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Convexity of the free boundary

in some classical parabolic free boundary problems (**)

A GIORGIO SESTINI per il suo 70° compleanno

1. - Introduction

Consider the problem

(1.1) Zow— 2e=0 In  Dyp={(x,1):0<s<s(t),0<t< T},

1.2) s(0)=1, (1.3) 2z, 0) =hz), O<w<l,
(1.4)  2,00,8)=0, 0<t<T, (1.5)  =2(s(t),t) =0, 0<t< T,
(1.6) 8ty = — z,(s(®),8), O<t<T

in the case h(x)<0. This problem is often referred to as a mathematical scheme
for the freezing of a supercooled liquid (although this simple scheme for such
a non-equilibrium phenomenon is far from being satisfactory). Problem (1.1)-
(1.6) has been widely investigated and it is known to be well posed for suitable 7,
provided h satisfies some regularity conditions (see [1], [2], [5]).

In what follows we shall need some more results on (1.1)-(1.6). TFirst we

(*) Indirizzo: Istituto Matematico «U. Dini», Universita, Viale Morgagni 67a,
50134 Firenze, Italy.

(**) Work partially supported by the Italian G.N.F.M. (C.N.R.) and by the Uni-
versity of Florence (Cap. XI/01) — Ricevuto: 22-1-1979.
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recall that s(¢) is analytic for ¢ > 0 (see [3]) and strictly decreasing (except
for the trivial case h = 0, in which 2 = 0, s =1). Then, 2 is infinitely dif-
ferentiable up to the boundary. Differentiating (1.5) along x = s(¢) and
using (1.1)-(1.6), we obtain

(1.7) Zea(s(), 1) = 2(1), O<t<T.

Remark 1.1. It does not exist any interval :(tl, ), 0<t; < to< T, where
§ = K. As a matter of fact, in this case z(x, ) would coincide in (¢, t,) with
the solution of the non-charaeteristic Cauchy problem for the heat equation
with data 2(s(t), t) = 0, 2.(s(t), 1) = — K this solution is known to exist (see[4])
for any « and to have non vanishing @-derivative. Thus the boundary con-
dition 2,(0,1) = 0 would be contradicted.

In [2] A. Friedman and R. Jensen have studied (1.1)-(1.6) from the point
of view of the convexity of the free boundary under some special assump-
tion on h(x). Their main tool was the introduction of the funection

(1.8) V= Ry

and the study of its level curves.

In the present paper the investigation on the convexity of the free boundary
of (1.1)-(1.6) is further developed and a much wider class of initial data is
congidered (§ 3).

The classical Stefan problem (with %>0) and more general free boundary
problems could also be considered with parallel arguments. On the contrary,
nontrivial modifications are needed to handle the oxygen diffusion-consump-
tion problem (see [1]), to which § 4 is devoted.

2. - Preliminary results

Agsume

(2.1) Mo)<0, «e[0,1]; R{1)=0; he(Cf0,1]
and define

(2.2) M = {w:we[0,1], (=) = 0},

which is non-void if we exclude the trivial case & = 0. Set

(2.3) H{z)y = b (x)/h (), weM
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and note that if (s, 2) solve (1.1)-(1.6), then

(2.4) Vpe + 200, — v, =0 in Dy,
(2.5) o(s(t), 1) =—é(t), te(0,T),
2.6) v(s(t), 1) = s@)/s(t), 1e(0,T),
(2.7) v(x,0) = H(x), xell.

This follows from definitions (1.8), (2.2), (2.3).
The main subject of this section will be the investigation of the behaviour
of v(z, ) near points (x,, 0) with x, € 0, which will be called singular points.

(A) Classification of the singular poinis. We shall consider the fol-
lowing cases.

Case 1.1. € (0, 1), 2" changes its sign at x,.

Case 1.2. z,€ (0,1), A" does not change it sign across «,.
Case 2.1. z, =0, K'(0) = 0.

Case 2.2, zy, = 0, B'(0) = 0.

Case 3.1. zy, =1, B'(1) = 0.

Case 3.2. 2, =1, B'(1)> 0.

In cases 1.1 and 1.2 we assumed &'(x) 7= 0 in a neighborhood of x, but the
analysis can be extended to cover the cases in which %= 0 in some half
neighborhood of z,.

