Riv., Mat. Univ. Parma (4) S (1979), 673-691

G. Carriz (%)

Bodies with microstructure (I) (¥%*)

A GiorGi0 SEsTINI per il suo 70° compleanno

Introduction

The goal of these lectures (given at the International Centre for Theoretical
Physies during the Autumn Course in 1976) (1) is an exposition of some aspects
of the theory of bodies affected by dislocations. In introducing the subjeet,
we adopt concepts and notation from a paper by Noll [3];, (pp. 211-242) or [3],
(see also [6], ch. V), but the approach is different in that material properties
are not discussed; the kinematies (including changes of reference) is examined
first; and a comparison is made with the so called director theories.

Basic notation is as follows.

& three-dimensional Euclidean space of points =x, y, ete.

a, b, etc., vectors; i.e., elements of the translation space ¥ of &.

G, A, ete., second order tensors; i.e., elements of Lin, the space of linear
mappings of 7" into 7.

1, identity in Lin.

G7, transpose of G.

det G, determinant of G.

tr G, trace of G.

w, f, etc., third order tensors; i.e., elements of Lin, the space of linear
mappings of ¥~ into Lin.

(*) Indirizzo: C.N.U.C.E., C.N.R., Via 8. Maria 36, 56100 Pisa, Italy.
(**) Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.). — Ricevuto: 30-1-1979.
(*) The original text was amended in many ways, however. I wish to thank
C. Davini and P. Podio Guidugli for many eritical remarks.
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Lin*, the subset of invertible members of Lin.
Orth, the group of Q € Lin such that Q7 Q = 1.
Sym [Skw], the subspace of G € Lin, such that G = G7, [G = — G7].
The composition of fields is expressed by use of the sign o.
For the tensorial product of vectors and tensors we use the symbol ®.
By scalar product G-4 we mean tr (GA7).
Notice that Lin can be considered also as the space of linear mappings
from Lin into 77, starting with the convention

(1.1) w(aXb) = (wb) a, Va,be v .

For instance, using the Ricei commutator e € Lin, given any ae ¥7, one
can define an A4 eSkw such that

(1.2) A=ea,

and vice versa, given 4 € Skw one can recover a such that

(1.3) a=ted.
We remark also that
(1.4) ela@b)=axb.

Over Lin it is possible to define a major and minor notion of transpose, le.,
for any helin one can obtain the major transpose h” and the minor right
or left transpose 'h and h* through the conditions

(1.5) A-ha=a-h"47, ha= (tha)’, hd="h'A, Yac? , Aelin.

Correspondingly, there is a major property of symmetry (or antisymmetry)
when

(1.6) h=h7, (h = —h7)
and a minor property of left (or right) ‘ symmetry (or antisymmetry) when
(1.7) th=nh (th=—h), ht=nh (h=—hy.

Many elementary properties follow; for instance: if h is right antisymmetric,
than there exists a unique A4 € Lin such that

(1.8) Au = ehTu) h"y = le(Adu), Yuec 7.
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We infroduce several smooth scalar, vector and tensor flelds, e.g. p(a®),
d(x%), K(x*), etc. defined over open connected sets B* of & (or over their
closures), together with the gradients Vy, Vd, V3id, ete.

We will consider also one-to-one smooth mappings of open connected sets
onto open connected sets, say

x=a(x¥), «F=ax);

x* € B* = domain e = range a'?, x € B = domain ¢'? = range a .

Thus we can think of p, d, K, for instance, also as a fields on B, e.g.
d(a‘i)(x)); with an abuse of notation we write simply d(x); correspondingly
we can introduce the gradient and we use for it the notation grad

Vy = (Va)?(grad v), Vd = (grad d) Va ; (VK)u = (grad K}(Vau), VYue?" .

Finally we need to introduce a whole class of smooth mappings of B*
into & and to work with fields over the ranges of each of those mappings;
if ¢ is a symbol which specifies one of the mappings of the eclass, then we will
call V, the respective gradient operator (so that we could use V, as an alterna-
tive symbol for the operator grad).

