Riv. Mat. Univ. Parma (4) 5 (1979), 35333-556

GIOVANNI P. GALDI ana SALVATORE RIONERO (¥)

A priori estimates, continuous dependence and stability

for solutions to Navier-Stokes equations

on exterior domains (**)

A Grorcro SEsTINI per il suo 709 compleanno

1. - Introduction

In the framework of the dynamics of incompressible fluids on exterior
domains, in the last few years we have given several contributions particularly
in the field of uniqueness [2];, [8],, continuous dependence [2].; and stabi-
lity [11;, [7]. In the most part of these works we always tried not to assume,
& priori, on perturbations any kind of convergence at large spatial distances.
To this end, we have introduced the weight function method, by which it is
possible to remove from perturbations to the weight functions, the above
said convergence conditions.

In this paper, still exploiting the weight function method, we give some
a priori estimates and both continuous dependence and stability theorems for
classical solutions to Navier-Stokes equations on exterior domains. More
precisely, after a brief subsection devolved to preliminaries (subsect. 2), the
paper is subdivided in three main sections. In the first one (1, subsects. 3-6)
we give some a priori estimates for the perturbation u in the norm of the Le-
besgue spaces L» (subsect. 3), in the norm of function spaces involving the

(*) Indirizzo: Istituto di Matematica, Universitd, Via Mezzocannone 8, 80134 Na-
poli, Italy.

(**) Work performed under the auspices of G.N.F.M. (C.N.R.). — Ricevuto:
2-1-1979.
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(spatial and time) derivatives of u (subsects. 4 and 5) and, finally, in weighted L2
norms (subsect. 6). We should stress the relevance of the results obtained in
subsect. 3, where, among other things, it is shown that perturbations which
a priori may « grow » at large spatial distances, should in fact be uniformly
bounded in space and time, provided only that the data and the gradient of
the pressure enjoy the same property.

In 2 (subsects. 7-9) we give some continuous dependence theorems which,
among other things, improve earlier results [9], [2],, (see subsects. 8, 9). It
seems interesting to remark that in subsect. 7 we prove that the usually adopted
definitions of continuous dependence-for Navier-Stokes equations in un-
bounded domains and with respeet to perturbations which may « grow» al
infinity-may be reformulated equivalently in terms of metries, a fact, this
last one, which « priori is far from beeing obvious.

Finally, in 3 (subsects. 10, 11) we give some stability theorems in the L2 norm
and (as far as we know) for the first time in a class of perturbations which may
a priori « grow ». These theorems (subsect. 11) are founded upon a key lemma
(subsect. 10) in which is proved an inequality of the Poincaré type for weighted
L? spaces.

2. = Preliminaries

Let {v,p}, {v + u,p + =} be two classical solutions of Navier-Stokes
equations in a domain 2(C R®) which is the exterior of a fixed, closed region £,
bounded by a closed piecewise smooth surface (*). Denoting by {v,, v, + 1},
{vs, vz + us}, {fi, f + f} the initial data, boundary data and body forces
(depending on space and time) respectively, corresponding to the above solu-
tions, it is then well known that the perturbation {u, n} satisfies the following
initial boundary value problem (1)--(2)

1) 2;—l;—l—(1J—{—u)-Vu—i—u~Vv=—V7z+vzlzu—{—f(P,t), Veu=0
(P, t)e 2 x[0, T,
(2) u(P,0) = u,(P) Pef, u(P,t) = us(P,t) (P,t)e0L2x[0, 1],

where v is the coefficient of kinematical viscosity. Throughout this paper

(1) Unless the contrary is esplicitely stated, 2, may also be empty.
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-with the exception of the last section-we shall assume, for the sake of sim-
plicity, » = 1. Moreover, we shall be concerned with solutions of the above
problem which satisfy the following generalized weighted energy equalities

(3) (wm f{u ﬂ+(u v) Vgl — gu?[u-Vo-u

+ VuVu + (¢ —2)u~*(Ve u)* 4+ Va-u] —uw—2Vg-Vu-u + gf u} Q2

+a'.[z glusVu- - us — Z—q (u+v)]-ndo,

42

1 og ou
O P 6

Vu:Vu—g(d,u)* —Vg-Vu- E

‘Q)

(a8
=

—g(v + u)-Vu-dyu— gu-Vo- dyu 4 aVg- A, u + gf-Azu,} dQ

— fg(Vu~%+ﬂA2u)-nda,

Flel
a2 199 ou du
(5) ¥ :gf {5 —é—tVu.Vu—-g(T) —gu- Vv —gv-Vu- 5
ou
——gu-Vu--g—‘—nV +VgV —}— ar- at}d.Q
Bug 8ug
"5{‘) ndo‘,
where
(6) o =1 fourdQ = | e@dQ (g>1),
42 Iol
(7) =% [¢Vu:Vud
0

and g = g(P, 1) is any « weight function ». The above relations are certainly
fulfilled, e.g., by those solutions to (1)4-(2) whose behaviour at large spatial
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distances is suitably related to that of g (®). Of course, the identity (3} will
be used to prove, essentially, Lr-estimates, while we shall need identities (4)
or (5) each time we would estimate the derivatives of u.

Remark 1. We shall later consider also solutions verifying an identity
slightly different from (3). Precisely, we shall indicate by (3)’ the identity
obtained from (3) with the following replacement

— gutVau — utaVg-u 4 (¢— 2)gnuriu-Vu-u (in 2),

()
— guiimun (in 00).