Concerning the other cases, note that 2z, = 0, 2, = 1 do not belong to .M
if A'= 0 in a half neighborhood of 0 and 1. Our interest will be focused on
the behaviour of the level curves of v(x, t) corresponding to non-negative (posi-
tive) values of v, henceforth called « non-negative (positive) level curves» for
sake of brevity; but similar investigation can be performed, on the negative
level eurves. ‘

Note that whenever H(x) is monotonic in a right neighborhood (z,, z, -+ ¢)
of an interior singular point (see cases 1.1 and 1.2), then

(2.8) lim H(x) = -} oo,

x>y -+
Similarly, if H(z) is monotonic in (0, &) then

(2.9) lim H(x) = + oo.

a—>04
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The cases to which we shall apply the analysis of this section are such that
the above conditions are satisfied. Consequently we shall assume (2.8)-(2.9)
hold henceforth.

(B) Study of case 1.1. In this case &’ does not change its sign at «, and
hence the maximum principle applied to z, shows that no level curve for z,
originates from (#,, 0). On the other hand, there is a curve y in D, originating
from (w,, 0) where 2,, = 0. Because of (2.8) there exists a family of positive
level curves for v originating from (,, 0) and lying on the right of y. Con-
sider the level curve y, corresponding to the value % > 0: this is the zero level
curve for the function w,(w, 1) = 2,,(2, t) — ke,{z, t), which is a solution of the
heat equation, continuous in [z — | < 0, 0<t< 0y, for some o, o, > 0. Recalling
that h"(x) and k'(#) have the same sign in a right half neighborhood of T=y,
(2.8) implies that there exists o > 0 such that for « — =, € (0, 0)

(a) if B'(x) > 0, then wy(®, 0)>0 and w,(s, 0) > & for some &> 0;
(b) if B'(x) << 0, then w,(z, 0)<0 and w,(s, 0) < — &.

By continuity a o, can be determined such that for ¢ € (0, 0,), w, (o, t) < — &/2
or wy(o,t) > ¢/2 in the respective cases (b), (a); the maximum principle im-
plies that in the region D(y,, 0, 0;) bounded by y,, # =2, + 0, ¢ = 0, t = o,
wy(@, t) has the same sign as h'(@) for © — 2, € (0, o). This proves that irrespec-
tively of the sign of #'(z) in a neighborhood of # = x, it is v(», ) >k in
D(yy, 0, 61), 1, e, that no level curves for v carrying values less then %k can
originate from (w,, 0) on the right of y,. Consequently, the positive level curves
of v(w, 1) originating from (x,,0) are ordered, with values increasing from y to
the right.

(C) Study of case 1.2. We claim that no level curve of v originates from

(5, 0). Indeed, in this case there exists a curve 7 starting from (s,, 0) on which

%, = 0. For any &k > 0 consider the function w,(z, t) introduced above. Since

in a neighborhood of (z,, 0) 2,, has the same sign as h’(x) and 2, has this same

sign on the right of §, applying the maximum principle we find that for suit-

able o, 6,>0 it is o(x,t) >k in the region D(§, 0, 0,). This means that
lim wo(w,{) = -+ oo along any path lying on the right of .

(2,1)—(0,0)

(D) Study of case 2.1. We are in the case just considered, after a reflec-
tion about the ¢-axis.

(B) Study of case 2.2. Assume h'(0) > 0 to be specific and write

2@y 1) = U, 1) + w(2, 1),
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where U solves the heal equation in the half-plane z > 0 with initial datum

— h'(0) if 20
Uz, t) =
)  ifx>o0,

and w results to be a smooth solution of w,,— w, = 0 (in the domain Dy re-
flected about the t-axis) such that

im w(w, 1) =0, lim w2, ) = B"(0).
(z,8)—(0,0) (e,2)—>(0,0)

It is immediately seen that U(z, t) = 1'(0) erf z/2 V" i Therefore, if lim inf U = 0
as (x, 1) approaches (0, 0) along a curve A, the same will be true for any eurve 1,
lying on the left hand side of 2,. Moreover U (@,t)=(zt)*h'(0) exp (—a2/4t),
and hence if lim U, = 4+ oo along a curve 7, originating from (0, 0) the same
will be true for any curve 7, lying on its left hand side. Now, assume
lim sup v = 4 coalong a curve 2. Thenlim inf z, = 0 and/orlim sup z,, = + oo
along 4. This implies lim inf U = 0 andjor lim sup U, = -+ oo along 1. But
this means that lim sup v = -+ oo along any curve 1 on the left of 2. Con-
versely, on the right hand of a level curve for v originating from (0, 0) it cannot
exist a path along which » is unbounded.

Thus, we can exclude the possibility of «loops» for the level curves of v
and (because of the maximum prineciple) we can affirm that the level curves of v
originating from (0, 0) are ordered and their values increase towards the left from
the value H(0) to + oo.