2. - Transplacements and placements

Let us now introduce the class @ of complete transplacements as the set of
couples (e, G), where a is chosen within a class Z;, and G within a class
9,, with the following properties:

(i) The members of &, (called apparent transplacements) are invertible
mappings (of class C? at least), whose domains and ranges are open connected
subsets of &; the value of F= Va, the gradient of a, at any element of the
domain of e is a member of Lin*.

(i) The members of &, (called reference transplacements) are mappings
(of class O at least) from open connected subsets of & into Lint.

(iii) In any couple (a, G) € Z the domains of @ and G are the same.
(iv) If (a®, GW) and (a?, G'?) belong to £ and if the range of a®
coincides with the domain of a'?, then & contains also the composition

(a, G) — (a«z), G(?))o(a“’, Gu)) ,

which is defined as follows: a is a simply a®oa'?, whereas G is specified point-
wise through the formula

G(x) = (G?(a™(x))) GV(x) , Va € domain a'? .
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(v) If (a, G) belongs to &, then also the inverse transplacement (a®, G'9)
belongs to Z; here a? is the inverse mapping of a and the second member
is the mappings from range a into Lint defined pointwise by

G(x) = (G(a'?(x)))1, Vxerangea .

(vi) £ contains all complete rigid transplacements, i.e., couples (a'®, Q),
where a'® is an isomefry between open connected subsets of & and Q has a
constant value on domain a'®

Q@ =Va®eOrth.

Remark. If a, b € &, and domain e = domain b, then, often, & is ample
enough to contain (a, Vb), in particular to contain (e, F), F = Va.

The latter property is true at least for e within an appropriate subset
of 2,, as condition (vi) above shows.

In general, however, G is not the gradient of a mapping b.

‘We can now specify the notion of a continuous body with (affine) micro-
structure. % is a set of particles X with a number of properties; first of all,
# is a smooth continuous body in the usual sense, i.e., a class &; of mappings =
exists, n: & — & (called apparent placements) such that:

(i) Every m € &, is one-to-one and its range B = n(%) is an open con-
nected subset of &, which is called the region occupied by Z in the (apparent)
placement . The spatial point x= n(X) is called the place of the particle X
in the placement z.

(i) If =0, 72'» € #,, then there exists a member a™? of 2, such that

al? — 7o (7V)"1 ;

a®? is the apparent transplacement from =™ (%) into 7'? ().
(iii) f me,, acP, and the range of = coincides with the domain
of a, then aore &,.

With this partial strueture of 4 we can define local placements /., at each
particle as equivalence classes of a partition ¥y within placements = € #,, in-
duced by the following relation of equivalence at X. Let a0, n® e &, then
A0 o @ if

V(2o (@) Ly = 1.
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We can also define a reference for & as a function /4 which associates with
cach particle a local placement; a very special case is a homogeneous reference,
i.e. a reference which associates with each X e & the equivalence class deduced
from a unique placement. The set of all references on & will be indicated by £.

We are now in the position to specify the complete structure of #; it is
characterized by a class & of mappings (z, A), called complete placements of %,
where 7€ %, and A e belongs to a class &, with the following properties:

(i) Any A is smooth in the sense that any placement n of 2, admits
of a smooth relative gradient H=V,z with respect to any A in #,; H is the
field over B which is defined pointwise as follows. Let x be the place of the
particle X in the placement sz; let Ay be the local placement associated with X
by 4; let » be a placement belonging to the equivalence class 2y such that
p(&) = n{X) = x (3). Then

(2.1) H(x) = Van|, = Vymoy)], .