Of course, if {u, #} is regular and has a suitable behaviour at infinity (depending
on g) the substitution (%) is obtained through the simple application of the
divergence theorem.

We end this section by recalling two classical inequalities Whlch shall be
frequently used in the sequel.

Let A, B, C be vector functions in 2 and let f, & be scalar functions in £.
Then

Ifi LN

1) [fh| < .

y Pt qt=

2) A-VB-C<21—§A202+§V"B:VB (£>0).

Throughout this paper by £ we shall mean the intersection of £ with a
sphere B(R) of radius R and centered in O,. Moreover, we set

R, = inf {R: B(R)2 2.} .

() Actually, provided that {u, =} and their first derivatives have a suitable « growth »
at infinity, equalities (3), (4) and (5) can be formally obtained by first multiplying (1),
by guu?, g d,u, g(oujot) respectively, and then by integrating after a simple exploi-
tation of classical identities. However, it is worth remarking that relations (3)-(5)
can be possibly satisfied even by non-regular solutions. Tor instance, equality (3)
with ¢ = 2 is satisfied, generally speaking, by solutions belonging to suitable weight
Sobolev spaces. This problem will be analyzed in a future work.



ot
@
~1

[5] A PRIORI ESTIMATES, CONTINUOUS DEPENDENCE ...

1. - A priori estimates
3. = L? a priori estimates

In this section we shall give some estimates on solutions of (1)4-(2) in the
norm of the Lebesgue spaces L». These estimates will be carried out by using
the identity (3). More precisely, we shall show that, though starting with
solutions which a priori may « grow» at large spatial distances, on the assump-
tion that the data w,, f and the gradient of pressure Vz belong to L?(0,)
(p>1, 92, = 2x[0, T]), the solution in fact belongs to L»(Q). Moreover,
if u,, fand Vz are uniformly bounded in £y, then the same holds for u(P, ).

The results just stated are an easy consequence of the following theorem (3).

Theorem 1.Let {u, 7} be a solution satisfying, for some ¢ > 1 the identity (3)
with g = exp [— ar(t + 4,)%] (e, &, B> 0), and such that

(8) [v.], |u.l<Mr, [(Vo)+ (Vo)'|<M (M >0).
Then if
(9) w, f, Vael«(),
we have (%)
(10)  weIL™®(0,T; Ly(2)), wVuelxQ,), Ilzim R‘&Ef wdX = 0.
>0 Zp
Moreover if
(11) w, f, Vmel (2,
then wu is essentially bounded in Qp, since

ess sup |u| <max {esssup (|u,|, |uz|, | f|, |[V=|)} ).

(®) Throughout this paper, by w, we shall always mean the radial component of
the field w. Moreover, we shall use the following standard notations. Let X be a
Banach space and a, b be two real numbers; the Ls(a, b; X) (s > 0) (resp. L™(a, b; X))
is the class of functions on [a, b] and in X whose norm in X is s-summable in {a, b]
(vesp. in essentially bounded in [a, b]).

(*) By Zy we indicate 8025\ 2.

(*) From now on it is tacitly understood that Vi and = are uniformly bounded
on 2.
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Proof. From (1) and (2) of the previous subsection, the following rela-

tions follows.

?
(a) _a% 4 o(u+ ) Vg<0  for B>2M(T + 1);
(b) guu-Vo-u Mqe?,
() —umVg-Vu-ug g(T -+ 1) e - -i—cgu'l‘QVu: Vu,

[Vl

Q) gue2Vr-u<(¢g—1)e? + g ~——- .

(&) guedfu(g—1) e(‘l)—{— | fle,

—Vu:Vu if ¢>2
) —[Vu:Vu + (¢—2)u*(Vu u)*l<
—(g—1)Vu:Vu if ge]1,2[.

Then from (3), we get for o« sufficiently small

d B

(2) g <[Mg+ S (T 4 1) 4 2(g — DIEY — £ | guoVu:VudQ
Q2
+ jg(|Vn1 + |fl9dQ + 4 j{uq—1+ ug}do (A = const.> 0),

where & is a positive constant related to the two possibilities arising from
item (f). Of course, when g = 2, we may assume &£ = 1/2. Setting N = N(q) =
= [Mq -+ (@/2)g(T + £,)** + 2(¢— 1)] after a simple integration, the in-
equality (12) yields, Yte [0, 7]

(3
(13) B9 < Bw(0)exp [Nt] — exp (N?t) [ exp (— Ns)g(éur*Vu:Vu
0

Ll U a0as + ar(sup fusl)=r (47 = const.>0)
q q 80x[0,7] ,
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Now, from (13) YR> R,, we obtain

fuﬂdQ + &q f [urVu:VudQ < exp (aR(T + 1,)7) {exp (N T)[ fu‘g aQ

-+ fexp( Ns) f(an[ + |f]9) dQds] -{—A;Sbs(l[})%][uz[)q*l}.

Thus, letting first « — 0 and then R — oo, we get

(14) [urd2 4 &q JE [wVu:VudQ
2 o Q

<exp (NT) {ju"d!.? 4 f j([Vn] + |fl9aQds + 4’ (sup juz])e1} .

