ANGELA SELVAGGI PRIMICERIO (*)

On a terminal value problem for a class of non linear ordinary differential equation (**)

A GIORGIO SESTINI per il suo 70° compleanno

1. - Introduction

Consider the second-order non linear differential equation

$$(1.1) y'' + a(t, y)y' = 0,$$

where a(t, y) is a real-valued function defined and continuous on $D = [\alpha, +\infty) \times \mathbf{R}$.

In this paper we are concerned with the existence of a solution of the following terminal value problem

(1.2)
$$y'' + a(t, y)y' = 0$$
, $\lim_{t \to +\infty} y(t) = L$, $y'(t) \neq 0$.

Problems of this type have been considered by several authors (see [1], [3], [6], [7], [8], and the references quoted there); they arise in many fields of applied mathematics, as for instance in the theory of similarity solutions for partial differential equations (see [2], [4], [5]).

Our approach is rather similar to the one of [6]. It is based upon the con-

^(*) Indirizzo: Istituto Matematico « U. Dini », Università, Viale Morgagni 67/A, 50134 Firenze, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 22-XII-1978.

struction of a sequence of approximating solution and the use of suitable comparison lemmas.

Throughout the paper we shall assume that for every (t_0, y_0, y_0') , $t_0 \ge \alpha$, there exists a unique solution to (1.1), continuously dependent upon the data, such that

$$(1.3) y(t_0) = y_0, y'(t_0) = y_0'.$$

Note that this assumption implies that the first derivative of each nonconstant solution of (1.1) cannot vanish: therefore, (1.1) admits only monotonic solutions.

2. - Preliminary results

In this section we compare the solutions of (1.1), (1.3) with the solutions of

$$(2.1) w'' + h(w)w' = 0, w(t_0) = w_0, w'(t_0) = w'_0$$

and

$$(2.2) z'' + k(t)z' = 0, z(t_0) = z_0, z'(t_0) = z'_0,$$

where h(w) and k(t) are real-valued functions defined and continuous on R and $[\alpha, +\infty)$, respectively.

Lemma 2.1. If $a(t, x) \ge h(x)$ for every $x \in \mathbb{R}$, $t \ge \alpha$, then

$$0 \leqslant y_0' \leqslant w_0'$$
 and $y_0 = w_0$ implies $y(t) \leqslant w(t)$,

and

$$0 \geqslant y_{\mathbf{0}}' \geqslant w_{\mathbf{0}}'$$
 and $y_{\mathbf{0}} = w_{\mathbf{0}}$ implies $y(t) \geqslant w(t)$

in the common interval of existence of y(t) and w(t).

Proof. Let $y_0 = w_0$ and $0 \leqslant y_0' < w_0'$. Since $y'' \leqslant -h(y) \ y'$ (recall that (1.1) admits only monotonic solutions) and $w'' = -h(w) \ w'$, one obtains

(2.3)
$$y' - w' \leqslant y'_0 - w'_0 + \int_{w_0}^{w} h(s) \, ds - \int_{y_0}^{y} h(s) \, ds.$$

Let $\bar{t} = \{\inf t : y(t) \geqslant w(t)\}$. From (2.3), written for $t = \bar{t}$, we get $y'(\bar{t}) < w'(\bar{t})$, a contradiction. The case $y_0 = w_0$, $0 \geqslant y'_0 > w'_0$ is similar while, for the case $y_0 = w_0$, $y'_0 = w'_0$, it suffices to consider the sequence $y'_{0,n} = y'_0 \pm 1/n$ (according to $w'_0 \geqslant 0$) and then to use the continuous dependence upon the data.

Lemma 2.2. If $a(t, y) \ge k(t)$, then

$$0 \leqslant y_0' \leqslant z_0'$$
 and $y_0 = z_0$ implies $y(t) \leqslant z(t)$,

and

$$0 \geqslant y_0^{'} \geqslant z_0^{'}$$
 and $y_0 = z_0$ implies $y(t) \geqslant z(t)$ on $[t_0, +\infty)$.

