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PIERO VILLAGGIO (%)

Maximum modulus theorems for the elastic half-space (**)

A GIORGIO SESTINI per il suo 70° compleanno

1. - Introduction

It is well known that, except in special circumstances, the maximum prin-
ciple does not hold for solution of systems of partial differential equations and
in particular for the equations of linear elasticity.

Some years ago, Pdlya [6] gave a pair of examples to show that in an elastic
body, free of body forces, the maximum modulus of the displacement does not
necessarily occur on the boundary. More recently Fichera [2] obtained a par-
tial extension of the maximum prineiple in elasticity. He considered an elastie
body B (not necessarily homogeneous and isotropic) free of body forces and
subjected to displacements #; on its surface C. If the solution u, of the cor-
responding displacement boundary value problem is of class O*(B) N C%(B),
it is possible to find a constant H such that

(1.1) max+/u,;u; < H max+/4;4,,
B ¢

with H depending only on B and the elastic moduli. In general, as Pdlya
proved, H is greater than one.
In many cases, however, it is not only interesting to prove (1.1), but also
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to find explieit values for H. In this sense the above mentioned work by Fichera
is a first attempt toward the calculation of H.

These considerations have led me to consider the problem of determining
the constant H in a particular case. The body B is a homogencous and iso-
tropic half-space with prescribed displacements on its bounding plane and
without body forces. This problem was solved in closed form by Boussinesq
who found the Green function for the elastic half-space. Thus, by a simple
application of algebraic and integral inequalities, it is possible to derive (1.1)
and in particular to evaluate the constant H.

There exist, however, other forms for the maximum modulus theorem for
the elastic half-space. Suppose in fact that the half-space is loaded only by
surface tractions g;, continuous in a closed and bounded swrface region 2.
Then it is possible to calculate a constant H' such that
(1.2) max/u; u; <H' max+/p;p; .

B 2
If instead the half-space is free of tractions on its bounding plane and loaded
by body forees b;, continuous in a closed and bounded region D entirely con-
tained in B, it is possible to find a constant H” such that
(1.3) max+/u;u; <H"max+/b; ;.

B b
The evaluation of H' and H" is rendered easy by the knowledge of the Green
functions of the two problems. The Green function for the traction problem
in the elastic half-space was given by Boussinesq [1]; the Green function for
the body forces problem was obtained by Mindlin [5].

2. - The displacement problem for the elastic half-space

Let us consider a half-space B and its bounding plane &, and choose a
cartesian system of x,-axes (# = 1, 2, 3) such that the origin O is placed on %,
the ,, #,-axes are contained in &, and the @,-axis is oriented so that B has the
equation 2,>0.

Suppose that the material of which B is eomposed is homogeneous and
isotropic with Lamé moduli x, 2 and the assumptions of linear theory of
elasticity apply. On the boundary & a displacement field 4,(z;, «,), continuous
and bounded, is preseribed and we want to find the corresponding elastie
displacements u,(»;, #,, ¥,), solutions of the boundary value problem

udu, + (A + w)0,, =0 for #,>0,
(2.1)
w %y, %, 0) = 4, _ for z,=0,
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where § = u;,;. An additional condition, imposed by physical considerations,
requires that u, = O(1) as @, tends to infinity. ‘
Problem (2.1) possesses a closed solution, due to Boussinesq [1], of the form

a2 Wi(&py &) 1‘/:’(511 &)
Rs ff ),J'i d&ldfz ]

A&, 2~zic v R

1
2.2 ey — —
(22) u Zny‘U

where R® = (@, — &,)* + (2, — &)% -+ @} and &t = 3 — 4». Since v satisfies the
inequality 0 < » < 1, it follows that 1< k< 3.
Our program is to bound +/u,u,;, the modulus of u;, in terms of V&4,
For this purpose we differentiate the second integrand in (2.2) with respect
to z; and

i J, c—EMx, — &,

(B8 s, 80 ()= ol 8 (— o 3 M=)y
and write (2.2) as
(2.3) w; =
. i @3 Uil &y, &) 3(371 E)lw; — &)
= T dh , [J(= T ) ds(&1,&2) dE, A8,
1 1 (1, &) 3m3 — &)@, — &)
- 2_7'1:' k ‘Lf*——-—lé';df "\L ff s ": (517 2) dfl dfe .