Qxfe,7]

From this relation we easily recover (10), and (10),. In order to prove (10)5,
we notice that

u7)

R? [urdo = J‘

Zr 2,1

dQ + const.,

where the const. depends on the value of u on the boundary 0£.
But

1 outr?
(15) 1mf—7d9;

Br+oo Qp
exists, since

1 8(1H d ]<c{f’w“dQ+ fuq—zVu VudQ}

| f

where O is a positive constant. On the other hand, the limit (15) must be zero
since u € L7(f2). Thus the first part of the theorem is completely proved. In
order to prove the second part, we notice that from (12) we have,

diw

(16) Sdr

< N(q) E@ —}— ’)“Qf gd 4+ A(N’)“'laj;?(l + us) do

:>( fung)lla<N/ exp (Eé(.__gl) T + .___(..1’_;*:&_

Gy q

){2 j'gd.Q—[— ¥, f 1+4uz)do} Ve,
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where N'= max [ess sup {|uo|, |uzl, |Val, |f|}. Recalling that N is a linear
function of ¢, the theorem follows by letfing g — oo in (16).

Remark 2. The estimate (10) still holds if instead of (9);, we assume
the following condition to hold

(17) e L1(Ly) (¢>2)

for solutions {u, 7} which verify the identity (3)' (cfr. Remark 1). In fact, in
the case (17), in place of the inequality (d), we should adopt the following
(cfr. (%) of Remark 1)

17y aurVg-u 4 (¢— 2)grnurtu- Vu - u<lye® 4 ka® -} fur—2Vu . Vu

where & (< 1/2), k, and %, are suitable constants and where use has been made
of the inequality 1).

Remark 3. A stronger estimate than those of Theorem 1 can be ob-
tained if we replace both assumptions (9); and (11); with the only hypothesis
V| lu| <M, Y(P,t) e Qp, for some suitable positive constant M. In fact, in
this case, it is possible to get an estimate on ess sup |u| which involves only

Qr
the data. To this end, it suffices to replace the inequality (d) with the fol-
lowing gu?Vr-u< Mgu?, and to repeat step by step the proof.

4, « WYQ,) estimates

In this section we shall give some estimates of the solution » in the norm
of W(£,) where by W>'(£;) we mean the set of function which are square
summable in Q together with their first derivatives.

The following theorem holds.

Theorem 2. Let {u,n} be a solution salisfying the identity (3)" (cfr.
Remark 1) for g = 2, the identity (3) for some ¢ > 1, the identity (5) and, in all
cases, with g as in Theorem 1.

If (11) holds and

8) |v|, [|Vol<M, |u|<Mr, =eLl*(2) (c€]0,4[),
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then, VE> R, (¢, 0, 7 > 0)
(19) f(ur 4+ Vu:Vu)dQ 4 jj 12d2 ds <exp [a(T - 1,)7 R]-
2z 00

T
of [ gl + Vuo:Va) 4Q o+ ot | [ | dQ &

)dadt—{—oc }.

+ [fgfraQat+ [ [ (|u
0 0an

LU

Proof. Along with the inequalities (a)-(¢), (e)-(f) calculated for ¢ = 2,
we consider the following

2 17
(a,)’ TC‘—J u/_._Jﬂ; +Ji) \(L.i_~£_)—(___)

(]Oﬁ( 26—l d—g

306 —e)

+ (T + 1) "i(%/:i(_ﬁ;%’lnl“% gf (7€10,¢/(6 —¢)) ,
() —guVor 2 <20 4 2 (e €>0),
(€ —go-Vu T < VaiVu + £ g (57,

AT - 15)°5(4 — ¢)
£2(6 —¢)

(d), YEVJ '\ <

(2—n)(6—g)/d—¢
goo

(T - t,)28 05(77/2)(6“5)g]7t [s=e & Qu

+ E 6—e) +§.(/(‘a“t“)27
(e) Vg-Vu'aa_l:< L w(T + 1) Vu: Vu+J5(O") :
, au 05 au

Moreover, by assumption and by the results stated in Theorem 1, we have
that w is nniformly bounded in £2; by a costant, say N. Therefore

au\N v Vu _l_gf ou) .

(h) —gu-Vu 5% %
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o
N
[ ]

Thus, summing (3)" and (5) and exploiting the above inequalities, we easily
get the following relation (with H® = E)

M2
B+ (142

(20) dt<L‘+9) (M+3+ + oF

&

PR o gy a0 SR
Solaleea@r CE 1opag + T oivuns — "2 (st o
vt G 4 Vs 4 LS ELEIEZO),
- w1~z fexp [— adgr]r i .
Since

exp [— atfr]redr < ko3 (k> 0y,
[

(1]

choosing & < §, the inequality (20) gives, with an obvious meaning of the
positive constants ¢; (¢ =1, ..., 6) and o, 7,

(21) (17 + Z)<e (B + D)—e, fg 2d0Q + ez f |z ]s—sdQ

+a [gfde +csf{|usl+i |} do + cgo” .
Thus, integrating (21) from 0 to 7', after a simple calculation, for a suitable
value of the constant ¢, we get

2

B()

des<0{[E(0 ) -+ D(0)] - a2 ” low|s-ed.Qds
02

09
‘i‘f:f.{/ (1Q+ff(iu):]+! [)dcrdt—[—oc}

which, in turn, implies (19).
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Remark 4. Of course, in the above theorem we may drop assumption (11),
provided only that we assume |w] uniformly bounded in .

