉP (*)

Equivalences,

congruences and decompositions in semigroups (**)

A GIORGIO SESTINI per il suo 70° compleanno

Introduction

In 1 an equivalence relation ϱ_a is considered in a semigroup S which is useful in different lines (magnifying elements, topological semigroups, etc.) and we study some basic properties of this equivalence. In 2 we assume that S has a subsemigroup \overline{S} with given property and we show that ϱ_a is a congruence relation and we introduce a quotient semigroup of S.

In 3 necessary and sufficient conditions are given in order that \overline{S} be a subsemigroup of S with prescribed property.

Remark. K(S) will denote a minimal ideal of S, E(S)—the set of all idempotent elements of S. Moreover, if A, B are subsemigroups of S, then $A \subset B$ means that A is a proper subset of B.

1. – Let S be a semigroup.

Definition 1.1. Let $a \in S$. We define a relation ϱ_a by

$$x\varrho_a y \Leftrightarrow ax = ay$$
 $(x, y \in S)$.

 ϱ_a is an equivalence relation.

^(*) Indirizzo: Istituto di Matematica, Università, Via del Capitano 15, 53100 Siena, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.S.A.G.A. (C.N.R.). — Ricevuto: 26-II-1979.

Let $C(a, x) = \{y \in S \mid ax = ay\}$ the equivalence class of x. The equivalence ϱ_a defines a partition $\pi_a(S)$ of S where the parts of $\pi_a(S)$ are the elements of the quotient set $S/\varrho_a = \{C(a, x) \mid x \in S\}$.

Theorem 1.2.

- (i) $C(a, x) \subseteq C(sa, x), \forall s \in S$.
- (ii) If a is a left cancellable element of S, then every class C(a, x) consists of a single element.
 - (iii) If S is left simple, then $\pi_a(S) = \pi_b(S)$ for all $a, b \in S$.
 - (iv) If ax = bx holds for all $x \in S$, then $\pi_a(S) = \pi_b(S)$.

Proof. (i) is evident.

- (ii) ax = ay implies x = y, thus $C(a, x) = \{x\}, \ \forall x \in S$.
- (iii) It holds Sa = S for all $a \in S$. Let $y \in C(a, x)$. Then for any element b of S there is an element $s \in S$ such that b = sa. Hence $C(a, x) \subseteq C(b, x)$ by (i). The converse inclusion can be obtained similarly, and thus C(a, x) = C(b, x) for each $x \in S$, that is $\pi_a(S) = \pi_b(S)$.
- (iv) Let $y \in C(a, x)$, i.e. ay = ax. But ax = bx and ay = by, whence bx = by, $y \in C(b, x)$ and $C(a, x) \subseteq C(b, x)$. Similarly, $C(b, x) \subseteq C(a, x)$ and we get C(a, x) = C(b, x) for all $x \in S$. Thus Theorem 1.2. is proved.

Remarks. (a) In general, $\pi_a(S) = \pi_b(S)$ does not imply ax = bx, $\forall x \in S$.

- (b) If S is a left zero semigroup, then ax = ay = a, $\forall y \in S$ and thus C(a, x) = S, $\forall a, x \in S$, that is $\pi_a(S)$ has a single class $(\forall a \in S)$.
- (c) Let a be a left magnifying element of S, i.e. aM = S holds for a proper subset M of S. Then every class C(a, x) of $\pi_a(S)$ contains at least one element of M. Indeed, there is an element $m \in M$ such that ax = am, whence $m \in C(a, x)$. Choosing an element \overline{m}_i in $C(a, x_i)$ $(i \in I)$, then $\overline{M} = \{\overline{m}_i; i \in I\}$ is a minimal subset of S having the property $a\overline{M} = S$ (cfr. also [2]).

Theorem 1.3. Let S be a semigroup, $e \in E(S)$ such that Se is a minimal left ideal of S. If s is an element of S such that es = ese, then $\pi_e(S) = \pi_{es}(S)$.