Proof. Let $y_0 = z_0$ and $0 \le y_0' < z_0'$ (the case $0 \ge y_0' > z_0'$ is similar). Since $y' \le y_0' \exp\left(-\int\limits_{t_0}^t k(s)\,\mathrm{d}s\right)$ it follows

$$(2.4) y' - z' \leqslant (y'_0 - z'_0) \exp\left(-\int_{t_0}^t h(s) \, \mathrm{d}s\right) < 0.$$

So y(t) and z(t) never cross each other. Moreover (2.4) implies that y(t) exists on $[t_0, +\infty)$.

From now we shall assume $a(t, y) \ge 0$, which ensures the global existence in the future of any solution of (1.1), (1.3). Observe that, if $\lim_{t\to +\infty} a(t, y) < 0$,

it is obvious that (1.2) cannot have a solution, since y'' and y' would have the same sign for t greater than a suitable t_0 , which excludes the possibility that $\lim_{t\to +\infty} y(t) = L$.

3. - Terminal value problem: approximating solutions

We shall need the following

Lemma 3.1. For every $\alpha \leqslant t_0 < \tilde{t}, \ y_0, \ L$ the two-point boundary value problem

(3.1)
$$y'' + a(t, y)y' = 0$$
, $y(t_0) = y_0$, $y(\tilde{t})_{\underline{t}}^{\underline{y}} = L$

possesses a solution belonging to $C^2[t_0, \tilde{t}]$.

Proof. In this case, it is easy to show, that the topological mapping $T: (t_0, y_0, y_0') \to (\tilde{t}, y(\tilde{t}), y'(\tilde{t}))$, where $y(\tilde{t}) = y(\tilde{t}; t_0, y_0, y_0')$ is the solution of (1.1), (1.3), is unbounded for fixed t_0, y_0, \tilde{t} . Indeed the assumption $y_0 \leqslant y(\tilde{t}) \leqslant k_2$ for given y_0, \tilde{t} and arbitrary $y_0' \geqslant 0$ (the case $L = y_0$ in (3.1) is the only one involving $y_0' = 0$ and is trivial) would lead to the contradiction

(3.2)
$$0 \leqslant y_0' < \frac{A(k_2 - y_0)}{1 - \exp(-A(t - t_0))},$$

where $A = \max_{\substack{t \in [t_0, \tilde{t}] \\ y \in [y_0, L]}} a(t, y)$. The argument can be repeated for $y_0' < 0$.

Let $\{t_n\}$ be an increasing sequence with $\lim_{n\to\infty}t_n=+\infty$. For every n (n=1,2,...) consider the two-point boundary value problem

$$(3.3) y_n'' + a(t, y_n) y_n' = 0, y_n(t_0) = y_0, y_n(t_n) = L.$$

Let $\mathcal{G}_n(t)$ be a solution of (3.3) (whose existence is ensured by Lemma 3.1) and define

$$y_n(t) = \begin{cases} \hat{y}_n(t), & t_0 \leqslant t \leqslant t_n \\ L, & t > t_n \end{cases}.$$

Note that $y_n(t) \in C[t_0, +\infty)$ and, moreover, $y_n(t) \in C^2[t_0, t_n)$ for any n. Clearly, the functions y_n are uniformly bounded $(|y_n - y_0| \le |L - y_0|)$ and equicontinuous. This last property follows from the inequality (analogous to (3.2))

$$|y_n'(t_0)| < \frac{A_{t_1}|L - y_0|}{1 - \exp\left(-A_{t_1}(t_1 - t_0)\right)}, \quad A_{t_1} = \max_{\substack{t \in [t_0, t_1] \\ |y - y_0| \le |L - y_0|}} a(t, y)$$

and from the assumption $a(t, y) \ge 0$, which implies that $|y'_n|$ is non-increasing in $[t_0, t_n)$. Therefore, an easy application of the Ascoli-Arzelà's theorem and the standard diagonalization process, ensures the existence of a subsequence (that we shall denote again by $\{y_n\}$) which converges uniformly on each interval of $[\alpha, +\infty)$ to a continuous function. Let $\hat{y}(t) = \lim y_n(t)$.

It is easy to show that for any given $[t_0, \bar{t}]$, $\{y_n\}$ contains a subsequence whose first derivatives are uniformly bounded and equicontinuous on $[t_0, \bar{t}]$.