Remark 5. From (17), as a particular case, we have that if fe L2(2,),
u,, Vu, e L*Q), then u, Vu e L3(Q2) and du/ot € L} L,). In fact, in this case,
we may let o — 0 in (19).

- A, estimates

In this section we shall give some estimates of the solution u which in-
volve its second spatial derivatives.

Theorem 3. Let {u,n} be a solution satisfying the identity (4) along with
the assumptions made in Theorem 2. Then YR= R,

(22) I (w4 Vu:Vu)dQ2 + f { [(—aa—-g)2 + (4, u)1dQds
0 2y

Qp
r
<cexp [a(T + )8 R]{ [ g(u + Vug:Vu) dQ + oz | [ |m|o=dQdt
0 02 .

au;

+ ] Joragart J 1 (lusl+15

0

]—HA u|)dodt} (¢,0,7>0).

Q)

Proof. The proof is carried out exactly as in Theorem 2, when the fol-
lowing estimates are beared in mind (£ > 0)

() =gt + w) Va- dyu< S VurVa + & (e,
(il) —gu-Vo-4, u\%g + (Anu
(iii) =Vg- dyu < = _zto “77/2 6(;3-5)‘;‘/)|7t16 €+%§(A2u)2,

gf?

(iv) gf-4, u<9§

(Az u)®.

Remark 6. Remarks 4 and 5 still holds in this case. Moreover, under
the assumptions of Remark 5, we have also A,u € L¥0y).
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6. - Weighted estimates

In this section we shall give some estimates with respect to weighted
L*norms, with weight #™ (¢ > 0). In fact, the following Theorem holds.

Theorem 4. Let {u,n} be « solution satisfying the identity (3)' (cfr.
Remark 1) for ¢ = 2. Assume, moreover, that

(23) lw,), |o.]< M, [(Vo)-+ (Vo)f| <M.
If uyr—ee L¥Q), freL*(Qs) (6> 0) and

. 6 92 s
(24) %EL‘(QT), s :i—'—-:g-—'(-i-:?) (66[0,1[);‘756L(QT), 8>1, (8>1)-

Then sup [ (w?re)(P, t) A2 < oo.
tefo,7] 2
Proof. Taking into account the assumption (23) and that (since
2,2 B1)) ()
exp (— ar)
24

[Vg| = (er* 4+ a) <kyg (b =¢+a,

all terms which involve u and » and appearing at the right hand side of (3)
may be increased in a standard way. As far as the term in 7 is concerned, it
may be increased as follows

atm? exp (— ar) i e:m® exp (— o)

an- < ors Opite + gu?,
alm? exp (— o otr 1 g*ntexp [—or) e2exp (— o g2
TR ) 2y gl Bl FOD ) |,
2ye Zp 2q Dp2te 2])7«(24-5)1) 2q

From these relations, treating separately the two cases e [0, 1] and ex>1,
and choosing ¢ = 3/(1—¢e)— 1(1—¢), ¢€[0,1[, ¢>1, e>1; we have

ar
(25) g <hE+ [ (2@ + [gPdQ + k, | |us|do (Teyy Ty 0) .
0 0 an

(¢) This assumption is made here for the sake of simplicity. Actually, proceeding
as in [8), i.e., suitably continuing the function g, the theorem retains its validity
also when Q; = 6.
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Thus, exploiting (24), integrating inequality (25) and letting o — 0, the
theorem follows.

Remark 7. Assume that {u, 7} be a solution of (3)' for ¢ = 2 with the
replacement

gu-Vv-u - — gu-Vu-v— u-Vg(u-v) (in Q2), + gu(u-v) (in 29Q),

then, the above Theorem can be shown under the assumption |u.|, |v|< M
which is alternative to (23) .

2. - Continuous dependence
7. ~ General facts about centinuous dependence

The problem of continnous dependence (and more particularly, of stability)
in the frame of abstract dynamical systems has been widely treated in several
recent papers (see, e.g., [3], [5]). More precisely, let & = B(T, X; X*) =
= {p:: 7 - X; £ X*} be a dynamical system, where I = [0, 7] (T > 0),
X is the set of the « states » and X* is a suitable space from which the « solu-
tions » @s are labelled. The meaning of such spaces is most natural. In par-
ticular, the space X* represents the space of « parameters» (different from
« initial data ») with which a «solution » may vary (*). Moreover, a « motion »
@e(T + 1) = @, (1), t€J, corresponding to the initial data ¢@(z)e X(r)C X
(veg*CT) and to & e X* can be characterized by the following map (which
a priori need not be single-valued)

T =T (p(v); §) e X(2) X X* > @, € B .

Denote, now, by » a metric in X and put 7, (ge, ya) = sup #(gs(t), wa(?)) for
tefo,t,

heJ and & neX* Obviously, 7, is a metric on @,f =]@([O, 1], X5 X*).

Furthermore, let ¢ be a metric on ¥ = X(7) x X*. Following [3], [5] one says

that a «solution » ¢ continuously depends upon the data with respect to o and

Ty iff the «restriction » map Tt, of T to gt; is continuous in ¢g, V4, €9 and

Vred*, ie. iff

Ve>0, 3d(e, 7,t)>0: o(ly, &)< O =T (@, ve,) < €.
(*) For example, if we consider a dynamical system associated to the motion of
a continuous system, the parameters £ may represent, e.g., boundary data, forces,
coefficients characterizing the material, ete.
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Moreover, if e = kd*(p € [0, 1[) with k=Fk(t,) we shall say that ¢: depends Holder
continuously. Finally, we shall say that is stable iff 7', is continuous in ¢; uni-
formly in ¢;, i.e., 0 does not depend on i,.