Proof. We have to show that esx = esy $(x, y \in S)$ implies ex = ey and conversely. Let esx = esy. Since Se is a minimal left ideal of S, eSe is the

maximal subgroup of S containing e. Denote $(ese)^{-1}$ the inverse of ese in eSe. Then $ex = (ese)^{-1}esex = (ese)^{-1}esx = (ese)^{-1}esy = (ese)^{-1}esey = ey$.

Conversely, let ex = ey. Then esx = es(ex) = es(ey) = (ese)y = esy.

Theorem 1.3. is completely proved.

The converse of Theorem 1.3. holds if S is right reductive, i.e. ax = bx $(\forall x \in S)$ implies a = b $(a, b \in S)$.

Theorem 1.4. Let S be a right reductive semigroup, $e \in E(S)$. If s is an element of S such that $\varrho_e \subseteq \varrho_{es}$, then es = ese.

Proof. By hypothesis, ex = ey implies esx = esy $(x, y \in S)$. Hence for each $x \in S$ we have ex = e(ex), i.e. (es) x = (es) ex = (ese)x. Since S is right reductive, we get es = ese.

Theorem 1.3. and Theorem 1.4. imply the following

Theorem 1.5. If S is a right reductive semigroup and $e \in E(S)$ such that Se is a minimal left ideal of S, then the following conditions are equivalent

- (i) es = ese;
- (ii) $\pi_e(S) = \pi_{es}(S)$ $(s \in S)$.

The next result is known (see [1], theorem 1.17), we prove it for the sake of completeness.

Theorem 1.6. Let K(S) be a completely simple minimal ideal of S. If $e \in E(K(S))$, the following are equivalent

- (i) $es \in Se$,
- (ii) es = ese,
- (iii) $Ls \subseteq L$, where L = Se is a minimal left ideal.
- (iv) $fs \in Sf$ for all $f \in E(L) = E(K(S)) \cap L$.

Proof. (i) \Rightarrow (ii). (i) implies that there is an element $v \in S$ such that $es_{\omega}^{\bullet} = ve$. Thus ese = (ve)e = ve = es.

- (ii) \Rightarrow (iii). Since es = ese, we get $Ls = Ses = Sese \subseteq Se = L$.
- (iii) \Rightarrow (iv). If $f \in E(L)$, then L = Sf and $fs \in Ls \subseteq L = Sf$. Finally, (iv) implies (i) evidently.

By Theorem 1.3., any of conditions (i)-(iv) of Theorem 1.6. implies $\pi_e(S) = \pi_{es}(S)$. If S is right reductive, then $C(e, x) \subseteq C(es, x)$, $\forall x \in S$ implies (i)-(iv) of Theorem 1.6. by Theorem 1.4.

Theorem 1.7. Let S be a right reductive semigroup containing a completely simple minimal ideal K(S). If $e \in E(K(S))$ and $s \in S$ the following are equivalent:

- (i) $es \in Se$,
- (ii) es = ese,
- (iii) $Ls \subseteq L$, where L = Se is a minimal left ideal,
- (iv) $fs \in Sf$ for all $f \in E(L)$.
- (v) $\pi_e(S) = \pi_{es}(S)$.

Proof. By Theorems 1.5. and 1.6.

Theorem 1.8. Let K(S) be a completely simple minimal ideal of a semi-group S. Let $e \in E(K(S))$ and thus L = Se is a minimal left ideal. Then L = K(S) implies $\pi_e(S) = \pi_{es}(S)$, $\forall s \in S$. Conversely, if S is right reductive and $\varrho_e \subseteq \varrho_{es}$, $\forall s \in S$, then L = Se = K(S).

Proof. If L = K(S), then L is a right ideal and $Ls \subseteq L$. By Theorems 1.6. and 1.3. we obtain $\pi_e(S) = \pi_{es}(S)$, $\forall s \in S$. Conversely, if $C(e, x) \subseteq C(es, x)$, $\forall x, s \in S$ and S is right reductive, then Theorems 1.4. and 1.6. imply $Ls \subseteq L$, $\forall s \in S$, that is, L (= Se) is a right ideal of S. But L is minimal, and hence it follows that L = K(S).