Here V, is the gradient operator acting on fields defined on range v, as
mentioned at the end of 1. Notice that in general a different ¥ needs be
chosen for each particle, so that in V,(;op-?) operator, operand and domain
vary with X'; on the other hand one is interested only in the value of Vy(rzoy=1)
at x.

k (ii) If (=0, AD) and (79, A®) belong to £, then there exists a member
(a™?, G*Y) of @ such that: (a) a®? is the apparent transplacement from z®
into z® and (b) for all x € & the local placement A? i.e. the value of A® at X ,
can be obtained from 1P (the value of AW at X) as the class of placements
p@ for which

®
o
I

G(x) =V(yPo(pm)-1],), Vx e range z¥

for any choice of ye AV such that y™(X) = a®(X) = x (see remark in
footnote (*). (a™?, G*?) is the complete transplacement from (mV, A®) into
(n(z), A(z))‘

(iii) If (#®, AV) € Z, (a, G) € Z and range ‘"= domain a, then £ con-
tains the composition (7'?, A®) = (a, G)o(aV, AW), defined as follows z?®
= aon®, and A® has values A with the property that G(x) = V@ (p

(%) Such a placement exists by property (iii) of apparent placements and prop-
erty (vi) of complete transplacements. This remark is invoked repeatedly later.

13
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o(y)-1) |, if p@[pw] is any placement belonging to AP[AP] and pV(X)
= aWX) = x. The composition is called the complete placement obtained
from (z®, AM) by the transplacement (a, G).

3. - Directors

A particular complete placement (%, A%), called here primary placement,
is often preferred either for greater case in the description of the material
properties of a body or for other reasons. Then any other complete placement
(7, A) is conveniently specified by (n*, A*) and the complete transplacement
(a, G) from (z*, A*).

We can also identify a particle X with its primary place x* = =n*(X);
correspondingly we specify from now on the notation introduced in 2 as fol-
lows: we use the symbol V for the gradient operator on fields defined on
B¥= range n*; we interpret (a, G) as the complete transplacement and F as
the apparent transplacement gTadienf, Vea from the placement (sz*, A*) into a
generic placement (s, A).

We mantain the notation H for the field introduced by (2.1) within the
definition of complete placement and we introduce in a similar way the fields
H* K:

(3.1) H* =V jn* = V(n*o(y*)“l) , K1 = Vz* = V(a*oy~1) ;

we remark also that, with an appropriate choice of y, »* within Ay and A%,
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respectively,

G = V(yo(y*)™) and hence Viem = V(mo(y*)1) = HG ,

(3.2) K=H"'F= GH*,

In accordance with the conventions of 1, we denote by Vi the gradient
of any scalar field ¢ on B* with respect to the reference in any placement
(7, A) and, to distinguish it from the gradient with respect to the primary
reference, we use for the latter the notation Vaxp

(8:3)  (Vap)u= (Vo) (K-'w),  (Vag)'u=(Vp)-(H*u), Vuer .

We operate with V., V. also on vector or tensor fields defined on B*; for
instance

(3.4) (VaG)u= (VG)(K'u), Yue v .

We presume also that a coordinate system (for instance, a Cartesian frame)
is available and denote with X* (R=1,2,3) [#' ({ =1, 2, 8)] the coordi-
nates of a particle in =* [in any =].

We can then introduce the directors for an alternative description of the
structure of our body ([4], sect. 34); to this end in any complete placement
and at any particle X, ehoose a placement y which belongs to the equivalence
class 1y, consider the composition yo(x*)-! and define the vectors

ofye(m*)] P

(3.5) dp = xR ’

=1,2,3.

These vectors are the directors at the particle X within the complete
placement considered; their definition involves a choice of y but in fact
they depend only on the choice of the coordinates and on 1.

We will use the notation d(";) for the directors in the primary placement:

Alv¥o (7)1
(3.6) ay, =T,

Remark. The choice of directors within one placement has a large
degree of arbitrariness. We could choose different coordinates XS in writing
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(3.3). If

(3.7) X = pr(Xs) and Ar—
then a new set of directors d~(s, can be evidenced
-~ 3
(3-8) d(s) = zn d(mA§ .
1

One may wonder to what use objects which are affected by such arbi-
trariness can be put within the theory. All relations deduced with their help
must be tested for indifference with respect to changes of the type (3.8); thus
an element of complexity is introduced which may appear to be quite unnee-
essary.

The signal advantage of the introduction of directors is in that it allows us
to imagine a connection between the kinematics of bodies with microstructure and
that of bodies made wp of complex particles (say, dumbbell or tethrahedral),
where directors are not simply cumbersome tools but have rather an immediate
physical significance and their use in the theory is therefore fully legitimate.