We should now remark that this abstract scheme, though it well applies
to the most part of physical situations, at a first sight seems to fail when one
is dealing with exterior problems—both in linear elasticity and in hydro-
dynamics—and when the perturbations are allowed to « grow» at large spatial
distances [2]y3, [9], [6]. For instance, in the case of Navier-Stokes equa-
tions, a typical example is of the following kind. Retaining the same nota-
tions of 1, in [9] the null solution of problem (1)--(2) is said to « depend con-
tinuously upon the data» iff (3) (%, p, s > 0)

(26)  sup {{wl|, |f], s} <0 = [ux(P,1)dQ<ké*, VR<S, Vie[0, T].
R

It is easy to see that (26) cannot be considered at once as a particular case
of the previous definition of continuous dependence, since the perturbation
u(P,t) is not « measured » through a metric. In view of this fact, in order
that (26) be meaningful from the physical point of view (i.e. in order that (26)
merit the attribute of « continuous dependence») it is fundamental to inves-
tigate the following two aspects: (i) whether the space X might be topologized -
in such a way that the continuity of the map T be equivalent to a request of
the kind (26); (ii) whether in X is possible to introduce a metric such that the
continuity of 7' with respect to the above topology, implies the continuity
of T with respect to the topology induced by such a metric. We shall show
below that, in fact, both items (i) and (ii) are meb.

To this end let # = {ra},mq,>, D¢ & family of quasi-metrics on X, such that:

(1) 7, (@, Y) <7 (@, ), Vou <o,
(2) Z separates points, i.e., if », 5% », there exists 1y € #: ral®, @) 5= 0.

Moreover, let 7 from 10, 1] onto [«,, + oo be a non-increasing function of
the argument. Then, for x € X, e €[0,1], we set U = {y € X:7,,(v,y) < &}.
The family B = {ng)}:cex;ee]o,ﬂ is readily seen to enjoy the following properties (°)

(1) Ve X, dUeB: 2ze U,
(2) VU, U, € Bwith U,nU, 5 ¢ then Ye e UNTU,, 3U e B: xe UCU,NU,.

(8) In this case X = {u: w;e C*(Q), |u| << Mri=s, [Vu|< B (M, > 0)}.

(°) Property (1) is obvious. To show (2) it suffices to prove that VU™ e B and
Vye UP AUM e B: UM C U, To show this, let us pick o € 10, & — 7,,,(®, ¥)[. We want
to show that 7,,,(s, 9) <o = 7,,(2)<e Vee UY. In fact, since k is non-increas-
ing, we get

Toe) (@ 8) STy (@ U) - T30y (@ ¥) S0 (85 Y) + 7 (@ Y) < 0+ 7y (@, Y) <€
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As is well known, then, the family B is a basis for a (uniquely determined)
topology on X (cfr. e.g. [4]) and the open sets A are of the form A4 — Uruo.

ven
Moreover, this topology is Hausdorff (1°). By standard arguments, it then fol-

lows that f: ¥ — X (¥ metric space with metric d) is continuous in y,e ¥
with respect to the above topology in X, iff

(26)' Ve>0, 30(e)>0: Ay, y) < 6 =1,,(f), f(wa)) <&,

which, in its abstract form, just coincides with (26).
Of course, when X is topologized in such a way, we can also introduce a
na,’mual topology on %, (¥t,€7), by setting Ta i (P; Yn) = sup 7a(@s(t), pa(t))

telo,,]
or, if ra(@z(t), wy(t)) is a continuous function of te [0, ], Ya>a,, we may seb

1y
i:o:,h((p§7 1101;) == f71a((p$(t)7 1/’1;(3)) dt
[

Now, starting with the family %, let us introduce in X x X the following
function

> (21, @ :
Ay, 2,) e X XX — M@ &) g t= [#(t; @y, x,) dt.
1y J‘l + ?h(t)(xl’ m‘)) Of 1) 2

Taking into account that Z is a family of quasi-metric which separates points
and that the function z —2/(1 + #) is increasing in #, it can be readily shown
that 1 enjoys all the properties of a metric (11).

We end this section, by noting that the following theorem (relating the
continuity in the sense of (26)’ to that associated with the topology induced
by 2) holds.

Theorem 5. Let f: ¥ — X be continuous in some y,€ ¥ in the sense
of (26)". Then f is continuous in y, also with respect to the topology induced in X by 2.

(1) Let = s y. Since # separates points, we have for some y > 0,

() m = 7-,‘0,)('1:, Y)%=0.

