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GIORGI0O BUSONTI (%)

Nonhomogeneous boundary conditions

in evolution problems (*¥)

A Goreio SEsTINI per il suo 70° compleanno

1. - Intreduction

The theory of the semigroups of linear operators is an useful tool in the
study of evolution problems in Banach spaces. The operator that is the
generator -of a semigroup is linear and hence it has a domain that is a linear
manifold in a complete normed space. Since the boundary conditions of the
problem characterize the domain, it is clear that an operator is linear if not
only it is formally linear, but if the boundary conditions are such that they
are satisfied by linear combinations of elements that satisfy them. It is the
case that certain boundary conditions can make nonlinear an operator that
is formally linear. This remark makes clear how it is useful to transform
eventual boundary conditions in source terms in order to be able to deal
with evolution problems in the frame of the linear semigroup theory.

In this work we show how the above ideas may be adapted to a neutron
transport problem. Indeed, the most of the papers published on this topic
deal with problems with homogeneous boundary conditions, that is, either it
is assumed no neutron density entering the system, or it is assumed a perfectly
reflecting boundary condition. These are linear boundary conditions.

(*) Indirizzo: Istituto Matematico « U. Dini», Universitd, Viale Morgdgni 67/A,
50134 Tirenze, Italy.
(*) Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.). — Ricevuto: 3-I-1979.
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Case and Zweifel [3],,, considered nonhomogeneous boundary conditions.
They gave the solution of an integral formulation of the integrodifferential
problem by using the Neumann series; but they did not show that the series
is a solution of the integrodifferential problem.

Bowden, Williams and others [2], [7], dealt with similar problems by using
the Case normal mode expansion method.

The semigroup theory is used by Hintz [4], and by Mika and Stankie-
wicz [6]. They used the well known properties of the semigroup generated
by the linear streaming operator in order to show that a funection, whose
physical meaning is clear, is the solution of the nonhomogeneous transport
problem.

In the sequel we give another proof of existence and uniqueness of the
solution of a transport problem by using semigroup techniques. Our proof
differs from those of the quoted authors, because it does not require the
introduction of functions that are formally suggested by physical meaning,
but it requires only the introduction of functions belonging to a wide class
having several properties. Finally, we give some examples, the last of them
having a clear physical meaning.

2. - The mathematical model of a transport problem

‘We consider a slab of thickness 2a, in which monoenergetic neutrons dif-
fuse. We assume that the macroscopic cross section 2 and the multiplication
factor ¢ are constant. Scattering and fission are assumed to be isotropic.

The integrodifferential equation that describes the evolution of the syste
is the following ‘

N (x, y, t Nz, y,1 1
WD) gy WO o yna, g1+ 02 [ B, v, 1y
ot o 2,

(1)
N (@, y, t) is the neutron density at time #, in the point of abscissa z, — a < <aq,
with velocity making an angle with the x axis whose cosine equals y. The
modulus of the velocity is v, a constant.

The neutron distribution at ¢ =0 is a known function of ze[— qa, a]
and ye[—1,1]

(2) N(.’l?, %0) = Nﬂ(my ?/) .

At any time ¢, the neutron distribution of particles entering the slab through
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the boundary planes are known function of y and ¢
3) N(—a,y,t) ={y,1), ye(0,1],
(4) N(a,y,1) = gy, 1), yel—1,0).
Moreover we assume
(5) | Hy, 1) =gy, 1) =0, <0,

that is, no particle enters the- system before a certain time that we may
assume to be ¢ =0. :

Though eq. (1) is linear with respect to the unknown function N, never-
theless problem (1)-(4) is nonlinear owing to (3) and (4). Indeed, if ¥ and N,
are solutions of (1), (3), and (4), then their sum N - N, satisfies (1), but does
not satisfies (3) and (4). We recall that the initial condition has no role in
the definition of the operator generating the semigroup.

We may introduce a corresponding linear nonhomogeneous problem in the
following way. Let V = V(z, v, ) be a known function satisfying the bound-
ary conditions (3) and (4); let w = w(z, ¥, t) be a solution of (1)-(4). Obviously
we assume that V7 is endowed with properties such that we can perform all
the operations needed in the sequel.

