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An evolution problem
arising from a stochastic population model

with nonlinear birth and death parameters (**)

A Gioreio SEsTINI per il suo 70° compleanno

1. - Introduction

The theory of semigroups of linear bounded transformations was used in [1]
to study an evolution problem arising from stochastic population theory.
Existence and uniqueness of a positive and norm invariant solution were
proved, assuming that the birth and death parameters are linearly depen-
dent on the population size.

Such an assumption may not be realistic in a physical phenomenon such
as a population growth. In this paper, we examine a more general «birth and
death » process, in which the parameters are not linearly dependent on the
population size. We prove that the initial value problem has a unique posi-
tive and norm invariant solution belonging to the Banach space of all sum-
mable sequences.

Let P(n,t) be the probability that, at time ¢, a given population (e.g., &
population of bacteria in a culture) is composed of » individuals. It is known
that a general method to derive the distribution of the population size at time ¢

(*) Indirizzo: Istituto Matematico, Universita, V.le Morgagni 67/A, 50134 Firenze,
Ttaly.
(**) Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.). — Ricevuto: 4-XII-1978.
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malkes use of the Chapman-Kolmogorov equations [4]. Following [2], a general
«birth and death » process leads to the study of the system

(1) ap(gz, 0 =—[pn) + q@)ln Pin,t) 4+ pn—1)[n—1]Pn—1,1)

+ qln - 1)[n 4 1]Pn -+ 1,1) (t>0,n=10,1,2,..)),

with the initial conditions

(2) Pln, 0) = Py(n) n=10,1,2,...).
In (1) and (2), P(—1,%) = 0 and the P,(n) are given so that

(3) 0< Py(n) <1, Py(n) = 1.

ipAs

n

Moreover, the parameters p and ¢ are assumed to be nonnegative functions
of the number » of individuals, and such that

(4) O<pi<p)<po << o0, O<q<q(n)<ge < oo, (n=0,1,2,..)

where p;, ¢, P, ¢s are given constants.

Note that system (1) can be derived under the assumption that, for a given
population size, births and deaths occur independent of each other. Also, if
the population size is % at time ¢, the probabilities of birth events and of death
events during the time interval At are respectively p(n)nP(n,t)4t and
g(n)nP(n, t) 4.

To explain the « physical » meaning of system (1), we note that the pro-
bability P(n, t) of having a population of n individuals at time ¢ is increased
by birth events in a population of (r — 1) individuals (see the term p(n — 1)
‘[n—1]P(n — 1, 1)), and is decreased by birth events in a population of » in-
dividuals (see the term — p(n)nP(n, §)). A similar explanation holds for death
events. o

Finally, the initial probabilities P,(n) must belong to [0, 1] and > Py(n) =1,
in agreement with their physical meaning. n=0

2, -« Definitions and preliminary remarks

Let X = I' be the real Banach space of all summable sequences of real

numbers f = {f(n), » = 0,1,2,..} with norm [f| = Y |f(n)| and let X+ be

n=0

the closed positive cone of X: X+ = {f: fe X; f(n)>0, n = 0,1, 2, e}
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System (1) suggests us to introduce the auxiliary operators H, defined by
the diagonal part of system (1), and K, defined by the non-diagonal part.

() [Hfl = [p(n) + q(n)]nf(n) (n=0,1,2,..),
DU = {f:fe X5 3 [p(n) + a(m]nlfm)| < oo},

(6) [Kflo=pn—1Nn—1]f(n—1)+qn+Dn+11fn+1) w=1,2..),
[/l = ¢)1(1),

where [Hf], denotes the (n 4 1)-th component of the element Hf e X. Fur-
ther, let us define the following operator '

(7 [Af], = — [Hf], + [Kfl., D)= {f:7eX; > [[4f].|< oo}.

n=0

Note that D(H) c D(4), because, if fe D(H), then

S A7l < 2 3 (p0) 4 am)nlfn)] < oo

and so f e D(4). Thus, if we consider the operator (— H 4 K) with domain

D(— H 4 K)y= D(H) N D(K) = D(H), then — H 4 K c A. Moreover, let D,

be the linear manifold spanned by the canonical base of X, i.e., let D, be com-

posed of all the elements of X with a finite number of nonzero components. We

define the operator A, as the restriction of A4 with domain D(4,) = D,.
Following [3];, we finally put k

(8) A, =—H+rK, D4, = DH),

where » is a real parameter, such that 0<r<<1. A, is, in some sense, an
operator « approximating » A, because, if feD(H), we have |4f— A.f]
= (1— )| Kf]|| =0, as » =1-. However, this will become completely clear
in the following sections.