Choose e< min(y, tm) and let U= U N UY. If U + ¢, given ze U, by the mono-
tonicity properties of 2 and &, we would have

Tagn @ Y) S5 (@, 2) + 7 (9, 2) < 26
which contradicts (s). ‘
(1) Mw,y) = 0=z =y, since # separates points; moreover Az, y) < A(w, 2) +
+ Ay, 2) since 74(@, ¥)/(1 + 1a(x, Y)) <7a(@, 2)/(1 + 14(®, 2)) + 14y, /(1 + 14ly, #)) (the
function %/(1 + h) beeing increasing in k). The other properties are obvious.
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Proof. Since 7(t;x,, @) <1, ¥t€10,1), Vo, » € X, we have that, given
ee10,1]

1

Afn, fe)) = [7(t;5 1), f(ye) At < e flf‘(i; @), f(yo)) ai.

o

On the other hand, corresponding to the given g, there exists J > 0, such that
(cfr. (26)) Ay, yo) < 0 =>7,(f(¥), f(0)). Thus, by the monotonicity proper-
ties of Z and h, we have

2f W), 1)) < & + 7,6(f@), F(50)) (1 — €) < 2¢, and the Theorem is proved.

8. - Continuous dependence theorems with respect to a metric of the type .

In the light of the results obtained in 1 and of the considerations made in
the previous section, we shall now give some continuous dependence theorems
with respect to suitable families of quasi-metrics and hence (cfr. previous
section) with respect to the associated metric 2. We should remark that the
families we shall consider will involve all the first derivatives of the perturba-
tion u and, in some cases, the laplacian of u. Thus, the results we shall obtain
concern a stronger type of continuous dependence than that considered in
earlier works [9], [2],.

We shall later use some function spaces which we are going to define. By
C¥A) (k= 0,1,...) [resp. C*(4)] we mean the set of vectorial functions
in A which are continuous in 4 [resp. up to the boundary of 4] up to the
k-th derivative inclusive. Now, retaining the notations of the previous section,
by X we shall mean the space of vectorial functions w, such that

we C°(02) N C2(0) |w,| < Mr.

Furthermore we choose 7= 0 (*) and set X(0) = {z:2;€ CY(R) N L*(Q)},
Y, = {h:h e 0°(Q:) N L7(2r)}, Y,={l:1,e 0422 x[0, T1)}, X*= ¥,x7¥,.
Now, by #(7, X; X*) we mean the set of functions u from [0, T'] into X, pa-
rametrized from X* and such that: (1) u satisfies problem (1) - (2)
with u,e X(0), fe¥,, ue¥,, for a suitable choice of the pressure
meC(Q) N OY2) N Lo~¢(R;) (s€[0, 4); (2) u satisfies the identity

(12) This choice is due to the fact that, as will be later clear, the results we shall
obtain will be independent of the choice of the initial time.
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(3)" for ¢ = 2, the identity (3) for some ¢>1 (with Vze N L°(2;)) and the
identity (5). In all the above cases g is assumed to be exp [— a{t 4+ £,)%7].
Finally, in the case @ = R? by #*7, X; X*) we shall mean the subset
of Z(7, X; X*) of functions u which satisfy also the identity (4) (3).
Let us now introduce in X the following families of quasi-metrics (para-
metrized in R), with w, = w, + w

cw

88 )2) d‘Q)

r3(wy, wy) = [ (w2+ Vw: Vw + (
(27) o
8 (W, wy) = 7,(w;, wy) + [ (Myw)? dRQ.

2r

It can be readily seen that {rz},., and {17},., are non-decreasing families- of
quasi-metrics which separate points. Starting with (27); resp. (27), we now
introduce in #(7, X; X*) resp. in #*(J, X; X*) the following family (with

u, = u, - u)

r 0
(28), Py, u) = sup [ (u? + Vu:Vu)dQ + ”(a—"wdgas,
1el0,7] L, 0 0, 0S8
r
(28), o [resp. 7y (wy, w,) = i (uy, u,) + j'!_)f (4, u)2dQds] .
0 Pp

As far as the function h(e) is concerned, we shall always assume he) = ke
(k, n > 0). Moreover, as regards the metric in ¥ = X(0) x X*, we shall choose

0(Cyy &) = Sgp |z — & | + sup |Vz, — Vaz, |+ iup [hy— b, |
2 2 2

+ sup |L—L|+ sup "a‘l“l—‘ alzf .

30x10,7] soxio,r OF ot

The following theorems hold.

Theorem 6. Let |v|, |[Vv|<M. Then the null solution of problem (1)-(2)
dependes Holder continuously upon the data, when % is topologized with (28),.

Proof. Starting with (19) and choosing ¢ =1/R =67 (p€]0, §[) the

theorem follows when the following inequality is taken into account (&> 0)

Tfj'A2(P, 1)gdR, [AXP,t)gdQ<ko 20> whenever sup|A(P,t)|<d.
2

00

{(13) Of course, in this case, ¥, = 6.

[,



5350 G. P. ¢ALDI and S. RIONERO [18]

Theorem 7. Assume 2 = R3. Moreover, lot |v|, |Vv| <M. Then the
null solution of problem (1) + (2) depends Hélder continuously upon the date,
when B* is topologized with (28),.

Proof. Starting with (22) and noticing that for ¢Q =0 ( 2) is of the
same king of (23), the theorem follows.

Remark 8. We note that, standing Remarks 4 and 6, the results stated
in the above theorems, may be also obtained if we replace assumption (11)
with the hypothesis that we L*(£;).

‘We end this section, by remarking that a continuouns dependence theorem
may be also obtained from Theorem 1. Precisely, in the light of Remark 3
concerning the assumption |Vz|/|u|< M, we get continuous dependence of
the Hélder type with respect to the following family of quasi-metries

Ta(ly, Uy) = sup |uy(P, 1) — us(P, 1)] .

