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ANGELA SELVAGGI PRIMICERIO (%)

On a terminal value problem

for a class of non linear ordinary differential equation (**)

A Groreio SEsTINI per il suo 70° compleanno

1. - Introduction

Consider the second-order non linear differential equation
(1.1) ¥+ alt,y)y' =0,

where «a{t, ¥y) i8 a real-valued function defined and continuous on
D =[o, + c0) X R.

In this paper we are concerned with the existence of a solution of the
following terminal value problem

(1.2) y' 4o, y)y' =0, limy@)=1L, y@) 0.

t—>4-@

Problems of this type have been considered by several authors (see[1],
[3],[61,[7],[8], and the references quoted there); they arise in many fields of
applied mathematics, as for instance in the theory of similarity solutions for
partial differential equations (see[2], [4], [5]).

Our approach is rather similar to the one of [6]. It is based upon the con-

{(*) Indirizzo: Istituto Matematico « U. Dini», Universithy, Viale Morgagni 67/A,
50134 Firenze, Italy. .
(**) Lavoro eseguito nell’ambito del G.N.A.T.A. (C.N.R.). — Ricevuto: 22-X1I-1978.



504 A. SELVAGGI PRIMICERIO [2]

struction of a sequence of approximating solution and the use of suitable
comparison lemmas.

Throughout the paper we shall assume that for every (o, ¥, %)y fo>0,
there exists a unique solution to (1.1), continuously dependent upon the data,
such that

(1.3) Yt) = Yo,  Y'(t) = Y, -

Note that this assumption implies that the first derivative of each non-
constant solution of (1.1) cannot vanish: therefore, (1.1) admits only mono-
tonic solutions.

2. « Preliminary results

In this section we compare the solutions of (1.1), (1.3) with the solutions of

(2.1) W' B(w)w' =0, w(ty) = w,, w(t)=w,
and
(2.2) 2 k() =0, 2(te) = 2y, 2 (k) = 2, ,

where h(w) and k(f) are real-valued functions defined and continuous on R
and [e, -+ oo), respectively.

Lemma 2.1. If a(t, )= h(z) for every xeR, t>o, then
0<y;<w; and Yy, = w, implies y{)<w(t),
and
0>y0>wé and Yo = w, implies  y(t)>w(i)
in the common interval of existence of y(t) and w(?).

Proof. Lety, = w, and 0<y, < 'w;. Since y" < — h(y) ¥’ (recall that (1.1)

admits only monotonic solutions) and w"= — k(w)w’, one obtains
P ; w v
(2.3) Y —w' <y, — wy - [h(s)ds — [(s)ds .

W Yo
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Let & = {inft: y(t)>w(t)}. From (2.3), written for ¢ = 7, we get y'(f) < w'(£),
a contradiction. The case g, = w,, 0>y, > w, is similar while, for the case

Yo = 105, Yo = 1w,, it suffices to consider the sequence Yon = Yo = 1/n (accord-
ing to w,20) and then to use the continuous dependence upon the data.

Lemma 2.2. If a(t,y)>k{), then
O<y,<z, and 1y, =2, implies y(t)<z2(t) ,
and
0>Yo>2, and yo=1z, implies y(t)>2(l) on [t, + o).

Proof. Let y, =2 and 0<y, < #, (the case 0>y, > #, is similar). Since

t
Y <y, exp (— [k(s)ds) it follows
to

t
(2.4) Y — &' < (yy — 2) exp (— [H(s)ds) < 0 .
¢y

So y(f) and 2(f) never cross each other. Moreover (2.4) implies that y(¢) exists
on [, + o).

From now we shall assume a(t, ¥) >0, which ensures the global existence
in the future of any solution of (1.1), (1.3). Observe that, if lim a(¢, ¥) < 0,

>+
YL

it is obvious that (1.2) cannot have a solution, since y” and y' would have the
same sign for ¢ greater than a suitable t,, which excludes the possibility that
lim y(2) = L.

te>-}-00

3. = Terminal value problem: approximating solutions
We shall need the following

Lemma 3.1. For every a<t, <1, y,, L the two-point boundary value
problem

(3.1) Y'+alt,y)y =0, yl)=1n, ybi=L

possesses a solution belonging to C[t,, f].
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Proof. In this case, it is easy to show, that the topological mapping
T (toy Yo, ¥o) — (6 y(®), '), where y(F) = y(; t, ¥o, o) is the solution of
(1.1), (1.3), is unbounded for fixed t,, %o, {. Indeed the assumption o<yl < ke
for given #,, ¢ and arbitrary yé;() (the case L = y, in (3.1) is the only one
involving y, = 0 and is trivial) would lead to the contradiction

Ay — %)
1—exp (—A@E~—1))’

(3.2) 0<y, <

where A = max a(t,%). The argument can be repeated for Yo < 0.

tel i, ;j
v€lyg, L]

Let {t,} be an increasing sequence with lim?, = - co. TFor every n
7—>C0

(n==1,2,..) consider the two-point boundary value problem
(3.3) .7/: + ally ¥a) :I/; =0, Yalto) == Yo » Yults) = L .

Let §.(f) be a solution of (3.3) (whose existence is ensured by Lemma 3.1)
and define

ﬁﬂ(t)) t0<t<tn
. 2(t) =
(3-4) Yall) L, t>1,.

Note that ¥,(2) € O[t,, + oo) and, moreover, y,(t) € Ct,, t,) for any n. Clearly,
the functions y, are uniformly bounded (|y.— %|< |L — ¥,|) and equiconti-
nuous. This last property follows from the inequality (analogous to (3.2))

Ay | L — 5|
z A, = max a(t,
1 —exp (—‘ A4, (8 — to)) ’ . telte, £ ()

lu—uol<|L~v,]

(3.5) lya(to) |<

and from the assumption a(t, ¥)>0, which implies that || is non-increasing
in [t,,t,). Therefore, an easy application of the Ascoli-Arzeld’s theorem and
the standard diagonalization process, ensures the existence of a subsequence
(that we shall denote again by {y.}) which converges uniformly on each interval
of [a, + o) to a continuous function. Let §(t) = lim y,(2).