We put 4 = w—V, and we get

ou ou y &t , , oV oV
(6) —ézwwyva—a—}—~02u—{—vzf_z&(w,y,t)dy +{—§——— Fy
y
— 02V + v 9 JV (my'st) dy'},
“ -1
(7) w@, ¥, 0) = Nol(z, y) — V(#,¥,0),
(8) w—a,y,t) =0, ye(0,1],
(9) u(a, y,t) =0, yel—1,0);

since V is a known function, the problem (1)-(4) becomes the problem (6)-(9);
now, eq. (6) is a linear nonhomogeneous equation with respect to the unknown
function » = u(z, 9, 1), and with a source term

oy oV y k , ,
(10) s(w,y,t)———é—{—-—yva—w—vZJV—}—véf_lV(w,y,t)dy.
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Moreover the boundary conditions are zero for #>0, that is the time
interval in which we look for a solution.

Now we formulate the problem in a suitable space of functions.

We put T =10, 4 o), and D =[—a, a]x[—1,1]; let E = L2(D) be the
complex space of the classes of equivalence of measurable functions that have
summable p-th powers, and let F = C(T, E) be the space of the continuous
functions with domain 7 and range in I.

We define a linear operator J with domain D(J) = & and range R(J)c E,

1
Ju)(z,y) =% [u(z, ¢'ydy'; J is a bounded operator with norm [J] <1.
2 Y ) ' Y ;
-1

We define a linear operator A4 with D(4)c E, and R(4)c E, where

(11) D4) ={ueck: y%eE; w(—a, y) =0, for a.e. ye (0,11];

u(a, y) = 0, for a.e. ye[—1,0)},
and such that

ou

(12) (Au)(@,y) = —yv == (@, y) — v2u(z, y) 4 vy (Ju)(, Y);
in (11) and (12), the derivative is a generalized derivative, see [8]; this amounts
to say that u is an absolutely continuous function with respect to z e[— a, a]
for a.e. ye[—1,1]. ‘

A is the generator of a strongly continuous semigroup of bounded linear
operators Z(), t>0, see [11], [10], [9].

We define a function s € , by means of a function Ve F (endowed with
suitable properties) by the formula

(13) s(t) = — dgit) —y ag:) — oIV () + vy V(1) .

In (13), the symbols of the derivatives have the following meanings
(a) dV(t)/di is an element of F such that lLm |A-1[V({E -+ h)— V()]

R0
— dV(@)/dt]. = 0; (b) oV()/ox is, at each te T, the generalized derivative
of V(i) e E. ‘
Finally, we rewrite problem (6)-(9) in the abstract form

du (¢
(14) YO _ ) + 50,
(15) lim u(t) = u, € D(4) .

t—>0+
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By a solution of the abstract Cauchy problem (14), (15), we mean a func-
tion e F, that has a strongly continuous derivative for any >0 (in the
sense recalled above, sub (a)), and such that (14) is satisfied for any 7> 0,
and that Hm [u(t) — |z = 0.

t—0"

In order that s be well defined by (13), ¥V needs to satisfy the following
hypothesis

(i) V()€ E, Vte T.
(if) V:¢— V(t)is strongly differentiable, Vie 7.

(iii) V(t) = V(», y;¢) has a generalized derivative 8V (t)/ex e B, Vte T.
Remark. If V(¢)e B, then JV (1) e B.
Remark 2. If oV/owe E, then y(0V/ox) € E.

The preceding hypothesis make sure that the funection s is defined for
teT. In order that s be continuous with respect to f, we assume

(iv) ¢ —dV(¢)/dt is a continuous function for fe 7T; in other words,
Ve o\r, B).

(v) t—y(2V(t)/ox) is a continunous function for e 7.
Remark 3. If Ve CYT,E), then JV € C(T, E).
Remark 4. Because of (iii), V(s y;t) is absolutely continuous with

respect to w € [—a, a], for a.e. ye[—1,1], VieT; therefore the following
limits exist

(16) m Viz, y; ) = V(—a,y; 1), for a.e. y € (0,1],
o> —a+
(17) Lim V(z,y;t) = V{a, y;t), for a.e. ye[—1,0).

We remark that the initial datum is the difference between the initial
particle distribution N, and the value V(0).

