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A new solution of Marathe gravitational equation (**)

A GIORGIO SESTINT per il suo 70° compleanno

1. - Introduction

The mathematical model of the modern theories of gravitation is essentially
a 3-plet (M, g, T), where M is the «space time», i.e. a differentiable mani-
fold with dimension 4, g is a Lorentz metric on M, T is a symmetric tensor
field on M with rank 2 (energy-momentum tensor) which represents the matter
content of the universe, and which is related to g by a «field equation» on M.

The first field equation that has been proposed, and still the most studied
one, is Finstein equation. The main reasons of its interest are simplicity, con-
servation of energy and good experimental tests (if we exclude the atomic
and cosmological scale). However, nobody tells us that energy is conserved on
a cosmological scale, and the physical laws we use to describe phaenomena at
present time may well fail for times in which the conditions of the universe
were quite different from now. It is therefore natural that other field equations
have been proposed; one of these is Marathe equation [1];.

(1) r— (1/4)r,g=T— /)T, g (),

(*) Indirizzo: Istituto di Matematica, Universita, Via Arnesano, 73100 Lecce, Italy.

(**) Work supported by C.N.R. scolarship. The contribution of Liana Guercia
regards the study of the polynomial f(R) (n. 5) and numerical computing. Ricevuto:
20-X11-1978.

(*) We use a unit system in which y = ¢ = 1, where y is the coupling constant
of Linstein equation and ¢ is the speed of light, and the unit of length is the light
year (ly).
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(where r is the Ricei tensor on M and 7, and T, are the traces respectively
of r and T).

This equation was considered by Einstein himself (who however preferred
an equation which, as we shall see, is more restricted, in order to have con-
servation of energy), and it was applied by Penney [5] to the construction of a
non-quantistic electron (he supposes the conservation of energy to be an
average maeroscopic property of matter).

Recently, Marathe [1], » has reproposed this equation showing its interesting
mathematical properties; a further study has been made by Marathe himself
and Modugno [2],[4], who among other things have shown that Marathe
equation gives the same results as Rinstein’s in the cases of spherically sym-
metric and cilindrically symmetric vacuum fields, and in the study of shock
waves in gravitational fields.

To see that (1) is more general than Einstein’s, observe that it may be
also written

(1a) r— (1/2)rg + Pg =T,

where @ = (1/4)(r, + T,) is the « cosmological funetion ». Applying the diver-
gence (or left-codifferentiation, see [4]) operator & to the two members of eq. (1a),
we ootain its differential form

(2) 0T = 4P ;

then, we see immediately that, if Marathe equation holds on M, the following
conditions are equivalent

(E1) Hinstein equation holds on M.
(E2) @ = constant (cosmological constant).

(E3) 0T = 0 (conservation law).

The problem of finding new solutions of Marathe equation is then closely
connected to the problem of replacing the conservation law with another
physically interesting condition; moreover, we should bear in mind that the
usual state equations have a form that takes into account the conservation
of energy; looking for new solutions of Marathe equation we shall then have
to consider new kinds of state equaticns, which (as also suggested by the form
of eq. (2)) may contain further geometrical parameter (for example eurvature),
considering a deeper interaction between the gravitational field and matter.

The non-constancy of the cosmological funetion distinguishes between
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Einstein and Marathe equations; the distinction might be important in the
past of the universe, for small values of the scale function E: 50, new cosmo-
logical models are possible; we are particularly interested to see if, among them,
there are some which show no singularity; however, we think that there are
other reasons of interest in a deeper physical study of Marathe equation.
For example:

— creation of mass (e.g. it is easily seen that Marathe equation admits,
differently from ZEinstein, a stationary non-static solution, with non-zero
density and pressure);

— the presence of the cosmological function might account for the
diversity between the observed and calculated (through the standard model)
density of mass of the universe.

2. - Gravitational pressure

Let us consider the following case

(3) T=1pg+ @+pv@v,

(energy-momentum tensor of a perfect fluid with pressure p, density u, velo-
city »). Bq. (2), when decomposed to its space and time components with
respect to v, gives then

(22) (p+pVeo=d(P—p),  (2b) v.u+ (p+p)v=—0v. 0,

(where V is the covariant differentiation operator, d+ is the space component
of the exterior differential and w». is the Lie derivative operator in the direc-
tion of v.

Eq. (2a) is the new «law of motion »; the spatial gradient of the cosmolo-
gical funection appears in the expression of the force, besides the pressure’s
gradient. It can be seen that if the cosmological function is not constant, the
gravitational and inertial mass may not coincide.

Eq. (2b) is the new « conservation law », the word « conservation» having
a more general sense than usual: the last term being non-zero we may have,
for example, creation or destruction of mass.