Indeed, using (3.5), for any n such that $t_n > \bar{t}$ we have

$$|y_n''(t)| \leqslant \frac{A_{t_1}|L - y_0|}{1 - \exp(-A_{t_1}(t_1 - t_0))} \cdot A_{t_1}, \quad A_{t_1} = \max_{\substack{t \in [t_0, \bar{t}] \\ |y - y_0| \leqslant |L - y_0|}} a(t, y).$$

Call $\{\bar{y}_n\}$ a subsequence of $\{y_n\}$ whose derivative (again by Ascoli-Arzelà's theorem) converge uniformly (to \hat{y}') on $[t_0, \bar{t}]$. Moreover, for any $t', t'' \in [t_0, \bar{t}]$, it is

$$|\bar{y}_n''(t') - \bar{y}_n''(t'')| \leqslant A_{\bar{t}} |\bar{y}_n'(t') - \bar{y}_n'(t'')|$$

$$+ \frac{A_{t_1}|L-y_0|}{1-\exp\left(-A_{t_1}(t_1-t_0)\right)} \cdot |a(t'',\bar{y}_n(t'')) - a(t',\bar{y}_n(t'))|.$$

Since the functions \bar{y}'_n are equicontinuous on $[t_0, \bar{t}]$ and a(t, y) is uniformly continuous for $t \in [t_0, \bar{t}]$ and $|y - y_0| \leq |L - y_0|$, from (3.7) we obtain that $\{\bar{y}''_n\}$ is equicontinuous. So we have proved

Lemma 3.2. Let a(t, y) be nonnegative. Then, there exists a sequence $\{\bar{y}_n\}$ converging uniformly on any subinterval of $[\alpha, +\infty)$ to function $\hat{y}(t)$ which is a solution of (1.1).

Remark. At this point it is not clear whether $\hat{y}(t)$ satisfies (1.2). Notice: this is not the case if we take, for instance, a(t, y) = 0.

4. - Solution of the terminal value problem

We wish to establish some sufficient conditions for the existence of a solution to the terminal value problem (1.2). We begin with a rather simple case.

Theorem 4.1. If $\liminf_{\substack{t\to +\infty\\ y\to L}} a(t,y) > 0$, then there exists a solution to the terminal value problem (1.2).

Proof. From the assumption on a(t,y) we can choose t_0 and y_0 (set e.g. $y_0 < L$) such that

$$(4.1) a(t, y) \geqslant a_0 > 0 , t \geqslant t_0 , y \geqslant y_0 .$$

Consequently, for any n = 1, 2, ..., we have

(4.2)
$$\bar{y}'_{0,n} \ge \frac{a_0(L - y_0)}{1 - \exp(-a_0(t_n - t_0))} \ge a_0(L - y_0)$$
.

Now, consider the solution $u(t) = u_0 + (L - u_0)(1 - \exp(-a_0 t))$ of the problem

$$(4.3) u'' + a_0 u' = 0, u(t_0) = u_0 < y_0, u'(t_0) = a_0 (L - u_0)$$

and observe that u(t) < L and $\lim_{t \to +\infty} u(t) = L$. It is easily seen that, for any n, $\bar{y}_n(t)$ and u(t) cannot cross in the time interval $[t_0, t_n]$. Indeed, in such case, we can find a value T of t $(T \in [t_0, t_n])$ such that $u(T) = \bar{y}_n(T)$, $u'(T) > \bar{y}'_n(T)$ and so, by virtue of (4.1) and the results of section $\mathbf{2}$, $\bar{y}_n(t) < u(t)$ for $t \in [T, t_n)$. But this is impossible since $\bar{y}_n(t_n) = L > u(t_n)$. Therefore, for any $t \in [t_0, +\infty)$ (the case $t > t_n$ is trivial) and for any n = 1, 2, ..., we have

$$(4.4) u(t) \leqslant \bar{y}_n(t) \leqslant L,$$

which implies that $\hat{y}(t)$ is a solution of (1.2).

Theorem 4.2. If a(t, y) is non negative and, for suitable t_0 , y_0 satisfies

$$(4.5) \qquad \int_{t_0}^{+\infty} \exp\left(-\int_{t_0}^{s} \min_{|y-y_0| \leq |z-y_0|} a(t,y) \, \mathrm{d}t\right) \, \mathrm{d}s = \lambda < +\infty,$$

then there exists a solution to the terminal value problem (1.2).