It is well known that the Cauchy problem (14), (15) has one and only one
solution if the linear operator 4 is the generator of a strongly continuous semi-
group of bounded operators, and if the function se CYT, E) (we disregard
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other sufficient conditions), see [1], [5]. Obviously, we need other hypothesis

(vi) Ve ouT, B), (vii) ¥(3V/ow) e C}(T, B).

Remark 5. The assumptions (i)-(vii) are not independent; for instance,
(vi) implies several of the preceding ones.

Now we can state the following

Proposition. Under the hypothesis (i)-(vii), the abstract Cauchy pro-
blem (14), (15), bas one and only one strongly continuously differentiable
t
solution %, given by u(f) = Z(t)u, + [ Z(t—t')s(t’)dt’, and it is such that

0

u(t)e L»(D), Yte I. Moreover, the function &-—w(t) = u(t) 4 V() has a
strongly continuous derivative, and it is such that the following limits exist
for any teT: limw(w, y;t) = V(—a,y;t), for a.e. ye(0,1], lm w(x, y;1i)
= V(a,y; 1), for a.e. ye[—1,0).

Thus the following definition seems suitable.

Definition. Let f(¢t) = f(y;t)e L?((0,1]), VieT, and g(t) = g(y;?)
e I?([—1,0)), Yie T; let V be chosen as in the Proposition and such that
V(i—a,y;t) = fy; 1), and that V(a,y;t) = g(y;t). Then we define w to be
the abstract solution of the problem (1)-(4).

Indeed, w has a strongly continuous derivative with respect to te T, it
satisfies dw/dt = — yo(ow/ew) — v2Zw + vyJw, and the Dboundary conditions:
w(—a,y;8) = f(y;?) for a.e. ye(0,1], Vie T, w(a,y;t) =g(y;t) for a.e.
y€[—1,0), Yie T, and the initial datum w(z,y;0) = uy(@, y) + V(x, y; 0)
= No(, ¥).

3. - Some examples

Let us assume that the boundary conditions may be written as the product
of two functions of ¥ and ¢ respectively

(18) fly;8) = xly) Py, ye(0,1],teT,

(19) 9ly; 1) =B RW), yel[—1,0),teT.
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If o e I7((0,1]), f € L([—1,0)), and P, Qe CYT, C), then V, defined by

(20) Vizg,y; 1) = aly)P(t), @€l—a,a], ye(0,1], 1T,

(21) Vig,y; ) =gy Q1t), w@el—ayal, ye[—1,0),1eT,

satisfies assumptions (i)-(vii)—that are sufficient conditions in order to make

sure the existence and the uniqueness of the solution of the problem (14), (15)—

as 1t is eagsy to show. -
Then,

(22) s, y; 1) = — aly) P'(t) — vZa(y) P(t) + S0y~

{P(t) | aly") dz/+Q(tJ/3 ydy'y ,  ye(0,1],

(23)  sl@, ;1) = —B)Q'E) — 02y QW) + Loy

{P( flocy ) dy" + Q) fﬂ ydy'},  yel—1,0).

We may also deﬁne a funection V, by
(24) Viz,y; 1) = (=, y) P(t), ze€l—a,al, ye(0,1], 2T,
(25) Vim, y;¢ Bwu/ zel—a,a], ye—1,0), tel,

provided that &eL?([—a,a]x(0,1]) and feL?([—a,a]X[—1,0)), that
P,Q e C¥T, C), that & and B have generalized derivatives with respect to «
such that 9@/0w € L*([— a, a] X (0,1]) and 8f/ow € L*([— a, a] x[— 1, 0)), and
&(— a, y) = aly) for a.e. y e (0,1] and f(a,y) = B(y) for a.e. y[—1,0).

As a third example, we define formally V by

(26)  Viw,y;t) = f(y,t—"2 ;: %) exp[— Z(@ + a)fyl, wze[—a,al,

ye(0,1], teR,

@7 V(@ y;1) =gy, i — ——) exp[— Z(@ —a)fy], wz€[—a,al,
ye[—1,0), teR,

and we put f and g equal to zero if the second independent variable is negative.
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V' formally satisfies the boundary conditions and the equation

v v
or 2wV —o0.
ot + Vor 77 ! 0

G

(28)
Hence, it gives the following source term
(29) s, y; 8) = opJ V(o y; 1) .

Remark 6. V describes the distribution inside the slab of the particles
entering through the boundary planes, i.e., the distribution of the particles
having not yet undergone any collisions.