2r

9. - Continuous dependence theorems with respect to metrics of the L2 type

‘We shall now give some continuous dependence theorems (in the Holder
sense) with respect to metrics of the L* type. More precisely, we shall prove
that if only the boundary data are perturbed, then we have continuous de-
pendence with respect to the following metric

29  sup (f{lwi—u |2+ |V, — Vu, |2 }dg-yquaul ouy

tefo,7] 2

= |42 ag)ve.

Moreover, if all the data are perturbed, we shall prove continuous dependence
theorems with respect to the following metric

(30) mm(f|—~*—fdQV” (y>0).

tefo, ] 2

To this end, let X; ({ =1, 2, 3) be the subset of functions of X, which are,
respectively, square summable in Q2 together with their first (spatial and time)
derivatives, which have bounded radial component (|w,|<M) in £, and
which square summable in £ with weight 7~ (¢ > 0). Moreover, let

Y, = {z: &€ L*(Q) and xe L°(2)},
Y, = {h: he C(2;) N L°(2y) and k™" e L¥Qy)},

=Y, xY,.

NN* (-]
|
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Furthermore, by %,(7, X,; X,) we mean the set of functions from [0, T] - X,
parametrized from X, which satisfy problem (1)-(2) with u, € ¥,(= X,(0)),
uyeY,, fe¥, for some meL*(Q) N (D) N O(Q) (y€]0,4[) and the
identity (3)" with ¢ =2 and g = exp[— ar].

The following theorems hold.

Theorem 8. dssume wy=f=0 and |v|, |Vo|<M. Then BT, X;
X*) is embedded in H(T, X,; X*). Moreover the null solution of problem
()+(2) depends Holder continuously when #(T, X1; X*) is topologized with
the metric (29).

Proof. From (19) we get (for > 0 and ¢¢€ [0, T7)

[ (u?+ Vu:Vu)dQ f J( ——) dQdi <eexp [o(T--1,)f R]- {ocn/’ ff lmle—edQdt

2z 0 Lp

+_ijr)(]u‘ ';)dadt+a}

[

Thus, the theorem follows by letting first & — 0 and then R —> co.

Theorem 9. Assume [v.], [(Vo) 4 (Vo)'|<M. Then %,(T, X,; X)) is
embedded in BT, X;; X;). Moreover, the null solution of the problem (1)--(2)
depends Hélder continuously upon the data, when B, is topologized with the
melric (30) with y = ¢4 f, (8> 0).

Proof. The first part of the theorem follows from the results of sec-
tion 6. So far as the last statement of the theorem is concerned, in [2], we

have shown, on the given assumptions, that

(31) sup {|u,], }f),]uy{}<(5:>sup JurP, ) dQ <ké»  (k,p>0),
tefo, 1] Q3
where E = 0~ (s> 0). Now, since B(1)C £, (cfr. footnote (%)), we have

(32) fwr dQ < fu 40 + f _dp

On the other hand

= |+

(33) <6 V>R,
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and by Theorem 4, we get

(34) sup fMdQ:l\r<oo.

refo,r} 2 TE

From (31)-(34) we thus obtain [(u*/**")d2<ké” 4 Nd*n, which proves the
theorem. @

3. - Stability
10. - A key lemma to stability

In several previous papers [2],, [1]:, [7] we have given some sufficient con-
ditions to the stability of fluid motions in exterior domains and for weak solu-
tions, which we have shown to exist and to belong to suitable Sobolev spaces.
In order to formulate the above conditions, a foundamental role has been played
by the inequality (35) below, which should be considered as the inequality
corresponding to that of Poincaré, in unbounded domains

(35) 2 aQ<4 [Vu:Vud?.
= 1)

Q

Of course such an inequality holds for functions u such that the right hand
side makes sense. However, in the cases we are treating along this paper, the
perturbations u need not satisfy a priori such a requirement since they are
only allowed to «grow» at large spatial distances. Thus, in order to give
stability theorems for this class of perturbations, it seems quite natural to
seek for an inequality of the type (35) but in weighted spaces. As usual, the
weight we shall use will be of the type g = exp (— o). Therefore, we shall
look for an inequality of the kind

(36) fg E:— dQ <k [ gVu:VudR 4o | gu*d2 + boundary terms .
2] b 2 02

Now, since we want to obtain again stability in the L* norm (as we did
in [2];, [1):, [7]) it will be necessary to let « — 0. As a consequence, it is
fundamental that the constant % which appears in (36) be a bounded function
of o« in the neighborhood of zero (of course, so much the better if & is inde-
pendent of «). More precisely we shall prove the following lemma.



[21] A PRIORI ESTIMATES, CONTINUOUS DEPENDENCE ... 553

Lemma. Let ue Cy(Q)* N CHD), |u|<Mr* (M, k> 0) and let u, Vu be
square summable with weight g = exp (— o). Then the following inequality holds

2

(37) jg&:d.@<4ngu:VudQ—}—gcj'guﬂ-{—ksup}u
o 9 22 a0

where k does not depend on u.

Proof. Let r = f(0, p) be the (local) equation of the closed surface 0£2.