() Study of case 3.1. Recalling (2.1) and (1.7), note that z,, assumes
‘bounded values of both signs in a neighborhood of (1, 0). In the region bounded
by the free boundary and the level curve z,, = 0 originating from (1, 0) it is
0 < 2,,<< 8% Denote by 4(t) the horizontal width (for « small » values of t) of
this region and observe that 2, > — §— §26(¢). Since $(0) = 0 this shows that »
is bounded and continuous in this region and that no positive level curve for v
originates from (1, 0), because of the maximum principle.

(G) Study of case 3.2. Because of (1.7) we have that if A/(1) = H(1),

2., and hence v are continuous at (1, 0). If H(1) > k'(1), then the level curves

corresponding to the values between h'(1) and H(1) originate from (1, 0) and are
ordered decreasing rightwards, because of the maximum principle.

For the same reason, when H(1)<C h'(1) they are increasing rightwards.
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Remark 2.1. In case 3.2, if H(1) < /(1) there exists a 7> 0 such
that

(2.11) s(t)<0, te€(0,7).

Indeed, for sufficiently small ¢, v,(s(t), ) is positive and (2.11) is proved be-
cause of (2.6).

Note that (2.11) implies that v(s(f), t) increases with ¢ in (0, 7) and hence
no level curve for » originating from points (s(¢), ¢) with ¢ in (0, 7) can leave Dy
at the point (1, 0).

By a similar argument we prove that if H(1) > »'(1) in case 3.2, then there
exist & 7> 0 such that

(2.12) ,, s(t)>0, te(0,7)

and no level curve for » can join (1.0) with (s(¢),¢) with ¢ in (0, 7).

3. - The curvature of the free boundary
First, we need

Lemma 3.1. Let(s, 2) solve (1.1)-(1.6) and let v be defined according to (1.7).
No local estremum of v can be attained on x = s(t) for t € (0, T).

Proof: see [2]. Next, consider a level curve y of v originating from
@ = s(t),t > 0. Itis clearly a positive level curve (see (2.5)); moreover if 5(2) = 0
the derivatives of v along the # direction and along the free boundary have
the same sign (see (2.6)). This means that, starting from the free boundary,
the ¢ coordinate along y is increasing for a finite interval. Henee, only one level
curve for v can originate from a point of the free boundary (recall the maximum
principle) unless s(t) = 0. Moreover, ¢ cannot have a minimum on y in Dy,
(because of the maximum prineiple) nor can be ¢ = const. between two points
of y (since it would contradict the local analiticity of v with respect to z).
Then, only the two following cases can oceur: (a) starting from the free boundary,
i is increasing along y; (b) ¢ is first inci'easing, then decreasing along y. We
have the following

Lemma 3.2. Lety be a level curve for v originating from the free boundary
at t = t*. If the case (a) occurs, the free boundary cannot have inflection points

for t > t*.
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Proof. Consider the domain bounded by y, the free boundary and the
line ¢t = 7> t*. Since v % §(¢*), a minimum or a maximum must be attained;
because of Lemma 3.1 it can be attained only at (s(f),?). Since f is arbitrary,
the lemma is proved. The analysis of § 2 together with the above lemmas allows
us to investigate the curvature of the free boundary.

To be more specifie, we shall begin by studying some particular cases. First,
we note that if H(z)>0 in M, then A'(x) is non negative and nondecreasing
in M and in particular R'(1) > 0, unless h = 0. We have

Theorem 3.3. Assume (2.1) is satisfied and H(x) is nonnegative and non-
nereasing in M. Then

(i) the free boundary can have at most one inflection point;
(i) if H(1) > h'(1), then s(t)>0 for any te(0,T), and (1.1)-(1.6) is
solvable for arbitrary T > 0;
(iii) 7f H@Q) = h'(1), then (1.1)-(1.6) is solvable for arbitrary T > 0 and
there exists a t,>0 such that s(t) < 0 for t<t, and s(f) > 0 for ¢t > t,;
(iii)" 4f in case (iii) there exisis H'(1), then t, can be positive only if H'(1)=0;
(iv) if H(1) < R'(1), then the free boundary has an inflection point as in

1
case (iii) ¢f and only if [h(z)de > — 1.
. 0

Proof of (i). TUnder the foregoing assumptions M = (0, 1] with 0 €[0, 1)
(we exclude the trivial case h = 0). Consider the level curves for v originating
from the free boundary: as long as the ease (b) oceurs, they exit D at points
(z, 0) with <1 (recall also Remark 2.1). Thus §(¢) decreases for increasing ¢
because of the assumptions on H(z) and the results of § 2 (cases 1.2-2.1).