Rf 0O

It is easy to show that for any given [, ¢], {y.; contains a subsequence
whose first derivatives are uniformly bounded and equicontinuous on [%,, t].



[5] ON A TERMINAL VALUE PROBLEXM ... 507

Indeed, using (3.5), for any = such that ¢, > ¢ we have

A, ILW?IO! -
X ;! Az = max alt, y) .
1—expl— A4, (t; —1,)) P €ltp7) )

Ju=vo|<|E—v,]

(3.6) () | <

Call {7,} a subsequence of {y,} whose derivative (again by Ascoli-Arzeld’s
theorem) converge uniformly (to §') on [t,, f]. Moreover, for any #',¢" €[4, t],
it is

(3.7) |7.0) — 7" | <A77, — 7,07 |

A‘x!L——yol
+ 1 — QX}? (‘—‘ ‘Atl (tl‘_‘ to

) la(t"y 7u(t) — at', Fult)) | -

Since the functions 7, are equicontinuous on [ty 2] and a(t, y) is uniformly
continuous for ¢ €[t,, 1] and |y — yo| < | L — 9|, from (3.7) we obtain that {g
is equicontinuous. So we have proved

Lemma 3.2. Let a(t,y) be nonnegative. Then, there exists a sequence {7.}
converging uniformly on any subinterval of [o, + co) to function §(t) which is
a solution of (1.1).

Remark. At this point it is not clear whether 7(¢) satisfies (1.2). Notice:
this is not the case if we take, for instance, a(t,y) = 0.
4. - Solution of the terminal value problem

We wish to establish some sufficient conditions for the existence of a solu-
tion to the terminal value problem (1.2). We begin with a rather simple case.

Theorem 4.1. If liminf a(t, y) > 0, then there exists a solution fo the

-0
y=>L

terminal value problem (1.2).

Proof. From the assumption on a(t, y¥) we can choose ¢, and ¥, (set e.g.
Yo << L) such that

(4.1) at, y)>a>0, I>t, Y>y.
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Consequently, for any # = 1,2, ..., we have

ay( L — ,)
— exp (— ao(t,— %))

(4.2) Tom> 7 > ao(L — ) -

Now, consider the solution w(t) = wu, 4+ (L — %,)(1 — exp (— ayt)) of the pro-
blem

(4.3) W agu =0,  wly) = < Yy, U(t) = ao(Ll — uy)

and observe that «(t) < L and lim u(#) = L. It is easily seen that, for any =,
t—>4-c0

Ja(t) and u(f) cannot cross in the time interval [¢,,?,]. Indeed, in such case,
we can find a value T of ¢ (T €[i,, t.]) such that w(T) = 7.(T), W (T)>5.(T)
and so, by virtue of (4.1) and the results of section 2, 7,(f)<<u(t) for t € [T, 1,).
But this is impossible since 7,(¢,) = L > u(f,). Therefore, for any t € [i,, - oo)
(the case ¢>1, is trivial) and for any n =1, 2, ..., we have

(4.4) wt)<ga)< L,

which implies that §(¢) is a solution of (1.2).

Theorem 4.2. If al(t,y) is non negative and, for suitable t,, y, salisfies

+e0 s
(4.5) fexp(—f mina(tyd)ds =A<+ 0,
%

b v~y

then there exists a solution to the terminal value problem (1.2).

Proof. Let us define y(f) = min a(f,y) and consider the solution of
fr—vo|<[2—vs]

the problem (suppose y,<< L)
(4.6) Sy =0,  alt) =2<Yo, &)= (L—z)A.
For any n we have 7,,> (L — %,)/4.

Then, by an argument similar to that of Theorem 4.1 and using the results
of section 2 one easily obtains the result.

Finally we have the following

Theorem 4.3. Suppose that there ewists a Lipschitz continuous non
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negative function h(w) satisfying, for switable t,, yo, the inequalities

(4.7) h(w) / a(t, w) for jw— 1yl < |L — ], (t=1y)
(4.8) |fh.(s) ds|>0  for |w—y,|<|L—y,l.

Then the terminal value problem (1.2) has a solution.

Proof. Assume gy, << L and consider the problem

2
(4.9) W' hw)w' =0, w(f) == wo<Yo, w(t)=7[h(s)ds.
L w(t)
It is w'(t) = [h(s)ds — [h(s)ds, hence w(t) < L, since w'(t) cannot change its
. We Wwg ) L
sign: therefore lim w(t) = L. Moreover, note that for any = 37(',,”> Jh(s) ds.

] Yo
The results of section 2 enable us to affirm that w(t)<#.(t)< L and to conclude

the proof of the theorem.

~ Remark. The analysis performed above can be applied equally well,
with only minor modifications, for the study of the problems

(4.10) ¥y +alt,y)y' =0, Ylbo) = 9o, limy@)=1L,
>t
(4.11) Y+ alt, )y =0, limyl)=1L,, limyd)=L,.
Frrem 00 t—t
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Sommario

St studia il seguente problema ai limiti su intervallo non limitaio

y'+alt, )y'=0, limy@)=1L, y'()£0.
- - t®
8i costruiscono soluziont di appropriate successioni di problemi ai limiti su intervalli
limilati e si prova che esse convergono alla soluzione del problema dato. Si suppone che la
funzione a(t,y) soddisfi appropriate condizionsi quando y tende ad I ¢ i tende a -+ oo.

F ok R



