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On the control of variable length tethered satellites
with attitude-orbit coupling (**)

A Giorgio SEsTINI per il suo 70° compleanno

1. - Introduction

Several proposed future space missions involve large flexible systems and
in particular also tethered satellites with tether length up to several hundred
or even several thousand kilometers (see [2] to [5]). It is envisaged, for instance,
to « hang a satellite down » from the 01'biting Spacelab on tethers up to 100 km
long. For such extreme tether lengths the usually negligible Attitude-Orbit-
Coupling may become important, in particular during the operation of tether
deployment or retraction.

The motion of two equal mass satellites connected by a tether of variable
length has been studied previously during the deployment phase by Stuiver
and Bainum [10]. More recently also cable-connected bodies in space have
been discussed [1],,.

The libration of extensible dumbbell satellites was studied by Paul [6] and
the boom forces of librating satellites were examined in [7],[8]. In[9], Stuiver
discussed the attitude control of a two-body satellite system by arbitrary
generalized torques. In a different paper [9], the same author treated the three
body problem with an additional « controlforce » between two of the bodies
and showed that Lagrange-type configurations are possible. The relation bet-
ween this latter problem and the dumbbell satellite is obvious.

(*} Indirizzo: Institut fur Mechanik II, Techniche Hochschule Darmstadt,
Hochsehulstrasse I, 6100 Darmstadt, Germany.
(**) Ricevuto: 5-II-1979.
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The question of controllability of attitude and orbit by means of the
variable tether length of a tethered satellite system however, apparently seems
to have been neglected so far. The problem presents some interesting features
due to the fact, that a first integral exists, which involves the variables tether
length.

In what follows, the equations of planar motion of two equal mass satellites
connected by a massless tether of variable length and moving in an inverse
square force field are discussed. Itis shown that the system is indeed completely
controllable in a subspace of the state space defined by the constant moment
of momentum, at least in the neighborhood of the « spoke » equilibria. It turns
out that due to the particular form of the equations in the present case, the
treatment of the problem in Hamiltonean form is far more convenient than
the Lagrangean formulation.

It may therefore be possible to use the varying tether length of tethered
satellites as a control for attitude and also for orbit parameters. A long time
ago Beletskii[3] showed in an example that the periodic variation of the
length of a dumbbell satellite may indeed be used to increase the orbit radius
if the dumbbell axis is assumed to be perpendicular to the orbital plane. In
this case however the tether would be under compression and moreover the
attitude is unstable, so that this example does not seem to represent a practical
situation. On the other hand, the question of controllability of the dumbbell
satellites near the spoke equilibrium may be of some practical interest.

2. - Equation of motion

Consider a dumbbell or tethered satellite with two equal point masses
and tether length 22 moving in the plane in an inverse square force field. Its

m, =m{2
z
) z m;=mi/2

Fig. 1
(System geometry)
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Lagrangean is

m e AR 59 9 . A a9 7n 1 1
1) L=+ reg+e+20-001+5u(+ ),
& “ 1 2
with
P = 92 + 2% + 2zr cos0, ry =12 4 2% — 2rz cos b,

where the variables m, 7, 2, @, 0 are defined in Fig. 1 and yx is the constant
of the gravitational fleld. The equations of motion in Lagrangean form are

. . 1
@) 7 =7‘¢2—§[7'(%+%)—{—zcos@(%~—%)]y

. . 1z “
@, F=T2pe gm0,

= 7 2z 1z noou
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with the integral of moment of momentum (per unit mass) about the center
of attraction

(3) D=1+ g —0).

It what follows we will also need the equations of motion in Hamiltonean form.
The generalized momenta corresponding to 7, ¢, 6 are

oL oL
p,_:g;‘.—:mT, pqz—%——mU(P‘f‘z(‘P"e)L

oL .
—_ e 2(¢h —
P = 5 me¥{¢ — 0),
and the Hamiltonean is

1., 1 1, o
(5) H=%[p;+7—,;(pw+pe)2+;5p6]—7—gz~—§(ﬁ+f.-‘—2-)-

1

The variable 2z is not transformed since we wish to control the state variables
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by means of the control functions 2(¢) or #(¢). Hamiltons equations turn out as

1 11 s 1,1 1 1

(6)1,2,3 fzzpra ¢:;;/;§(pq>+])o), O:E(ﬁp¢+(;§+zg)27ﬂ):
5 = L1 poyz MM “ 0 noou

@ P e P (G ) e cos (5 —3)
. . m . 1l 1

(6)s,6 Po=10, o= rzsinf (%._%) .

