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The Burgers’ equation

in radiative magnetogasdynamics (*¥)

A Giorero SEsSTinNi per il sue 70° compleanno

1. - Field equations

We consider the unsteady flow of a viscous, heat-condueting and electrically-
conducting gas at a temperature sufficiently high (7' > 10° °K) for thermal
radiation to be consistent.

Within the differential approximation the basic equations are [2]: the con-
tinuity equation

0
(1) a—f+v-(9v) =0,

where p and v are the material density and the gas velocity, respectively:

o

the momentum equation

0
(@) 0 (5 + v V) v=—V(p+pa) + u(VAHAHAV 7,

where p and pp are the gas dynamical pressure and the radiation pressure,
respectively, u is the magnetic permeability, H is the magnetic field and 7
is the viscous stress tensor: t7s = n(dv[ozs -+ Ovs[0x") -+ O(0v*[da¥) 07, n and O
being the viscosity coefficients; the Maxwell equations

cH

(3) o =VA@AHL) —VAGVAH),
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v being the magnetic diffusivity. In equations (3) the magnetogasdynamics
approximation is used, in which the displacement current is negligibly small
compared with the curl of the magnetic field. In addition there is also: the
energy equation

2

e : Iy
@ elg v V) (G =+ sV (V) o L

+ V(3VT) + V(D VEz) ,

where Cy is the specific heat at constant volume, 7 is the absolute tempera-
ture, J = VAH, o is the electric conductivity, I, is the radiation energy
density, x is the heat conductivity and D, the diffusion coefficient of the radia-
tion. Equation (4) is obtained by wusing the Milne-Eddington relation
Pr =+, and assuming that B, = a, T4, a, being the Stefan-Boltzmann con-
stant. This last assumption confines our research to the socalled thick gas
approximation. More general situations embodying the case of a grey gas of
arbitrary opacity are under current investigation and will be published else-
where. Finally we have the equation of state of the plasma

(5) p = Rol.

2. = One-dimensional propagation

We consider now one-dimensional propagation in which the following as-
sumptions are made: (A) the flow is parallel to the z-axis: » = (u, 0, 0);
(B) all unknown functions depend on # and ¢ only; (C) the magnetic field is
planar and perpendicular to the flow direction so that H = (0, H,, H,).

Under the above assumptions the system (1)-(4), taking into account equa-
tion (5), can be written in the form

(6) U, + AU, + KK, U,), =0,
with
I} w 0 0 0 0
RT
% — « # H, H H, o)
U= |H,]|, A= 8 4 4 ,
H~ 0 H, u 0 0
3 0 I, 0 i 0
T 0 NM 0 0 "
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where = 29 4 0 is the longitudinal viscosity and

T3

P
4

4 4
¢:R+§an ﬂ[:p+§En,

N = (o0 + dapT°), % =y + 4DrapT? .

3. - Dispersion relation

The system (6) is a general dissipative system [3], the study of which can
be reduced to the study of the Burgers’ equation. To achieve this we first
deduce the linear dispersion relation. Looking for U in the form U = U, + U,
|U"| «|U,|, with U, being a constant solution of (6) given by

and linearizing the system (6) with respect to U’, and assuming that U’ is
proportional to exp [i(ke — wt)], we obtain the linear dispersion relation

(7 det (— VI -+ 4y -+ ikI) =0,
where V = w/k is the phase velocity, I is the unit matrix, 4, = 4(U,) and
K, = K(U,), with K = K, K,. Excluding the case V - iky = 0, equation (7)

gives

Vo VS (S Ny ) — P (RT,+ My Nodh+
Jo

H2 1\77 - T H2~
Ho y (& oo ¢ vNo 7o)} — bV { vM, Ny o+ #NoHodo |
QO 90 Q() \QO

Ly No’}zo
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+RTo(v + Ny %) + k2 } 4+ B2 RTwN,xo=0.
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For small values of &, expanding V around a non-degenerate finite and non-
zero eigenvalue of d,, Vo= -+ (RTy + M,N, ¢o + u(H[0,))}, we obtain

v . - lokod
V=V {1+ a;k+ 0Ok}, a, = ’Lﬁ, o= — OZO:IOO,

where [, and d, are the right and the left normalized eigenvectors of 4, cor-
responding to the eigenvalue V,. We have

do=D | Hy |, D= {08+ V-4 H:+ MINHE,

ly = L(RT,, Qo Vo, /U'Hm)y //'Hsoy Oo Do) 5

L = {(RT°)2 + (00 Vo) + (uHo)® -+ (00 9—1’0)2}_}?

[Ny

so0 that
1 CVE_LH;“; = NI O
“:217;(90 ; Ggo—}‘}jol\of o do))
. i Ve (Hy o~ . 2
V=7V, ~2V§ ( o + % + e N My o) k -+ Ok .

4. - The Burgers’ equation
Since the phasor of the wave becomes
ke — ot = k(o — Vot) — Voa, kt

following the perturbation method given in [4], we introduce the coordinate-
stretching of Gardner and Morikawa

E=c¢elw— V,i), T = g%,

where ¢ is a parameter so that ¢ = O(k).
In terms of the variables & and t the system (6) can be re-written as

o 0T | LU _
(8) ey T U=l oo+ e K g =0,
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We now expand U around the uniform state U, as a power series in the scale
parameter e
9) U=3¢07,,
¢—0
and impose the boundary conditions

(10) Im Us="U,= lim U,=0 (g=1).
X—>—00 X—>—c
By introducing expression (9) into equation (8), equating to zero corresponding
powers of ¢ and taking into account the conditions (10), we find to the first
order U; = dyu!V, where u" is one of the non-zero components of U,.
Finally, from the second order terms, we see that «® satisfies the following
Burgers’ equation

® i N
(11) 8 + Bu au o o0%u (8 = Ty [do(VyA)o] do) ,
o0&? lod,

where «, ), d, are given in 3 and V, denotes the gradient in the U space.
A straightforward calculation gives

D - . L, om
(12) f =7 (BTo+ 5 (Pugort Vi -+ M H00) + p i 3 4ot I,

with

B 4aR

P=E(MN—T), Q= o (_MV——T) W:g(MN)é—}—MN(MN)I’,.

It is well known that the non-linear equation (11) is exactly solvable by means
of the Hopf transformation « = — («/8)(log 2);, which reduces it to the
linear heat equation

o _ o
or  *ec
In this manner it is possible to construct [1] the steady solution of the Burgers’
equation

uBDE .
= ) (u(1)>0) »

ug = —u'Y tanh (
known as the Burgers’ shock wave. .
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5. - A particular thermodynamical case

Because of its remarkable simplicity we only consider a perfect polytropic
gas B = C, — Cy in the particular case y = C,/Cy = 4/3. We have MN = 1T
and

2 Po = Pr H g
Vi=y———" oy =
0 Y 0 4 o0 ’
which is the same as in non-radiative magnetogasdynamics except for the
replacement of the gas dynamical pressure with the total pressure (gas dy-
namical -+ radiation pressure). On the other hand we find that

2R
P:-—l, Q=0, W=
3 0

O
“’ﬂ
=
S
I
I

while the coefficients o and § in the equation (11) reduce to
VZ
(,QOVO @i+ Loy lgm,,

2D 1
=g lgwotmm +3 Sl
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Abstract

The system of equations governing the radiative magnetogasdynamics of a thick gas layer
is wrillen in the form of a general dissipative system in the case of one-dimensional pro-
pagation. This sysiem is reduced via the perturbation method of Taniuti and Wei[4],
to the Burgers’ equation, which is exactly solvable. A particular thermodynamic case is
considered.
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