Now we look for sufficient conditions on f and ¢ in order that s = vpJV
€ OYT, E). Sufficient conditions are those giving a ¥V e CY(T, B)—so that also
JV e O(T, B)—and such that V is a solution belonging to C(7,E) of the
abstract equation

dv eV

(30) 5 Ty FeZV =0,

Since Ve C{T, E) implies dV/die C(T, E), we need only sufficient con-
ditions in order that the function ¢e T — y(3V/oz) belongs to C(T, E).
To meet the case, we make the following assumptions:

1) f:(»y7) =>f(v, 7) is defined for (»,7)e (0,11 xR, f(r,7) =0, if 7<0;
g: (v, 7) —g(v, 7) is defined for (v,7)e[—1,0) xR, g(v,7) =0, if 7< 0.
1 t
fav [lfm,v)|rdv < + o0, VieR;
(ii) 00 Ot
Jav [ |giv,7)|rdv< + 00, VieR.
1

0

(ili) V¢>0, f has a generalized derivative 8f (v, 7)/or in the set (0,1]
%[0, ], belonging to L*, i.e., such that

fdf] ]I’11<-;—oo,

V¢>0, g has a generalized derivative d¢(v, 7)/dr in the set [—1,0)x[0,?],
belonging to L2, i.e., such that

fav {12207 < 4 oo
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Assumptions (i), (ii) make sure that V, defined by (26), and (27), belongs
to B, Vte R. Indeed, we have

v ‘[1 dy ft [f», )jPdr> jldvf fv, T) [?vwdr> }dv f [flv, 7)|?rodr

t—2a/vy

a

1 T+ a e 1 x -+ a
> fC1mf¥f(?/7t"~?/_@_)ll)dy> fd.’b“f if(?/; t—
a [ < —a 0

) exp [— Z(w+ a)/y—]|7dy;

a similar result holds for the function g; thus we obtain by summing,

a 1 1 t 0 i
Jaz [ Ve, y;)|2dy<o [dv [ |fr, o) |2dv + o [d» [ |g(», 7)|7de < + oo.
- -1 0 4 -1 0

With slight modifications to the preceding calculations, we get also
[Viw,y;t+h)— Ve, y; 1)) —0 if b —0; then Ve ¢(T, B).

Let us consider the function W: ¢ — W(t) defined by

(81) Wiy y30) =2 01— "2 exp [~ T + @,
ze[—a,al, ye(0,1], te R,
(32) Mo, 50 = 2 (g, 1— 22 exp [— Zo — a)y],

ze[—a,a]l, ye[—1,0), teR.

The derivatives are generalized derivatives. Just as we did above for V,
we have now We C(T, E), owing to assumption (iii). Moreover, it can be
shown that W(t) is the strong derivative of V(¢). Thus, we have V e CYT, E).

Finally, we remark that the generalized derivative 8V /dz exists, and that
the function ¢ —y(0V/oz) is well defined and it is y(0V/oz) = — (1Jo)W — XV,
and therefore we have y(6V/dz) e C(T, E). Then it is verified that V is a solu-
tion of (30).

Remark 7. In the last example, assumptions (i)-(v) are sufficient in
order that the source term s € CY(Z, T'). This is a consequence of the definition
of ¥V by (26), and (27).

4. - Final comments

In this work, we give an example of a method suitable to associate a linear
nonhomogeneous differential equation in a Banach space to a problem of
evolution which is formally linear, but it has nonhomogeneous boundary con-
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ditions. These are transformed in a source term. So doing, we get a linear
(additive and homogeneous) operator 4, which is the generator of a strongly
continuous semigroup of bounded linear operators Z(t), t>0; we are then
able to state that there exists one and only one solution of an abstract Cauchy
problem. Special attention is devoted to describe a set of properties that a
suitable function 7V must have in order to obtain a strongly continuoulsy dif-
ferentiable source term.

The method here described has a wide range of applicability. We limit
ourselves to deal with a problem of transport in a slab. The considered par-
ticular case show that the method needs mathematical formulations much
simpler than those used in [4] and [6].
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Sommario

8i descrive come le condizioni al contorno in un problema di evoluzione possono essere
trasformate in termine di sorgente, nell’ambito della teoria delle equazioni differenziali
negli spazi di Banach.
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