’ “ S

It is obvious that the first integral (3) is now given by p, = const. since the
variable ¢ is ignorable. Since the system has one ignorable variable ¢ also
Routh’s form of the equations of motion may be used, it does however not
present any advantages for our purpose.

The integration of the equations of motion reduces to a fourth order dif-
ferential system and two additional quadratures. This is obvious from (6)
because py is constant and p(f) can be evaluated after the solution of the other
equations. In Lagrange’s equations (2) the variable ¢ can be eliminated by
means of (3) and the right hand sides of the differential equations are then
functions of 7, 6, #,  only (besides the control variables), so that the first and
the third equations in (2) can be solved as a system, ¢(t) being obtained sub-
sequently by quadratures.

It should be noted that the right hand sides of (2) contain z and 2 whereas
the right hand sides of (6) depend only on #z, although 2 appears explicitely
in H. Of course this can only happen because the equations (4), which define
the transformation from the generalized velocities to the momenta, contain z
explicitely.

Equations (6) permit to see directly what happens at a point of discontinuity
of 2(t), where z jumps from 2, to z,. It is obvious that =, ®, 0, P,y Po, Do
remain continuous but 6, p, and py also jump. In the Lagrangean variables
we than have r, ¢, 0, 7, ¢ continuous with a jump only in §. This conclusion
could not be reached immediately from (2) since these equations are valid in
this form only at the points where 2(¢) is differentiable.

3. - General considerations about the system’s controllability

Of course the system can be controllable only in a state space restricted
by the first integral (3) or py, = const. Let us first consider the equations in
Lagrangean form (2), with 2 as control variable and with the additional dif-
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ferential equation 2 = w. The variable z is then a state variable and the
following question arises.

Question I. Given two states (r,¢,,0,, %, ¢, 0:,2) and (ray @, O,
Tay (7}2, 0,, z,), which correspond to the same value of the first integral (3), is
there a control function 4(¢) which drives the system from state 1 to state 2?

This and the other questions on controllability will not be answered in all
generality but only for the dumbbell satellite sufficiently close to a « spoke »
equilibrium position, since in this case the equations linearized about this
equilibrium position is given by

(17) M) =10, @l)=ot, 00)=0, )=z,

with w?® = u/r3(1 4+ x2)/(1 — %2)%, %0 = 2/7,. In general yz, is small, so that
the first two terms of the series w® = u/rd(1 4+ 3x2 4 ...) give a very good
approximation.

The equations (2) are now linearized in

Ty=0—"0 Hy=@p—ol, T=0, Ti=7F, TZ=¢—w, Z,=0, Tr=2—27,, u=3s,

and assume the form
. 6 .
(8) Zi= 2 ;% + b% Feuw (1=1,2,..,6), T, = .

i=1

If only solutions with the same moment of momentum about the center of
attraction as the «spoke» equilibrium are considered, the first integral for
the linearized equations gives

(9) 20 wF, -+ (12 -+ 22Ty — 227, + 20T, = 0.

This equation can be used to eliminate %, Z, or Z; from (8). If %, is eliminated
we obtain - ‘

5
(10) Ty = D T + 0T +ou (k=1,2,..,5), X =u,
=1

and X, is given by (9). The total controllability of system (8) can now be exam-
ined by means of any of the available criteria. If for example Kalman’s crite-
rion is used and (10) is written in matrix form as

(11) x(t) = Ax(t) 4 Bu(t),
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then the rank of (B, AB, ..., A='B) has to be calculated with » = 6. If (11)
has full rank Question I can be answered affirmatively if the given states are
close to the «spoke» equilibria.

As we shall see below, the use of Hamilton’s equations leads to a similar
equation but with n = 5. Since the difference of one order in the system
may simplify the calculations appreciably, we will not attempt to compute
the rank of the controllability matrix of (10) but we prefer to formulate the
problem via Hamiltons equations.

Considering the control problem defined by (6), the new question arises

Question II. Given two states (ry, ¢y, 0y, Py, Doy} and (vy, @a, O, Pro, Poa)
with the same value of py, is there a control function z(t) which drives the system
from state 1 to state 27

The linearization of (5) in 4, =1 —17y, o=@ —wl, Yo=0, Fyi= Pr, U5
= Py + Miw and u = z — z, gives

5

(12) Ji= > dyy;, +eu (1=1,2,..,5),

j=1

and Kalman’s or other criteria can be used to study the controllability of (12).
If (12) is completely controllable Question IT is to be answered affirmatively.
The two different questions are obviously due to the fact that in the first case #
is a state variable, in the second case a confrol variable.