2. – The equivalence relation ϱ_a defined in 1 will be a congruence relation under certain conditions.

Suppose that a semigroup S has an element x_0 such that $x_0S = \overline{S} \subset S$, and (a) $\overline{S}x_0 = \overline{S}$; (b) ss' = ss'' implies s' = s'' for all $s, s', s'' \in \overline{S}$. Let us consider the classes $C(x_0, y)$ of the relation ϱ_{x_0} . Let us fix an element y_i $(i \in I)$ in every class. Then $S = \bigcup_{i \in I} C(x_0, y_i)$, where $C(x_0, y_i) \cap C(x_0, y_i) = \emptyset$ $(i \neq j)$.

Theorem 2.1. Every class $C(x_0,y_i)$ contains at most one element of \bar{S}

Proof. If $s_1, s_2 \in \overline{S}$ and $x_0s_1 = x_0s_2$, then $x_0^2s_1 = x_0^2s_2$, and in view of (b), $s_1 = s_2$ follows $(x_0^2 \in \overline{S})$.

Theorem 2.2. If \overline{S} is a finite or a right simple semigroup, then every class $C(x_0, y_i)$ contains exactly one element of \overline{S} .

Proof. If \overline{S} is finite, then $x_0\overline{S} = \overline{S}$. For if s_1 , s_2 are different elements of \overline{S} , then $x_0s_1 \neq x_0s_2$ by Theorem 2.1., whence $x_0\overline{S} = \overline{S}$ because of $|\overline{S}| = |x_0\overline{S}|$. Thus every class $C(x_0, y_i)$ contains exactly one element of \overline{S} . If \overline{S} is right simple then $x_0\overline{S} = \overline{S}$. For a class $C(x_0, y_i)$ we have $x_0y_i \in \overline{S}$. Hence $x_0^2\overline{S} = \overline{S}$ and there is an element $s \in \overline{S}$ such that $x_0^2s = x_0y_i$, that is $x_0(x_0s) = x_0y_i$, whence $x_0s \in C(x_0, y_i)$. But $x_0s \in \overline{S}$.

Theorem 2.3. $C(x_0, y_i) = C(s, y_i)$ for all $s \in \overline{S}$ $(i \in I)$.

Proof. Let $x_0y_i = s_1$ $(s_1 \in \overline{S})$; $x \in C(x_0, y_i)$ if and only if $x_0x = s_1$. Let $s_2 \in \overline{S}$. For any element x of $C(s_2x_0, y_i)$ it holds $s_2x_0x = s_2s_1$. Hence it follows that $x_0x = s_1$, i.e., $x \in C(x_0, y_i)$. Thus $C(s_2x_0, y_i) = C(x_0, y_i)$, where $s_2 \in S$. But $\overline{S}x_0 = \overline{S}$ by condition (a) and $C(s, y_i) = C(x_0, y_i)$.

Evidently, if $y_i \neq y_j$ (that is, $y_j \in C(x_0, y_i)$, $i, j \in I$) then $C(s, y_i) \neq C(s', y_j)$ $(s, s' \in \overline{S})$. For if $C(s, y_i) = C(s', y_j)$ then it follows that $C(x_0, y_i) = C(x_0, y_j)$ which is a contradiction. Thus the classes $C(s, y_i)$, $s \in \overline{S}$ are different when y_i runs over different ϱ_{x_0} equivalence classes.

By Theorem 2.3. $C(s, y_i)$ is a function of y_i but it is independent from s, we can write $C(y_i)$ instead of $C(s, y_i)$.

Theorem 2.4. There exists $y_k \in S$ $(k \in I)$ such that $\forall x \in C(y_i)$ and $\forall y \in C(y_i)$ $(i, j \in I)$ it holds $xy \in C(y_k)$.

Proof. We have $x_0x = x_0y_i = s_i \in \overline{S}$ and $y \in C(y_i)$ implies $y \in C(s_i, y_i)$, that is $s_iy = s_iy_i$. In this case $x_0(xy) = s_iy = s_iy_i = x_0(y_iy_i)$, i.e. $xy \in C(x_0, y_iy_i) = C(x_0, y_k) = C(s_i, y_k) = C(y_k)$ $(k \in I)$, that is $y_k \varrho_{x_0}(y_i y_i)$.