Let us now consider the limiting case y = 0; eq. (2b) becomes then

(4) : pov =—v. P



480 D. CANARUTTO and L. GUERCIA [4]

-if the last term is non-zero we have that in absence of matter there is a residual
pressure, that we regard as a «gravitational pressure»: in other words we
may consider a more general case of vacuum field, in which the pressure is
non-zero. Putting off to further works the not easy task of studying in a general
way the problem of the state eguations and of the conditions which may
replace the conservation law, we are going now to make a simple hypothesis,
which will lead us to an example of the interest and of the possibilities of the
new theory of gravitation.

Let us suppose dv % 0 (that is we consider the case, which is physically
interesting, of a «non-static universe»), and, in the general case u 7= 0, the
pressure to be the sum of two terms, p = p'+ p". Let it be

, —v.D

(5) r= oo !

that is, p’ has same expression as the gravitational pressure in the case g = 0.
From eq. (2b) it is immediately seen that

(6) vop A (k) ow =0,

that is, u and p” satisfy a conservation law, analogous to the law which holds
for 4 and p in the case of the Einstein equation. We shall then regard p’ and p”
respectively as the « gravitational term » and the « material term » of pressure,
the second being related to the presence of matter, and the first having a cosmo-
logical character (in our model we shall request that its present value is very
small).

3. - Spatially homogeneous and isotropic universe

We are looking now for a spatially homogeneous and isotropie solution.
Let the metric tensor have the Robertson-Walker expression

dr & dr
(1) g=—At®dt + B [;L_@-]% 4 A0 ® d0 -+ sin2 0 de & de)l .
Let it be v = — d¢; let the energy-momentum tensor have the expression (3),

with ¢ and p constant on the spatial surfaces perpendicular to ». From eq. (1)
we have then

—RR+ R4k 1
®) Attt
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where the dot means derivative with respeet to the cosmie time ¢. (This equa-
tion follows from both time and space components of eq. (1), while from Einstein
equation we obtain, in the analogous case, two independent conditions).
Taking into account the definition of @ it becomes

Rk .
(8a) 3 (—E_t—) =y P.
Eq. (5) becomes
, 1R .
(5a) P=—339

We suppose morcover the state equation p”= 0 to hold, that is we con-
sider a « pure matter » universe, in which the pressure is only gravitational.
Eq. (6) gives then

(62) pR? = m = constant,

which is the mass conservation law. Besides egs. (8) and (5a), that we rewrite
in this case '

1R ;
(©) r=—3p%

we need, to determine a solution, another independent condition in the un-
known funetions R, u and p.

4. - Choice of a particular expression for @

Tet us now observe that if the universe is represented by a cosmological
model which satisfies Marathe equation, the present value of the cosmological
function must be small, so that at present Einstein equation holds approxi-
mately; however this may be not true for some time, and in particular for the
period (if it has effectively occurred) in which the value of the scale function
was very small.

As an example of such a possibility we consider interesting the case, al-
though it does not descend from a general study of the state equations, in
which @ oc R™% where « is a positive constant: @ tends to 4- co when B — 0,
and tends to 0 when R — -+ oo. Moreover, as uoc R-3, for o> 3 the effects
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of the cosmological function will be predominant over those of density for very
small R, and the converse will happen for large R.

Let it be
(10) b= PO, R, with §,eR.

From eq.s (8), (9) and (10) we obtain

(11) p = nk-*  with n = - @, (that is p = _ @),

WIR
W R

@, + mR> — 3R
R* ’

(12) 3H? =

1 0k (/3 — D))
Hﬁm+_fﬁ—w’

(13) q=%ﬂ+

where H = R/R and ¢ = — RJ'."B/R2 are respectively the « Hubble parameter »
and the « deceleration parameter ».

In eq. (12) we can easily separate the variables R and ¢, but we obtain an
integral that in general cannot be caleulated in closed form. Sometimes how-
ever it is possible to get the qualitative behaviour of the function R by meang
of the study of its extremal points: at the maximum and minimum points the
parameter H will vanish and the parameter ¢ will take respectively positive
and negative values; at the inflection points the parameter ¢ will vanish.

Let now R,, H, and ¢, be the values of R, H and ¢ at the time ¢,. From
eq.s (11), (12) and (13) we obtain easily that

(@) we have H, = 0 if and only if f(R,) = @, -+ mRe — SERe2 =0,

D
(b) we have ¢,>0 (¢, <0) if and only if R3> — (¢ — 2) ;7—5

s D,
(Rb <—(x—2) ;7:)