We now consider the scalar produet uV;, where v; is a constant vector,
and, observing that 1< k<3, we obtain from (2.3) the inequality

- i R 1 1
(2.4) J:; | < msz:x[u,-vil P a —%)JUE—S dg, dg,
3 3 1761 _—i iT - Si Ai

If Vu, u;, the modulus of u,, attains it maximum at a point P(Z,, &,, T,)
of B, we can write (2.4) at P and choose V;=u,(T1, ZT,, T,). A simple application
of the Cauchy inequality permits us to derive

(2.5) Max /1, u; <Max+/%; 4, 29_3 )” dg, dg,
7 &

- 3, 1
+ m‘e;;x\/u,- Ty ILF dg dé,

e 2 1
<rr;?X\/uiu,~é-:; 14 E)f_‘y[jﬂ—s g, dé, .
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The integral in (2.5) is easily computable and is given by

1 e Foo® pdo  2=m
[J 5 Aadée = Jagl o P e

and thus (2.5) becomes

maxy/w< (1 + 2) maxy/ T,
7 k &
which shows that inequality (1.1) holds with H =1+ 2/k for the elastic half-space.
It easy to show by simple examples that the modulus of u,, the solution
of the displacement problem for the half-space, may attain its maximum at
an interior point of the half-space (). Consider, for instance, the displace-
ment field

(2.6) m=%£-41 (Bs),:

(1—9)
where B is a scalar harmonic function given by

1

2.7 B =
2.7 Val + 2} + (z + a)?

(a>0).

Since a > 0, B(x,, x,, #,) is regular in the half-space 2, >0, and so is the elastic
state (2.6). This is a simple variant of the classic Boussinesq-Papkovich-
Neuber solution (?).

By substituting (2.7) into (2.6)we obtain

1 1 3 Ty(2; + @)
g == 1 p—— a 2 H
== Varer e oy | ML —) (@ Lo+ (@ T 0)
3 e @=1,2).

BT =) (ol i+ @t @)
At the boundary of the half-space, that is for @, =0, 4/u,w; attains its
maximum at the origin, where we have

1 1

— i (t=1,2,3).

(2.8) max/u; w; = |[Uy] g0 = (1 -
R4 a

() Other examples of this type of behavior of the elastic solutions in a bounded
domain have been given by Polya [6].
() Cf., for instance, Gurtin[3].
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On the other hand, for #;, = 2, =0, #,>0, |u,| becomes a maximum for
@y = (3 — 4(1— »))/(3 + 4(1— »)), which is positive for »> 1/4. Under the
assumption that »>1/4, the value of |u,|= |u,| at x =z, =0, &,

= (83— 4(1—»))/(3 + 4(1 — ) is

1 13 -+ 4(1—v) 1

) Ot 5=

(2.9) Vi = (1= ) T

which is clearly greater than (2.8) for »> 1/4.

3. - The traction problem for the elastic half-space

We now examine the case in which the half-space 2,> 0 is loaded by
surface tractions p,(x,, #,). We assume that the boundary data $,(w,, =,) are
defined on a bounded subdomain 2 of &% and continuous there. The half-
space is likewise unloaded outside 9.