Corollary 2.5. ϱ_{x_0} is a congruence relation on S, i.e. $S/\varrho_{x_0} = \{C(y_i)\}_{i \in I}$ is a quotient semigroup \overline{C} with property $C(y_i)C(y_j) = C(y_k)$, where $C(y_k) = C(y_iy_j)$ $(i, j, k \in I)$.

Theorem 2.6. Let C^* be a subset of \overline{C} consisting of classes $C(y_i)$ which have an element of \overline{S} . Then $C^* \cong \overline{S}$.

Proof. By Theorem 2.1. the class $C(y_i)$ $(i \in I)$ has at most one element of \overline{S} . If $s_i \in C(y_i)$ and $s_i \in \overline{S}$, then $C(y_i) = C(s_i)$. The mapping $\varphi \colon C^* \to \overline{S}$, $\varphi(C(s_i)) = s_i$ is an isomorphism, because of $C(s_i)C(s_j) = C(s_is_j)$ by Theorem 2.5., and C^* is a subsemigroup of \overline{C} .

Theorem 2.7. $C^* = \overline{C}$ if and only if $x_0 \overline{S} = \overline{S}$ (i.e. $x_0 \overline{S} \subset \overline{S}$ implies $C^* \subset \overline{C}$).

Proof. $C^* = \overline{C}$ if and only if every class $C(y_i)$ has an element $s_i \in \overline{S}$. When y_i runs over the different classes $C(y_i)$, x_0y_i describes $x_0S = \overline{S}$. Thus $x_0\overline{S} = x_0S = \overline{S}$. Hence it follows that $C^* \subset \overline{C}$ if $x_0\overline{S} \subset \overline{S}$. Conversely, if $x_0\overline{S} = x_0S = \overline{S}$, then by Theorem 2.2. $C^* = \overline{C}$.

Remark. We can obtain analogous theorems if $Sx_0 = \overline{S} \subset S$ and (a') $x_0\overline{S} = \overline{S}$, (b') $s's = s''s \Rightarrow s' = s''$, $\forall s, s', s'' \in \overline{S}$ hold instead of (a), (b).

3. – We shall give necessary and sufficient conditions for the existence of subsemigroups $\overline{S} \subset S$ satisfying conditions (a) and (b) of **2.** We start from the following decomposition [3]

$$S = \bigcup_{i=0}^{5} S_i,$$

where

(2)₀
$$S_0 = \{a \in S; aS \in S \text{ and } \exists x \in S - \{0\} \text{ so that } ax = 0\}$$
,

(2)₁
$$S_1 = \{ a \in S; aS = S \text{ and } \exists y \in S - \{0\} \text{ so that } ay = 0 \}$$
,

$$(2)_2 S_2 = \{ a \in S - (S_0 \cup S_1); \ aS \in S \text{ and } \exists x_1, x_2 \in S,$$

so that
$$x_1 \neq x_2$$
, $ax_1 = ax_2$,

$$(2)_{3} \quad S_{3} = \left\{ a \in S - (S_{0} \cup S_{1}); \ aS = S \ \text{and} \ \exists y_{1}, y_{2} \in S \right.,$$

so that
$$y_1 \neq y_2$$
, $ay_1 = ay_2$,

$$(2)_{4} \quad S_{4} = \left\{ a \in S - \bigcup_{i=0}^{3} S_{i}; \ aS \in S \right\},$$

$$(2)_5$$
 $S_5 = \left\{ a \in S - \bigcup_{i=0}^3 S_i; \ aS = S \right\}.$

The sets S_i (i = 0, 1, 2, 3, 4, 5) are disjoint subsemigroups of S and the following relations hold

$$(3)_1 S_5 S_i \subseteq S_i , S_i S_5 \subseteq S_i (0 \leqslant i \leqslant 5) ,$$

$$(3)_2$$
 $S_4 S_3 \subseteq S_2$, $S_4 S_2 \subseteq S_2$, $S_4 S_1 \subseteq S_0$,

$$(3)_3 \hspace{1cm} S_4 S_0 \subseteq S_0 \; , \hspace{0.5cm} S_2 S_3 \subseteq S_2 \; , \hspace{0.5cm} S_0 S_1 \subseteq S_0 \; .$$