5. - Model with « integer > 3 and @, <0

We are particularly interested in the case « > 3 in which, as we have al-
ready observed, we have a model that approaches th> standard model for
large R, but that may be different from it for small B. In particular, we see
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[7]
from condition (b) that if @, < 0 (that is, if the cosmological function and the
gravitational pressure are negative), we may have some minimum points,
unlike the case of Einstein equation. If moreover o« is an integer, f(R) = @,
-+ mR*3 — 3kR** is a polynomial and its real roots can be studied by means
of the Sturm suecession associated to it: the positive roots correspond to ex-

tremal points of R. .
Let it be: o tnteger > 3; @, < 0. We now distinguish three cases according

to the value of %.
1% case: k= + 1. The equation f(R)=0 has two real positive and

distinet solutions R, R, if and only if the following condition is verified

me 2o — 3)%3

(14) Pl < gty —gyes
Log R
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The minimum of R@) for « =4, m = 1011y, |d,|=10"(y)?>, k = + 1 (units
are those of note (***)). For large R the behaviour is substantially that of the standard
model (dotted line). The cases k = 0 and & = — 1 are analogous.
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we have f(R) > 0 for values of R belonging to the interval ]R,, R, [ and then
eq. (12) has real solution with range # = [R,, R,]. Moreover we have RI™®
< (o — 2)(|Dy|/m) < RI®, that is R, and R, correspond respectively to minima
. o—3

and maxima of the function R. R, = V/(a— 2){®,|/m corresponds to oblique
inflection points. Moreover, the smaller ||, the smaller will be R, and Ry,
and the nearer will be R, to m/3, which is the maximum of the standard model.
The solution then approaches the standard model but has no singularity, since
when R reaches the minimum it starts growing again, repeating a cycle which
is identical to the preceding one (see figure).

It | @ |> (m*2(a— 3)*~3)/(3%~2(e — 2)~2), there is no real positive root of
f(R), or at the most one double real positive root. Since in this case f(R)<0
for R >0, eq. (12) has no real non-static solution.

2™ case: k== 0. The equation f(R) = 0 has always one and only one

o3
real positive root, R, = v/ |®,|/m, which is immediately seen to correspond
to a minimum of . There is an inflection point for & = R,. For large values
of R we have again substantially the standard model, but there is no singularity.

3™ case: k = — 1. The equation f(R) = 0 has one and only one real
positive root, which corresponds to a minimum of R. For R = R, there is an
inflection point; for large values of R we have substantially the standard model,
but there is no gingularity.

6. - A numerical example

If o« = 4 it is easy to caleulate explicitely R(f) by integrating eq. (12), and
for this value of ¢ we have drawn the graph; moreover, the extremal values
of B are simply found sinee f(R) is of the second (if & == 0) or of the first degree.
For example, if k= -1, we have R,= (1/6)(m — vm*— 12]d,]), R,
= (1/6)(m 4 vVm® — 12 [@,]). Let @,, R,, H, cte. be the present values of the
corresponding functions. Let us suppose |®,| to be small enough so that we
have substantially ¢ = (1/2)(1 -~ k/R?) throughout the period which can be
observed by our instruments, that is since the time in which R was about
(1/4) Ry: in this case the method used to estimate the value of ¢, (see [5]X42)
is substantially correct; taking g, ~ 1; H, ~ 7.3 -1021(1y)* we obtain k = 4 1;

R ~1; R, ~1.4-10%1y, and then the requested condition is surely verified
if |Dg]=~10-24(ly)-* (which is smaller by five orders of magnitude than the
value which is estimated to be the largest possible one for the cosmological
constant in the Einstein equation).

We have then. |@; |~ 3.7-10%%(ly)? and, from eq. (8a), y, =~ 3.2 -10-20(ly)—2
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(corresponding to g, ~ 2-10-3°¢ em~3); m ~ 8.6-10°ly. We have then m?
> 12|®,|, and the values of B at the minimum and at the infleetion points
result B, ~ 4.3-10°1ly; R, ~ 2R,. The value of |®,| could be experimentally
estimated by precise measures on very low density systems; however even if
it is to small to be detected in this way, the cosmological function may well
be important in the past; from this point of view it may be interesting a study
of the problem of the aboundance of the elements.

Notice that the smaller the value of |®,|, the lower will be the reached
minimum, and then more pronounced will be the « big bang» effect.

The authors wish to thank prof. Marco Modugno (Istituto di Matematica
dell’Universita di Lecce) and Prof. Claudio Chiuderi (Osservatorio Astrofisico
di Arcetri-Firenze) for their aid and encouragement.
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Riassunto

Proseguiamo, da un punto di vista fisico, uno studio dell’equazione, pit generale di
quella di Einstein, proposta da Marathe [1],, € le cui inleressantt proprields sonmo stale
studiate da Marathe [1];,, (21 e da Modugno [2], [4].

Discutiamo Vinteresse e la possibilita di nuove soluzioni che non siano soluzioni del-
Vequazione di Hinstein, e proponiemo un modello cosmologico che st avvicina a quello
standard ma non ha la singolarita iniziale.
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