The corresponding elastic state w,(,, «,, x,) is the solution to the boundary
value problem

plu; + (A + )6, =0 for z,>0,
(3.1)
O34(%y,y @y, 0) = P; for z, =0 and 2, €2,

where o,; is the stress vector on z, = 0.
It is well known that problem (3.1) has the solution (given by Boussinesq [1])

1 i i— &)@, — ) B
”{p (w; — &) w; — &) P

wi= 4oy G I_B—+ B3
(3.2)
(02 By (R + 0y (o) 00806 (0= 1,2),

where, as before, R? = (#, — &,)* + (v, — &,)2 + #}. A simple differéntiation
yields ‘

1 x;— &;
=m(53i+ 2 )

(In(B + @,)).;

(3.3)
To — &a 60:,' To— Ea

BT " ET o ®tay

NCHRE et
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If we substitute (3.3) into (3.2) and multiply «, by a constant vector o,
we obtain

uz-'l_); —

“{%_{_ (; — &) Bul@; — &) Ps + (1 —20)[(s
9

dmp R3
(3.4)
Pl — &) Uy Vo Por Ta(@a—Ex) |, Pilw; — &) :
+ & )R+x3 + R—{—-w:,-— (B - oy (Bs "“—R_’—)]}dfldfz’
which implies the inequality
ivi i 854 _i j—éi AJ' PR
|wi: | < — “{ lpv i L lﬁliw )p!+(1_ 20)[ 1|3pr
| Bi(@; — &) | |7, | |Pa(@s — &x) | | D | |0a(®a— &a)] -
R G e ey )t e M

On choosing 3, = u,(%, Z,, &,), where P(Z,, &,, ¥,) is the point where the
modulus of %, is maximum, and applying the Cauchy inequality togheter with
the inequality R -+ #,> R we have

24 3

R ydg, dé, .

_ 1 — 2
(3.5) max4/u; #; < é’j‘z‘;tnlgx\/ﬁi ﬁzf!fj( ® + (1—2v)

i

In order to bound the integral on the right-hand side of (3.5) we observe
that we need only to find an upper bound for the integral

dg; dég,
\/(wl — &)+ (w — 50)

IJ }R' A& Ag, = [ g, dg,

2 & VIl — &)+ (B —82)2 + x2 ff

When the point @(ay, ,, 0) belongs to & (fig. 3.1), and @ is taken as the
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origin of a system of plane polar coordinates, we can write

d&, dé, 2 e(®
3.6 & = | df do < 2ad,
( ) J‘Q;[ '\/(%‘1-——51)2“}‘(@'2 —52)2‘ (‘)[ (J T

where d,; is the diameter of £. When the point @(a,, #,, 0) is exterior to &
and we denote by R, and R, the minimum and maximum distance from @
to any point of &, we similarly obtain

dg, dé&, [ X0
3.7 : = [d0 [ do<fy(R.— Ry)
( ) g \/(901—51)2 + (1, — &,)° OJ. L{(O) ¢ ’ w

where 6, is the amplitude of the sector ABCD (8,<2n) and R, — R,<d,.
Thus, by using (3.6) or (3.7) in (3.5), we conclude that

(3.8) max~/u; u; < i [2 + (L —29)(2 + +/2)] dy max+/P; B ,
¥ 7

B

which bounds the mazimum modulus of the displacement in the elastic half-space
in terms of the surface tractions.

4, - The elastic half-space under body forces

Let us now consider the case in which &, the boundary of B, is free of body
forces and the stresses in B are generated by body forces b, applied on a bounded
region D entirely contained in B. For sake of simplicity we assume that the
body forces are parallel to the wx,-axis, that is b, = b, =0, b, % 0, and con-
tinuous in D. The extension of the results to more general load distributions
is not difficult.

We consider two points P(xy, 2., %), @(&, &, £&,) and denote by R/, R”
the distances .