Actually a reference on % can be defined using directors rather than local
placements, once the apparent placement is known. In fact, when = is known
and the field of directors d (B =1, 2, 3) is given on B, one can determine,
as we shall see, the field H on B and hence one element y of Ay for each X.

Let us start with some technical remarks: we use below also the set of
reciprocal directors d® which are defined by the relations

3
(3.9) d®-d g, = &%, 249 dm=1,
1

and transform as a consequence of a change of coordinates as follows
—~ 3
B - o 2 __ Sy
d®»=73% Bid® where Bf = (4;)~*.
1

Then if one calls ¢ the base vectors of the coordinates, one obtains from
(3.5), (2.1), (3.1), (3.2)

(3.10) diw = (V(yo(@*)™)) e = (V(VOTU"I‘?“)) e = H'Feg = Kew ,
and in particular (see also (3.6), (3.1), (3.2))

(3.11) d(*li) —_ H*_IC(R) ’ d(R) - Gd:ﬂ) = GH*_IC(R) .
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In terms of K, H and G, the reciprocal directors are given by
b H
d® = (K-1)Tew d¥® = H*Te® | d® = (G)Td*m

Vice versa, K, H, H* can be specified in terms of dy, d(’;), their reciprocal
directors and of the base vectors:

3 3
K= Zlc dpy®@c®, K-t = zR cn®@d®,
1 1
(3.12)

3 3
H= En (Fem) @ d® H* — ZR cn® dHEm
1

1

If one adopts an intrinsic point of view (i.e., if one does not want to rely
on coordinates) then the following relations become relevant

3 3
zns (e dp @ dis) = KK” ) G= ZR dipn @ d*®
1

1

(3.13)
3
Sas (P d:@ d(‘*;) = H*(H*7

1

It follows that the directors alone determine completely G whereas in K
and (H*)-* an orthogonal right factor is left unspecified even when the metric
of the coordinate system is given; such indetermination is obviously in con-
nection with an arbitrariness of the choice of the coordinate frame, which
affects equally F.

But it is interesting to remark finally that H is not correspondingly affected ;
because in the relation H = FK-', the indetermined factors cancel out.

In conclusion, the quantities introduced later may be of use in both theories,
though their importance may be quite different in the two contexts.

4. - Geometric preliminaries

A number of important objects can be defined in terms of directors: first
of all a metric tensor

(4.1) Vs = dipdigy = (Kem) - (Kew) = (K7 K) (e @ emw) ;

the quantities y are therefore, in our interpretation of directors, the com-
ponents of K” K on the coordinate frame.
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Secondly the linear comnection (see [2],, for instance)

ad(s)

(4.2) Ig, =7t

- dT -

The quantities I'5¢ can be interpreted as the anholonomic components of
a third order tensor: the wryness w

3
(4.3) W= el 7 dn@dPRQd® .
1

Directly w can be expressed by the relation

W = S 200 @ 4 @ v,
1 <

or, more compactly, by

3

(4.4) W= >;Vadp®d® .
1

In fact, from (3.4) one obtains (?)

3 od
(42 Y5 ®d = Vadw .
1

One can express the wryness also in terms of the tensor K and its gradient.
From (4.4), by substitution of (3.10), (3.3) one has, for any choice of u, v in ¥~

(wu)v = ZR(V(KC(R)))(Kglv)(Kvch(m) “u ): ZR (((VK)(K—I'U)) c(R)) ((K—ITC(R)) : u)-

On the other hand, for any 4, B € Lin,

3

(4.6) 2 (Aew)® (Bew) = AB” ;
hence
(4.7) (wu)v = ((VK)(K-'v)) (K'u), Yu,ve? .

{®) Choose in (3.4) u = di5 and write d® in place of G.
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Remark 1. If a vector field b, defined on B¥, exists, such that K= Vb,
then

(4.8) w=wt,
Vice versa, if (4.8) applies in a simply connected open neighbourhood of a
point in B*, then one can define in such neighbourhood a vector field b, such

that K = Vb.