When case (a) occurs, then Lemma 3.2 applies. Hence there can exist only
one inflection point separating the two «families » of level curves.

Proof of (il). Setting h'(1) = « > 0, we have
1
W () = aexp (—[H(y)dy) > 0 ze (0,17,

Ed

and

h(z) = — af exp (—fH (y) dy) du we(6,1],

since (1) = 0. But we assumed H(x)>H(1)> h'(1) = «, whence

(3.1) h(@) > — 1 + exp (— a(l— ) ‘ wel0,1],
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1
(if 6> 0, h'(x)=0 in (0,0)). Therefore, [h(x)dex>—1 and from theorem 2.9
[}

of [1] it follows that (1.1)-(1.6) is solvable for any positive 7' (recall h’'>0).
Thus, $(¢) > 0 for sufficiently large ¢ and (i) together with (2.12) concludes the
proof of (ii).

Proof of (ili). The proof is almost the same. The inequality (3.1) holds
with > in place of >. Therefore (1.1)-(1.6) is solvable for any 7 > 0, s(f) > 0
for large ¢ and the conclusion follows from (i).

Proof of (iii)’. If H'(1) exists then H’'(1)<0 because of the assumption
on H(z) and $(0) = — A'(1)H'(1) from (2.6). Hence H'(1) < 0 implies $(0) > 0
and we are in the same conditions as in (ii).

1
Proof of (iv). Recall (2.11) and (i). If [a(z)dz > — 1, then (1.1)-(1.6)
[

is solvable for any T (theorem 2.9 of [1]) and x = s(¢) must have an inflec-
tion point. Conversely, assume the free boundary has an inflection point (and
only one because of (i)) for ¢t = t, > 0, say. Because of (2.11), this means that
$(2) > 0 for ¢t >t,. Therefore § is bounded from below for ¢ > t,: this is enough
to prove that the solution of (1.1)-(1.6) exists for any 7' (recall theorems 2.9
and 2.12 of [1]).

Remark 3.4. Cases considered in theorem 2.1 of [2] are included in (iii)
(for the particular case A'(0) = 0) and more precise informations on such cases
are found in (iii)’. It is also worth to note that the assumptions on h imply
the global existence of the solution of problem (1.1)-(1.6): this is of some
relevanee in connection with assumptions (2.8) and (2.25) of [2].

The next step will be to generalize the assumptions on H(z) allowing it
to become negative, still confining ourselves, for the time being, to cases in
which A'(2)>0. Let P = {xeM: H (#)>0}. We have the following

Theorem 3.5. Assume (2.1) is satisfied and H(x) is nontncreasing in P.
Then

(i) if P =0 or P =1[0,b], 0<<b<1, the free boundary can have at most
one inflection point;

(i) if P =1 (ay, by), (0<a,<by<l, by<a, for k<1) and if b (x)>0
E=1
in [0, 1], the free boundary can have ai most 2n + 1 inflection points. This

number reduces {o 2n— 1 if a, = 0 or if W'(x) = 0 in [0, a;]
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Proof of (i). In this case 0 contains only the point # = 0 and a point
@ = b¥ € (b, 1]. Recalling the results of 2, we have that the positive level
curves of v originating from ¢ = 0, if any, are ordered and correspond to values
decreasing toward the right. Hence the argument of Theorem 3.3 (i) applies.

Proof of (ii). Now we can have n singular points in (0,1) (n—1, if
a,=0) which are as in case 1.1, since 2'(2)>0. Let (0,7), £>0, be the time in-
terval such that the level curves for v originating from the free boundary have
& behaviour of type (b) (i.e. they exit D at { = 0). As long as their exit points
(%, 0) are non singular, the corresponding values of » increase as ¢ increases
and then s(f) < 0. But, if the level curves originating from (s(t),t) for ¢ in a
certain interval (#;,%,) leave D at a singular point, then the corresponding
values deerease as ¢ increases (as we say in §2). Then, if this singular point is
not a,, it has at its left hand side another segment where H(z) is positive and
noninereasing, so that it ean be s(t) < 0 for¢ > ¢,. Therefore, eacha, (¢ = 2, ..., n)
can generate two inflection points for the free boundary. The same situation
arises in e, if a; 7 0 and A'(z) % 0 in [0, ;] (see the analysis of § 2 concerning
the point (0, 0)). If a, = 0 or if A'(x) = 0 in [0, a,], it does not correspond to
any inflection point. Thus we can have in (0, ) 2n inflection points (or 2n — 2
if a, = 0). Finally, another inflection point is the one from which the level
curve separating families (a) and (b) ean originate.