R = (2, — &)+ (2, — &) + (2, — &)*,
R'2= (@, — &) + (3, — £&)* + (@ + &),
which are the squares of the moduli of the vectors

p; = (@~ ‘517 By — &gy Ty — &3) s p’: = (B~ &, 3, — &, %, + &) -
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We next define the functions

1 Ea(my -+ &)
drp R” + 2(1 —y)R"®

)5

(4.1)
&y

SA—nE

1
W = ~ T [n (R"+ @, 4 &] —
and observe that, by a known solution due to Mindlin [5] the elastic displace-
ment induced by body forces b, acting in D, can be written ()

1

1 ,
T ff]{[i—ém{(3-4v) 6{3( R”) -+ [ — és)piﬁ

(4.2)
— @+ &P 1} [0 — 80 2 + (1 —2) ol
—4(1 —v) 5i:;[‘?] bs(‘fla 52: fa)dfld&d&,

where, by using (4.1), we get

1 O &slws + &) 04

[(ws — &) 24+ (1 — 2v)wl,; = 4:7'6/,6 §2l + 2(L —»)R"®
o By — &y Ty — &, 3 » 1
_p“7%7+”“&m1—wRu—ml—w“%“&w“%+f”%§ﬁ
1

+ =2 (R oy + £) [ B 6] + o2 N Y 7 -
k ( ) R

We now take the scalar product of %, with a constant vector ?; and obtain

1

(4.3) (6= 05 (55— 3) + [0 — £)5.0% =

_ 1
Yils = “;,f[lfin[u(l — )

'Usfa(wa + &) _ smy—&
— (@ - E)T:p; R”“ } 47,u{ Fol m"%?i R

zy— & 3
2(1 —»)R™  2(1—v)

-+ 7, &, Ex(@y — &) D, -+ ‘Ss)pl R/IE

(%) Cf. also Solomon [7] (9, § 8).
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— 1 1—2 - 1
+ (L= 20)(B"+ 20 + E) DT + 5]+ 2(1—_:) £ 2 }
f’; 2y + &)
- " T e ) & R Nbs(&r, &, &) A5 A&, A8, .

Choose now %, = u,(%,, %,, T,), where P(%,,,,Z,) is the point where |u,|
becomes maximum, and apply the Cauchy inequality combined with the
inequalities R">R', R"+ o, -F &> R, &, -F 2, >&,. A simple computation gives

- 1 2 2
4 ax cU; < MAax - - _ =
(4.4) mf%x VU Uy 111;\[1)3}“;][16%#(1 ——11){ B—d) &+ 5 }
1 1 1 3

W{ R " 21 —»ER Tt 2(1 —») R’ + 2(1 —») R’

2(1 — 2v) 1— 2y
Y NI 1] déag.ag, .

TR 2(1

In a system of spherical coordinates with origin at P(z, z,, %,), contained
in D, we easily find that

1 27 @ o(p.0)
(4.5) [[[ 760845 = [ dp | 40 [ osin0do<2ady,
D 0 0 )

where d,, is the diameter of D. When P(ay, x,, @,) is exterior to D it is always
possible to choose the polar coordinates with origin in P(z,, x,, ©,) so that D
Is entirely contained within the domain (fig. 4.1)

(4.6) O<p<py, 0<0<l,, O0<p<R, (py<2m b,<m, B,<dy).

It follows that
1 Po 0y Ry . 1 2
(4.7) ”f—ﬁ d&,d&d8< [ de [d0 [ osinfde < 5%(1——— cos 0,) R,
D 0 [} 0
or, better, if we use (4.6),
1 2
(4.8) [1] 7 0605, 05 <2} .

Thus, since (4.5) and (4.8) give the same upper bound, the formula (4.4) can
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be replaced by the following

— 12 3—
(4.9) max+/u; #;<max|b,| &5{2(3 — 2y) + Y
3 5

F} 2u

1———11}

which bounds the maximum modulus of
the displacement in the elastic half-space
in terms of the body forces.

With similar caleulations it is

easy to derive an analogous bound for

max v/uu; when b, =0, b, % 0 (o =1, 2).
B
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Abstract

In this paper we consider three boundary value problems for an elastic half-space:
the displacement problem, the surface traction problem, and the case in which body forces
are present and the surface is free of traction. In each case, under suitable assumptions of
smoothness on the data, it is possible to bound the mazimum modulus of the solution in
terms of the maximum modulus of the corresponding datum.
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