4. - Application of Kalman’s criterion

It is convenient to define the dimensionless variables

_ 1 _ -
r = E) (r —1) , Pr= My’ ¢ = ¢ —wit,
(13)
_ 1 R . _ 1
pGZngw(pﬂ'*'WLz@w)y 020, z:;;(z—zo),

and to write the linearized equations of motion in these new variables

F=7,, ¢=—2F+yp, 0=—2F+ 1+ z)P+ 22,
(14)

’ ~

Pp= (200m; — 3)F + 24300 — 242BomeZ, Py = — Pomil,
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where a prime indicates differentiation with respect to the new dimensionless
time v = ot and

(=g s 14 37 8 + 7
(15) 776=—'f°z=ﬂ/2°> =T, o=
(1 + x0) w (1 — xo) (1 — %)
In the matrix form (11) we now have
0 0 0 1 0 ]
—2 0 0 0z
(16) A=|—2 0 0 0 14221,
200m:—3 0 0 0 242
0 0 Pz 0 0 _
(17) B" = 2(0,0,1, — X§ﬁ077§7 0)
and a somewhat tedious calculation gives
3 al 2
(18) det (B, 4B, ..., A'B) — — 2 (—f—ég)u—x—";)a (2 —9).
1— Xo 1— Xo

It is now easily veryfied that (18) is positive for 0 < y,<< 1 so that (14) is
completely controllable for realistic values of y,. The answer to Question IT
ig therefore « yes».

It is therefore possible to use the variable tether length to control the
linearized system in the #, @, 0, p., ps space. We are however more interested
in the answer to Question I since we wish to know if for instance a suitable
function z(¢) drives the system from one «spoke» equilibrium #,, @,, 0 = 0,
F=0, go=0w, 6§ =0, z, to another r,+ Ar, @, + Adp, 0=0, #=0,
p=0w -+ dw, 6 =0, 2=z, + dz.

The relation between z and » for different spoke equilibria with the same
moment of momentum is given by the first integral (3) with § = 0 and
@ = w? = (u/r3)(1 + x2)/(1 — %3)%, and is also shown in Fig. 2. Of course
only the first quadrant in Fig. 2 is significant, because we suppose » and z
positive. In Fig. 2 the same scale is used on the r/r_,_ and on the z/r_ _ axis,
so that the lower curve in the first quadrant corresponds to spoke equilibria
in which the tether goes through the center of attraction and this curve can
also be disregarded for practical purposes. Of course the z/r_ _ axis which is

max

also part of the diagram is of no practical importance. In most applications

max
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% = &/r will not be too large, so that the equilibrium corresponds to a point
on the curve in the first quadrant close to (0, 1).
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Fig. 2

(Values of + and 2 for different spoke equilibria with the same moment of momentum).

It is easily shown, that (14) is not only controllable in Z but also in Z'= u
if this equation is added to (14). In the Kalman criterion this means that
the order is increased by one and 4, B are substituted respectively by

- 4 B — 0

(19) A=1T, ] and B:(sl)-

A simple computation shows that
(20) 1 - rank (B, 4B, ..., A*-'B) = rank (B, AB, ..., A"B),

if B is a vector as in our case, so that (14) is also controllable in z', with Z as
a state variable.

Question I can now be answered: given (r,, g1, 0,, 71, ¢y, 0, 2,) and (7., P2y Oy
Fay @y Oz 2,) One can easily calculate (7,, @y, 0y, Pry, Dosy 21)y (Fay Bay Oy Proy Py 2a) -
Since (14) is completely controllable in z’, we know that functions z'(z) exist
which drive the systems from state 1 to state 2, so that the answer to Que-
stion I is also «yes».
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If Routh’s equations were used we would have obtained a system of dif-
ferential equations which would not have contained ¢ and ¢. Since this system
would be of lower order also the examination of the controllability would have
been easier. It would however not have been known without additional con-
siderations wether also the variables ¢ and ¢ were controllable or not. The
controllability of these variables is however also of interest in a number of cases.