Remark 2. If a vector field b and a tensor field A, defined on B*, exist,
such that K= 4B, with B = Vb, then

skw (W7u) = skw (W7u) Yuey,
if one puts
(Wu)v = ((V, A)(A ")) (4 1n),  Vu,ve? .
In particular (see fqrmula (3.2)), while
(4.9) (Wu)v = ((grad H-)(Hu)) (Hv) + H((VF)(K-'u))(K-'v) , Yu,ve?",

the skew part of w”u can be expressed in terms of the quantities appearing
in the first addendum in the right-hand side of (4.9) only.

Remark 1 shows that one can take as a measure of the diserepancy of the
reference from a homogeneous reference, the imhomogeneity defined as follows

(4.10) s=Hw—w);

or, explicity,

(411)  2(su)v = (VK)(K—v))(K-tu) — (VK)(K-'u))(K-1v) Vu,ve v .
From (4.9) one has also

(412)  2su)v = ((grad H~*)(Hu))(Ho) — ((grad H-)(Hv))(Hu), Vu,ve?",
and it is easy to check that

(4.13) 2(su)v = H-((VaH)v)u— (V4 H) u)v), Yu,ve v .
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Notice that, to compare these formulae with those of [3], (pp. 211-242),
Noll's F is our H, and there is a factor } in our definition of s.
5. - Dislocations
Because s satisfies the minor right antisymmetry condition, it is possible
(see formulae (1.8)) to introduce a second order tensor A4 which is called
dislocation density and is such that
(5.1) Au = e(s"u) Vuev ;
vice versa, given A, it is possible to express s

(5.2) sTu = Le(du).

The tensor 4 can be used to form the Burgers vector b relative to any plane
of unit normal n

(5.3) b= A"n.

Example 1. Suppose that ey, €@, € are unit vectors in an ortho-
gonal Cartesian frame and

doy = p(X,) ew, diy = ¢, dg = ¢,
with @ 3¢ 0. Then all quantities 1'%, vanish except at most I}, which equals
@ @15 it follows that all Cartesian components of s vanish except at most
8% =—3¢'¢g7 and s = Lo g1,

Again, all cartesian components of 4 vanish except at most A, — o gL
Hence

(5.4) A=q¢ ¢ leu®Rey .

If ¢ = exp [«X,], we have a homogeneous field of edge dislocations, where
the Burgers vector is aeyy and the edge unit vector is Ca) .

Example 2. Suppose
dy) = ¢ -+ <P(X2) C(3) dy = cw ’ dy = ¢y

and hence, dV = ¢, d? = ¢, d¥ = — p(X,) cay+ €y-
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All Cartesian components of s vanish except, at most, s, = ¢'(X,) and
8512 = — @'(X,).
All Cartesian components of A4 vanish except, at most, 4, = ¢

(5.5) A= e ® ¢ .

If ¢ = aX,, we have a homogeneous field of serew dislocations, where the
Burgers vector is acg and the screw unit vector is ¢gy.

In general one obtains from (5.1), (4.10), (4.3) that 4 can be expressed
as a sum of three dyads

3 3
(5.6) A=Y, fP®d,, with O =3, TEd®xdm,
1

1

so that the Burgers vector relative to the plane of unit normal d“?/|d%?|,
is given by

(5.7) Bl ___.f(nr)/ I dw |.
This vector has a screw component

d(m)

(5.8) b = bl - [do | =

— (det '}’RS)_‘:( !dw) l )_2(F3¥+1,_v+2 — F::§+2,;!1+1 ),

and two edge components 37 and b9":

d( M+1)
bgl) — hun.
{A4-1) |

3
= — (det ’}’Rs)"é( Idmnl Id(y+1) I )_l 21: ( };I,n+1“ F;;{i-l,k)ylf+?,ﬂf+l y
1

y d(,u+2)
bg-;’ Y= b,

(ar12)

3
= — (deb )/ns)—é( [don ! {daria ] )_1 2_1« (Fie[,n-u— F)‘:ﬁ-l,k))/m 2,42 -
1

Certain local properties of the dislocation density can be easily expressed
in terms of the spectral properties of 4. For instance
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L. In each point of B there is a plane such that the Burgers vector relative
to it is either null or of the screw type.
In fact 4 has at least one real (perhaps null) eigenvalue.