The results of Theorem 3.5 easily generalize to the case in which, retaining
the assumption A'(x)> 0, one allows the sign of the slope of H(z) to change in P.
In this case points a, are not necessarily singular: let m be the number of points a,
such that A'(a;) = 0. We have

Theorem 3.6. Assume (2.1) is satisfied. If B'(®)>0 in [0,1] and if
the sign of the slope of H(x) changes k times in P, then the free boundary can
have at most 2m -+ k -+ 1 inflection points, which reduces to 2m + &k — 1 if H(x)
1§ positive and nondecreasing in a neighborhood of the origin.

Proof. The proof is essentially the same as in the previous theorem.

Remark 3.7. If H(1)> h'(1), we saw that :s:(t) > 0 in an interval (0, 7):
this means that the corresponding level curves either are of the family (a) from
the very beginning or that they leave D at a singular point a;, In any case
the number of admissible inflection points is one less.

To complete our investigation, we have now to allow h'(x) to change its
sign, i.e. to include singular points of the type considered in case 1.2. Here,
the same procedure is applicable, but the situation is much more complicated
s0 that is seems more reasonable not to state a general theorem, and to con-
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fine ourselves to the main changes which can oceur. In what follows we shall
assume that near singular points A" is such that (2.8), (2.9) are valid.

Let #, be a singular point as in case 1.2 and consider the level curve T
where 2, = 0, originating from it. We can have three possibilities

(i) I" leaves Dy at a point (0,,);
(ii) I" leaves Dy at a point (x, 0), which is necessarily a singular point
as in case 1.2;
(iii) 1" remains in Dy till ¢ = 7.

In this third case, which is the simplest one, only the behavior of h(z)
for ¢ > x, determines the curvature of the free boundary. If the second case
oceurs, assuming z; < @,, there is at least one point Z, #, < T < =,, such that
h'(Z) = 0 and h" changes its sign across . Consider the level curve z,, =0
originating from (Z, 0) and interseeting I" at (&£, {) (we shall have one of such
points at least at the top of I'). At this point the analysis performed for the
singular points in case 1.1 applies, and one finds that the behavior of k() in
the interval (x,, #;) does not affect the curvature of the free boundary. Finally,
in the first case the curve I « prevents » the level curves of v originating from
the interval (0, ,) of the x-axis from hitting the free boundary and thus from
influencing its curvature.

4. - The case of the oxygen-consumption problem

As it has been pointed out in [1] the oxygen-consumption problem cor-
responds to a problem of type (1.1)-(1.7) for the ¢ derivative z = u, of the oxygen
concentration, but the initial datum for 2z behaves like a « d-funetion », if the
initial coneentration of the oxygen corresponds to the stationary level u(z, 0)
= I(x— 1)2. Hence, the analysis just performed does not apply directly.
Consider representation (3.38) of [1}; differentiating both sides w.r.t. z, one
obtains the following expression for the time derivative of the oxygen con-
centration

(4.1) 2(w, 1) = — N(z,1; 0, 0) -—ffé(r)N(w, t; s(z), 7)dz .

Confining our attention to a neighborhood of the origin, we find that the asym-
ptotic behaviour of the successive derivatives of z as (x, 1) — (0, 0) is

onz o
(42) amn"'_%ﬂN(w7t; 07 0) J
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Thus

N, 10,0) 1
D)~ 50,00 — o

Therefore, the curve » = 0 behaves near (0, 0) like the parabola z® = 2¢ and
on its left the level curves for v originating from (0, 0) are ordered and cor-
respond to values increasing leftwards (v, ~ — (1/22) — (1/2t) is negative on
the left of #* = 2¢). On the other hand, there are no positive level curves orig-
inating from (1, 0): this can be seen by the same argument we used in handling
case 3.1 of § 2.

Now, consider the level curves for v originating from the free boundary.
As long as they are of type (b) (see §3) they exit Dy at (0, 0) and hence $(t)<< 0.
If the curves originating from (s(z), ¢) are of type (a) for 1>7>0, Lemma 3.1
ensures that no inflection points can exist for ¢ > f and therefore s(t) < 0, since

lim §(t) = — oo.
=7

This complete the proof of the following

Theorem 4.1. The free boundary of the oxygen-consumption problem with
stationary initial concentration is concave.
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