5. = Reformulation of the linearized equations

The system (14) can easily be transformed into one single differential equa-
tion of fourth order in any of the state variables. If we choose 7 as the depen-
dent variable for this fourth order equation we obtain, after some intermediate
calculations

(1) FIV L 247" + bF = — 20(dZ - 7)
with
2+ 7 1 34z
o ~. — — 10
Ty ’ 1—y 1— /(] 7 F )
(22)
3+ 18 5—
0———-}:61 /Z, (lzl—{:(;.
%o — %o

The initial values not only of 7 and # but also of 7 and 7 of course have to
be found. If we start from a spoke equilibrium it is obvious that 7 and 7 both
vanish. From (14) with 6(0) = 0, $(0) = 0 we then can obtain

3
3+70 (0)7 51///(0):__273 +/0—I

z(0).
_/o 1— /0

(23) 70y = — 2y 5

The solution to the differential equation (21) with these initial conditions
can be written in the following form

_ 2¢ Tod—ud d—p; . -
) = — — - ( rgin gy (r —n) — 2 5in wa{t — 1)) 2(n) dr
(24) F(7) P J o tia(T — 1) - palT — 1)) Z(n) Aoy

where ¢, d are given in (22) and u,. are given by

(2 4 2B (@ — 8 £ VI F 222 + 358 + 8x9) ,

.
(25) M=

15
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as is shown in some more detail in the Appendix. By direct differentiation
of (24) it can however also easily be checked that (24) is infact a solution to (21).

With (24) the influence of a changing tether length on 7 can be ecomputed
and a simple estimate can be found as follows. From (24) with

(26) P(l) — 1o = roT{(wl) ) 3) = ;— (nf) — 2]

we obtain

1 2¢ td—ud o,
27 Fl) — 1y = — — —= Sy w(f— 8
(@7) (t) =10 o of{ﬂl et — s)

d—pk
— —28in paw(t — )} (2(s) — 2) ds .
e

We therefore have

wt 2c ,u d -{— 5y
) (1) — 1| < : ) max |z(s) — 2,
(-8) [ ( ) 0 %o (l lu,; ___luzl ! I+I l 0<s<t] ( ) O[)

and if we expand the terms on the right hand side of (25) in powers of x,, we
have for the initial terms of this expansion

2¢ d— u2 d—u: 2 =
29 e =3y ., —Pr g, T3
@) e T T T 3

Using these expansions in (28) gives

(30) [7(8) — 10| < 015,46 max |2(s) — 2o |0t -+ O(x0) ,

or

(31) C () — 1o | <27y 15,46 max [2(s) — 20| -+ O(x0)
[ Bty

where 7' is the orbital period of the satellite. From (31) we see that during one
orbital period the change in » will be at most of the order of 15y,4227, where
Az is the maximum change of # during one period. This means that for all
practical purposes the change in # during one orbital period will be very small.
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6. -~ Conclusions

We have shown in this paper that the planar motion of a system of two
cqual mass tethered satellites in a central inverse square force field is com-
pletely controllable with respect to the tether length 2z, in the subspace of
the state space defined by the first integral of moment of momentum, in the
neighborhood of a «spoke» equilibrium. Surprisingly not only the attitude
but also the orbit and even the variables ¢ and ¢ can be controlled by 2.
This means that possibly the tether length control can be used to correct
small orbit disturbances, e.g. to drive the system from an orbit with small
excentricity back to the spoke equilibrium in a circular orbit.

As mentioned previously in the paper, Beletskii[3] gave an example in
which he showed that periodic variations of the length of a dumbbell satellite
could be used to increase the orbital radius indefinitely if the dumbbell axis
is assumed to remain perpendicular to the orbital plane. This interesting
example is apparently of no practical importance, as previously explained.
In the present case however, in which the planar motion of the dumbbell is
considered, no appreciable increase in » will be possible in general, maintain-
ing the satellite close to a spoke equilibrium. This can be seen from Fig. 2,
where the usual spoke equilibria are on the equilibrium eurve and close to the
point (0, 1). In this region reductions in # inerease #, but of course never above
7 = #,... In the lower part of the curve of course an increase in # corresponds
also to an increase in ». This part of the diagram is however probably also of
little practical value, since here y = z/r is very large.

In the last section of the paper an alternate solution was given to the control
problem and a simple estimate for the change of » due to the changing z was
given. It was shown that 4» remains always small and a most of the order
of 15,467,422z during one orbital period.

Summarizing it can be said that the tether length control may possibly
be used to make the spoke equilibrium asymptotically stable and to correct
extremely small deviations in the orbital parameters, but certainly not for
larger orbil correction.