IL. If sym A is definite there is no plane such that the Burgers vector
relative to it is mon null and purely of the edge type.
In fact for b relative to n it should be, otherwise,

n-An=290 or n-(symd)n=20.

III. If sym A is indefinite there is (at least) a simple infinity of planes
such that the relative Burgers vector is either mull or purely of the edge type.
Remarks 1 and 3 suggest simple examples of alternative elementary inter-
pretations of the properties of 4. For instance, if « is any real number and c, d
are orthogonal unit vectors, then the special case

4 =ue@ec—d@d) =5 ((c+d® (c—d) + (c—d)® (c + d))

can be interpreted as the superposition of dislocation densities either of the
screw type, or of the edge type [2],.

Nevertheless one could use the spectral properties of 4 systematically to
propose a formal classification of cases.

6. - Strain

Now we are ready to compare placements, using for this purpose the objects
defined in the previous sections. Our task is mainly that of finding eonditions
under which two placements differ at most by a rigid transplacement. One of
the placements will be the primary placement and all quantities relating to
it will again be marked with an asterisk.

Obviously relevant quantities are the transplacement gradient F— Va,
and G. The corresponding strain tensors are the classieal tensor

(6.1) . E=L{FrF—-1),

and a new one

I
-

[

(6.2) B=1G"F—1).
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As an alternative to B one could use the symmetric tensor

(6.3) E¥ = LG*G—-1)

and a second tensor

(6.4) E"W = L((R)R™M—-1),

which involves the orthogonal tensors appearing in the polar decompositions
(6.5), F=RY y, G = R9 ylel

where the right stretch tensors U1 and U™ are given by

(6.5),, U = (F7F)}, U= (G*G)}.

Notice that, whereas a rigid transplacement imposed upon & affects equally
Fand G: F—QF, G-+ QG (where Q is the orthogonal tensor associated
with the transplacement), there is no effect on either E, B, E9, E,

In fact, a necessary and sufficient condition for the rigidity of the complete
transplacement (a, G) is that E and B, or alternatively E and both E'°, E%
be zero over B*.

Proof. If E vanishes, then the apparent transplacement is rigid and F
is orthogonal; furthermore, if B = 0, then G coincides with F.

Tf, alternatively, the apparent transplacement is rigid and E*' = E9 = 0,
then R = F and finally also G = F.

Sometimes, instead of F and G, the tensors H and K are used and we re-

mark that, for them, the rules of transformation as consequence of a rigid
transplacement are

K —QK, K —~QHQ" .
Polar decompositions for K and H
(6.6) K = R”‘” U, H=R"y®"
lead to strain tensors

(6.7) EW = 1((U¥)—1), EW = 1((U"):—-1),
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which are related to E

(6.8) E=K'E®WK 1+ E®

However, the vanishing of E¥ and E¥) on B assure the rigidity of the
apparent transplacement, but not necessarily that of the complete transplace-
ment even if H* = 1.

If we retwrn now to formula (4.7) and express the quantities appearing in
it in terms of G and of elements of the primary placement we obtain the
relation

Wu)v = (Vi G)(Gu)(G1v) - G(w*(g'u)(g1v)) , Vu,vev .

This formula suggests the introduction of the following tensor f, the strain ‘
of orientation (see [5], sect. 61)

(6.9) (fu)v = G (W(Gu))(Gv) — (wu)v , Yu,vev .
Because
(6.10) fu=G((Vax G)u) = G-((VG) H*u) , Yuev

the vanishing of f over B* implies that G is a constant tensor there. If further-
more E= 0 in B* and B vanishes at least in one place, then the complele trans-
placement is rigid.

It is useful to introduce the notation

(6.11) g=134f—1f
and to notice that
(6.12) (8u)v = G~1(s(Gu))(Gv) — (s* u)v, Yu,vey .