We then have ( [dy = [ [sin pdfdg) (1%
60

) . z 2 g
f{l% a0 = Jdy J exp (—ar)u2dy = j’d*y f > [exD (— ar)u?r] dr
i r=f

25 r=f
2 r ou
+a[dy fexp(—ar)urrdr—2 [dy | w7 dr
7 ¥

<exp (—aR) B [u¥(R, y)dy + ksup|ug|?+ « | guzdQ
a0 Sy

+2 [gvuveaQ + £ (g% a0,
£ap “op 7

Thus, we obtain (on choosing & < 2)

2-¢

2

(2—
2

fgi:d_(2< 5)3111)111,212.
r o0

2

F7 g | VuVudQ +

o fgud + K
Now, inequality (37) follows, by minimizing the function 4/£(2 — &) over
£e]0,2[.

11. - A stability theorem in the L* norm for perturbations which may « grow »
at large spatial distances

Let us first introduce the following function spaces.
Zy = L¥Q), Z,= {I:1e (02X RB")*NL°(02 X R*) N L'(R+; L°(002)), n <1},
X* the subset of X, such that |w,| <M and |w|<Mr* (M, %> 0). Further-

(1*) Of course, one should think of integrating along the charts defined by the
equation defining 62 in spherical coordinates and then to add the various contributions.
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more by B(R+, X,; Z,) we mean the set of solutions of the problem (1)4-(2) from
R+ into X,, for some me C° (Q)n C{Q)N LR, (VT >0, y <6/ 4 2¢),
£ €10, 1[), with u, € Z,(= X,(0)), f =0, uy € Z, and satisfying the identity (3)’
with ¢ = 2 and g = exp (— ar). Moreover, we equip Z; with its natural metric
and Z, with the supremum metrie.

Indicating by D = sup|(Vo) + (Vo)”| and by ¢ a comparison length, we

2y

shall now prove the following stability theorem.

Theorem 10. Let Q,%% 0, |v.| <M, |(Vv)+ (Vo)"| <Da*r>.  Then, if
the Reynolds number Re = D[y associated to the unperturbed motion {v, p} is
such that Re < 1 it turns out that B(R+, X,;2,) is embedded in B(R+, L¥(Q); Z,).
Moreover, the null solution s stable when @(Rﬁ L2Q); Z,) is topologized with
sup fu?dQ.

terpt Q

Proof. From (3) with ¢ = 2, it easily follows that

1 2
(38) %< { {%(u + v)-Vg—glu-Vo-u + Vu:Vu] —V_(/-Vu-u} de
Q s

+ [aVg-udQ 4+ N | |ux|de (N>0).
7 o0

Thus from (38) and from the previous Lemma we get

(39) %g(?,ﬂ[oc + %—}« )B4+ dDdz—v -+ g) [gVu:Vud@

Q

+ o [ag|u|dQ + N'sup|us(P,1)] (N'>0).
o o0

Now ofng|u|dQ<a®E + ¢,0™ + co”* [ |7|”dRQ (¢, 0, > 051 =1, 2), and then
2 0Q

from (39) and by assumption, for & sufficiently small, putting N(«x)
= (2Mo + «?/f + o -+ &), Wwe obtain (with € = max (¢, ¢;, N'))

(40) B(t) < E(0) exp (N(a)t) +
+ cexp (N(a)?) {f{oc"l A ao: [ |77 | A2 + sup |us(P, t)| }dt .
0 0o

As a consequence, since s = sup |uy(P, t)|= s"s"<s?6", the inequality (40)
a0 ’
in the limit & — 0 gives the desired result.
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Remark 9. Assume that u is a solution satistying (3) with q = 2 with
the replacement (efr. Remark 7)

(41)  gu-Vvo-u - — gu-Vu-v — u-Vg(u-v) (in Q), + gu(u-v) (in 20).

Then the assumptions |(Vo) + (Vo)*| < Dd*fr® and Re < %, may be replaced

with |v|< Vdfr and Vdfy < ¥, where V = sup| v|. In fact, all goes as in the
27

previous proof, provided that the «new » terms arising from (41); are increased
in the following way

V2dz g2
2 7‘2

—gu-Vu-v<yg —{—%gVu:Vu, — - Vg(u-v) < Vagu?

and then increased again by the inequality proved in the Lemma.

Remark 10. In the light of Theorem 1, the assumption u,] <M may
be replaced by u,e L*(Q2), Vae L*(2,) for any 7> 0.

Remark 11. From the estimate (40) an interesting continuous depend-
ence theorem with respect to a family of quasi-metrics can be also obtained,
in which the measure T of the interval [0, T] where continuous dependence
holds, can be polynomially related to the measure 6 of the « smallness » of the
initial and boundary data. Actually, assuming sup [7(P, 1)|7 A2 < oo and
sup |u, | < 4, from (40) we get YR>R, 2R

0o

(42) SRk {4 Dy exp (2 + ) + [ty

where K and ¢ are suitable positive constants independent of T and R. Thus,
choosing « = 6° (s < §), from (42) we have for some p > 0 that

Jux P, t)yaR < o  YR<O™, Vi<o™ (n<s, m<so),
2p

which is the claimed result.

Remark 12. We would finally notice that the condition Re < % is also
sufficient for stability with respect to perturbations which « priori belong
to L¥(£2) together with their first (spatial) derivatives (cfr. [2],, [1],, [7]). It is
then worth remarking that such assumption on perturbations is not made here.
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