Appendix
We wish to obtain a closed form solution of

(A1) 7V 4 247" + bF = — 2¢(dE + 7)
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with
{A.2) F0)y=0, #O0)=0, F(0)=—2¢(0), F(0)= — 2¢2(0)

for arbitrary funections Z(r). The general solution to the homogeneous equation
is given by

(A.3) R (t) = A;cospy7 - Aysinp v+ Ay cosp v -+ Ay sinpy v
and a particular solution to the inhomogeneous problem can be written as
(A.4) Bo(7) = — 2¢[R(v — n)[dZ(n) + 2"(n)]dy ,

[

where R(7) is a particular solution of the homogeneous problem with initial
conditions

(A.3) RO)=0, RO =0, R(O)=0, R"0)=1.

From (A.3) and (A.5) one obtains

1 1 .
(A.6) R(r) = - [ 1 SIn T — — sin p,7] .

2 2
By — M1 Mo

The solution B, (z) trivially satisfies the initial conditions R,(0) = 0, R;(O) = 0,

R;’)(O) = 0, B (0) = 0 so that for the solution 7(z) of the inhomogeneous problem

with the initial conditions given by (A.2) one obtains

2e¢
7(7) = RY(7) + Byl7) = —

[Z(0)(e0$ ty T — €OS Uy T)

2

2
Mo — Mg

=1

(A7) + 2

1 1
0) (— sin 37— — sin u, 7
()(/“1 Ha s UaT)

T

1. .
+ J (& sin ux(r-n)wi— sin po(7 — 1)) (dZ(n) 4 2"(n)) do] .

o W a
Integrating the term containing 2"(y) by parts one finally gets

d—

sin (7 — 1) — T sin (7 — 1)) (1) doy,

2¢ T d—
( 1

f

M= U5 o 2

(A.8) T(7) = —

which corresponds to (24).
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Abstract

Several proposed future space missions involve large flemible systems and in particular
also tethered satellites with tether length up to several hundred or even several thousand
kilometers (see [2] to [5]). It is envisaged, for instance, to « hang a satellite down » from
the orbiting Spacelab on tethers wp to 100 ki long. For such extreme tether lengths the
usually negligible Attitude-Orbit-Coupling may become important, in particular during
the operation of tether deployment or reaction.

The motion of two equal mass satellites connecled by « tether of variable length has
been studied previously during the deployment phase by StuIvER and Barxum [10].
More recently also cable-connected bodies in space have been discussed [1],0.

The libration of extensible dumbbell satellites was studied bu PAUL [6] and the boom
forces of librating satellites were examined in [7][8]. In [9), STUIVER discussed the aiti-
tude control of a two-body satellile system by arbitrary generalized torques. In a different
paper [9], the same author treated the three body problem with an additional « control
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force » between two of the bodies and showed that LAGRANGE-lype configurations are pos-
sible. The relation between this lalter problem and the dumbell satellite is obvious.

The question of controllability of attitude and orbit by means of the variable lether lenglh
of a tethered satellile system lhowever apparently seems to have been neglected so far. The
problem presents some interesting features due to the fact, that a first integral exists, which
wnvolves the variable tether length.

In this paper, the equations of planar motion of two equal mass satellites connected by a
massless tether of variable length and moving in an inverse square force field are discussed.
It turns out that due lo the particular form of the equations in the present case, the treatment
of the problem in Hamillonean form is far more convenient than the ILagranyeanan
formulation.

It is shown that the planar motion of a system of two equal mass tethered satellites in
a central inverse square force field is completely controllable with respect to the tether
length 2z, in the subspace of the state space defined by the first integral of moment of mo-
mentum, in the neighborhood of a «spoke» equilibrium. Swrprisingly not only the atli-
tude but also the orbit and even the variables ¢ and ¢ can be controlled by ! This means
that possibly the tether length conirol can be used to correct small orbit disturbances, e.g.
to drive the system from an orbil with small excentricity back to the spoke equilibrium in
a circular orbit.

A long time ago, BELETSKII [3] gave an example in which he showed that periodic varia-
tions of the length of a dumbbell satellite could be wused to increase the orbital radius inde-
finitely if the dumbbell axis is assumed to remain perpendicular to the orbital plane. This
interesting example is apparently of no practical importance. In the present case however,
in which the planar motion of the dumbbell is considered, it is shown that no appreciable
inerease in r will be possible in general, maintaining the satellile close to a spoke
equilibrium.

In the last section of the paper an alternate solution is given to the control problem and
a simple estimate for the change of v due to the changing 2 is given. It is shown that Ar
remains always small and at most of the order of 15,46 y, dz2x during one orbilal
period, with o= g,[r,.

Summarizing it can be said that the tether length control may possibly be used to make
the spoke equilibrium asymplotically stable and to correct exiremely small deviations in
the orbital parameters, but certainly not for large orbit corrections.