Proof. Let us define $\gamma(t)=\min_{|v-v_0|\leqslant |L-v_0|}a(t,y)$ and consider the solution of the problem (suppose $y_0< L$)

$$(4.6) z'' + \gamma(t)z' = 0, z(t_0) = z_0 < y_0, z'(t_0) = (L - z_0)/\lambda.$$

For any n we have $\bar{y}'_{0,n} > (L - y_0)/\lambda$.

Then, by an argument similar to that of Theorem 4.1 and using the results of section 2 one easily obtains the result.

Finally we have the following

Theorem 4.3. Suppose that there exists a Lipschitz continuous non

negative function h(w) satisfying, for suitable t_0 , y_0 , the inequalities

(4.7)
$$h(w) \leqslant a(t, w)$$
 for $|w - y_0| < |L - y_0|$, $(t \geqslant t_0)$,

(4.8)
$$| \int_{w}^{L} h(s) \, \mathrm{d}s | > 0 for |w - y_0| < |L - y_0|.$$

Then the terminal value problem (1.2) has a solution.

Proof. Assume $y_0 < L$ and consider the problem

(4.9)
$$w'' + h(w) w' = 0$$
, $w(t_0) = w_0 < y_0$, $w'(t_0) = \int_{w_0}^{L} h(s) ds$.

It is $w'(t) = \int\limits_{w_0}^L h(s) \, \mathrm{d}s - \int\limits_{w_0}^{w(t)} h(s) \, \mathrm{d}s$, hence w(t) < L, since w'(t) cannot change its sign: therefore $\lim\limits_{t \to +\infty} w(t) = L$. Moreover, note that for any n $\bar{y}'_{0,n} \geqslant \int\limits_{y_0}^L h(s) \, \mathrm{d}s$. The results of section 2 enable us to affirm that $w(t) \leqslant \bar{y}_n(t) \leqslant L$ and to conclude the proof of the theorem.

Remark. The analysis performed above can be applied equally well, with only minor modifications, for the study of the problems

$$(4.10) y'' + a(t, y)y' = 0, y(t_0) = y_0, \lim_{t \to +\infty} y(t) = L,$$

(4.11)
$$y'' + a(t, y)y' = 0$$
, $\lim_{t \to -\infty} y(t) = L_1$, $\lim_{t \to +\infty} y(t) = L_2$.

References

- [1] J. W. Bebernes, A subfunction approach to a boundary value problem for ordinary differential equations, Pacif. J. Math. 13 (1963), 1053-1066.
- [2] G. W. Bluman and J. D. Cole, Similarity methods for differential equations, Springer Verlag, New York-Heidelberg-Berlin 1974.
- [3] M. CECCHI, M. MARINI e P. L. ZEZZA, Un metodo astratto per problemi ai limiti non lineari su intervalli non compatti, Equadiff '78, Firenze 1978, 395-405.

- [4] A. H. Craven and L. A. Peletier, Similarity solutions of degenerate quasilinear parabolic equation, J. Math. Anal. Appl. 38 (1972), 73-81.
- [5] C. F. Lee, On the solution of some diffusion equations with concentrationdependent diffusion coefficients, J. Inst. Math. Appl. 10 (1972), 129-133.
- [6] K. W. Schrader, Boundary value problem for second order ordinary differential equations, J. Differential Equations 3 (1967), 403-413.
- [7] W. E. Shreve, Terminal value problem for second order non linear differential equations, SIAM J. Appl. Math. 18 (1970), 783-791.
- [8] G. VILLARI, Sul comportamento asintotico degli integrali di una classe di equazioni differenziali non lineari, Riv. Mat. Univ. Parma (1) 5 (1954), 83-98.

Sommario

Si studia il seguente problema ai limiti su intervallo non limitato

$$y'' + a(t, y)y' = 0$$
, $\lim_{t \to +\infty} y(t) = L$, $y'(t) \neq 0$.

Si costruiscono soluzioni di appropriate successioni di problemi ai limiti su intervalli limitati e si prova che esse convergono alla soluzione del problema dato. Si suppone che la funzione a(t,y) soddisfi appropriate condizioni quando y tende ad L e t tende $a+\infty$.

* * *