Notice also from (6.9) that the anholonomic components of f on the direc-
tors in the primary placement are related with the differences of the relevant
linear connections

(6.13) a0 (fd() diy = Iy, — I3

XKL ?
correspondingly
(6.14) d*"(gd,) diyy = IR, — T

[x2] ¢

with the usual convention regarding indices between square brackets.
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7. - Kinematics

We consider now a motion of %, i.e. a one-parameter family of complete
placements; it can be specified by assigning the complete transplacement
from the primary placement as a function of the parameter ¢ over an interval
(0, d)

x=a(X, 1), G=G(X,1).

Beside the classical veloecity gradient ¥V = FF-!, another field over B* becomes
then important: the wrenching

(7.1) W= GG,
If the complete transplacement is rigid then
symV=symW¥F =0, Skw V = skw W ;
this remark suggests the interest of the decompositions
(7.2) V=ew"” +symV, W = ew™ 4 sym ‘W,

where " and w™ are the vectors associated with skw ¥ and skw W, respec-
tively. Notice, however, that w®™ = ™ does not necessarily imply R™™ = R,

The gradient of W is simply related with the time-derivative of the strain
of orientation

(7.3)  (fo)v = G((Vax W) u((Gv) = G-((VIW)(H*u))(G v) , Yu,ve? .

The question now arises of associating with a motion an appropriate measure
of inertia; there is no unigue answer to the question: any specific assumption
seems to derive from constitutive ideas regarding the bodies under analysis.

In the classical theory of elasticity local placements, defined once for all
and hence intended as invariable with time, provide simply the ground struec-
ture for the description of inhomogeneities (see [3],); linear momentum (px per
unit volume; p, mass density) is the only measure of inertial effects.

In other classical theories (continua of Maxwell type, for instance) the
parameters characterizing local placements are taken as internal variables
entering the constitutive equations; the measure of inertia, however, remains
the linear momentum.
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In some more recent theories (the theory of liquid crystals, for instance)
the body is thought of as a continuous distribution of grains which can be
subject to affine deformations independent of the deformation of the medium
into which they are imbedded. Then, beyond the usual momentum, one
accounts (see, for instance, [1]1’2) also for a generalized moment of mo-
mentum per unit mass oS of a molecular character, expressed with the use of
a tensor S obtained as the product of the wrenching W by a Bulerian inertia
tensor I

(7.4) S=Iwr.

I satisfies an evolution equation

(7.5) I— symsS,

which, in a sense, parallels the usual equation of continuity
(7.6) o+ odive=0.

S must be added to the usual measure x®x to form the total generalized
moment of momentum per unit mass.

Correspondingly one must attribute to our body the kinetic energy per
unit mass expressed by

(7.7) T = §(x*+ (IWr)-Wr) |

One can construct also a refined version of, say, the theory of Maxwell
continua where direct account is taken of the inertia associated with the
movement of dislocations. The micrograins are assumed then to partecipate
largely in the motion of the whole body, precisely in so far as their deforma-
tion is a compatible (holonomic) one. The excess deformation calls for an
additional momentum, which can be presumed to be measured by an expres-

sion of the type J4 where J is an appropriate fourth order inertia tensor,
and A4 is again the density of dislocations.
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Riassunto

St trattano aleuni aspetti della teoria dei continui con strutlura; in questa prima parte:
le specifiche geometriche, le deformazioni e la cinematica. Nell’esposizione si seque essenzial-
mente lo schema di aleune lezions tenute nell’ autunno 1976 presso il Centro Internazionale
di Fisica Teorica (Trieste), anche se il testo & stato ampiamente riveduto. Deopo aver adal-
talo definizioni introdotte da Noll in modo da poter trallare anche pilazzamenti locald varia-
bili nel tempo, si esplovano i legami delle quantita cost definile con altre legate alla nezicne
di direttori. Si introducono poi misure appropriate di deformazione e di velocita di defor-
mazione ¢ se ne studiano aleune proprietd fondamentali.