We obtain a similar decomposition

$$S = \bigcup_{i=0}^{5} D_i,$$

if in $(2)_i$ (i = 0, ..., 5) the multiplication by a is on the right.

The result of this § 3 is the first step in this field of research.

Any semigroup with at most one O annihilator has a unique decomposition (1) as well as one of type (4). Let $x_0S = \overline{S} \subset S$. Let us consider the decompositions (1) and (4) of \overline{S}

(5)
$$\overline{S} = \bigcup_{i=0}^{5} \overline{S}_i = \bigcup_{i=0}^{5} \overline{D}_i.$$

It is easy to see that property (a) holds if and only if $x_0^2 \in \overline{D}_1 \cup \overline{D}_3 \cup \overline{D}_5$. For $x_0^2 \in \overline{S}$ and $\overline{S}x_0 = x_0Sx_0 \subseteq x_0S = \overline{S}$.

On the other hand, if $x_0^2 \in \overline{D}_1 \cup \overline{D}_3 \cup \overline{D}_5$, $\overline{S} = \overline{S}x_0^2 \subseteq \overline{S}x_0$ whence $\overline{S}x_0 = \overline{S}$ and (a) holds. Conversely, if (a) holds, then $\overline{S}x_0^2 = \overline{S}$ and $x_0^2 \in \overline{D}_1 \cup \overline{D}_3 \cup \overline{D}_5$. If $\overline{S} = \overline{S}_4 \cup \overline{S}_5$ then $\overline{s}\overline{s}_1 = \overline{s}\overline{s}_2$ implies $\overline{s}_1 = \overline{s}_2$ for all $\overline{s} \in \overline{S}$, \overline{s}_1 , $\overline{s}_2 \in \overline{S}$ (property (b)). Conversely, if \overline{S} has the property (b), then for every element $\overline{s} \in \overline{S}$ we have $\overline{s} \in \overline{S}_4 \cup \overline{S}_5$, that is $\overline{S} = \overline{S}_4 \cup \overline{S}_5$. Therefore we obtain the following

Theorem 3.1. The semigroup $x_0S = \overline{S} \subset S$ has properties (a), (b) if and only if $x_0^2 \in \overline{D}_1 \cup \overline{D}_3 \cup \overline{D}_5$ and $\overline{S} = \overline{S}_4 \cup \overline{S}_5$.

Remark. The decomposition (5) of \overline{S} isn't independent on the decomposition (1) and (4) of S. This problem will be discussed later on.

Bibliography

- [1] J. F. BERGLUND, H. D. JUNGHENN and P. MILNES, Compact right topological semigroups and generalizations of almost periodicity, Lecture Notes in Mathematics 663, 1978.
- [2] F. MIGLIORINI, Some researches on semigroups with magnifying elements, Period. Math. Hungar. (4) 1 (1971), 279-286.
- [3] J. Szép, On the structure of finite semigroups, III, K. Marx University Budapest, Dept. of Math., DM 73-3/1973.

Sunto

Si studiano (1) certe proprietà generali, in un semigruppo S, della relazione di equivalenza ϱ_a $(a \in S)$ definita da $x\varrho_a y \Leftrightarrow ax = ay$ $(x, y \in S)$. Se in S esiste un sottosemigruppo proprio \overline{S} con certe proprietà, ϱ_a risulta una congruenza; si studia il semigruppo quoziente S/ϱ_a (2). Infine in 3 si determina una condizione necessaria e sufficiente affinché in S esista un sottosemigruppo \overline{S} con le proprietà richieste, ricorrendo alla decomposizione di $Sz\acute{e}p$ di un semigruppo.

* * *