3. - Properties of  and K

In this section, we shall investigate some relevant properties of the oper-
ator H and K. We have
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Lemma 1. (a) H is densely defined in X; (b) for every 2 > 0, (2 + H)™?
e B(X) with |(z] 4 H) gl <z g|, Yge X; (¢) H maps D(H) N X+ into X+
and (zI 4 H)=t maps X+ into ilself Yo > 0; (d) for every 2> 0, H(el + H)*
€ B(X), with |H(zI + H)*g]<|g], Yge X.

Proof. (a) Is obvious because D, is dense in X and D,c D(H).
(b) We have directly from the equation (¢ + H)f =g, ge X, 2> 0:
fn) = (z + (p(n) 4 ¢(n))n)~1g(n), and fe D(H) because

Stpm) + gonlion) ] = 3 —LEAOR ()< $ Jgtn) | < oo

Moreover, [f] = (eI + H)-*g] <#]g].
(¢) If ge D(H)N X*, then
[Hgl, = [p(n) + g¢(n)lng(n)>0 (n=0,1,2,..),
[(zI + H)'gl, = (2 + (pn) + g(n))n)"g(n)>0 n=20,1,2,..)
and (¢) is proved.
(d) It follows from (b) that the operator H(zI 4 H)~! has ddmain X.

Now, H(zl + H) 'g=g— 2@l 4+ H)'g, VgeX, 2> 0, and, if peX* we
obtain from the preceding equality

o1 [p(n) + g@n)ln -
[H(ZI+ H) (p]n - z _*_ [p(n) + (1(71)]’)% (p,,/(),

Finally, if fe X, let

)y =—fm) if f(n) <0, fny=0 if f(n)>0,
frin) = fn) if f(n) >0, fin) =0 if f(n) <O.

Then, f = f+—f=, fre X+, f~e X%, |f] = |f*] + /-] and so,

|HEL+ )2 <]+ 1= 11
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Lemma 2. (a) K maps D(H) N X+ into X+; (b) |Kf| < |Hf], ¥f € D(H);
(c) |Hf| = |Kf], V¥ e D(H) N X+

Proof. (a) If ge D(H) N X+, we have

[Kgl, = p(n— 1)[n— 1g(n— 1) + g(n + Dn + 1)gn 4 1)>0

and so, Kge X+,

(b) We now have from the definitions (5) and (6)

ca

1K1 < 3 pn—1)n— 11— 1] + 3 gl + Dln + 1]} + 1|
< 3 (pw) -+ qm)nlfm) | = |HF] ¥f e D(H).

(¢) Immediately follows from the previous relation, with fe D(H) N X+,

Lemma 3. The linear operator F(z) = K(zI -+ H)"Y, 2> 0, has the pro-
perties: (a) ) e B(X), |FEfl<lfl, V2> 0, feX; (b) F(z) maps X+ into
itself.

Proof. The operator F(z) is defined over the whole space X, because the
range of (2 + H)™' is D(H) = D(XK).
Finally, (a) and (b) are easily proved by means of Lemmas 1 and 2.

Remark. The proofs of the preceding lemmas are based upon some
results obtained by Kato, [3],; see also [1].

4, - The abstract problem

System (1)-(3) leads to the following initial-value problem in the Banach
space X

il
9) E(l_tu(,;) = Adu(t), (>0), X-—Ilimu(t) = u,,

=0t

P(0,1)
where 4 is defined by (7), u(f) = <P(1: t)) is a map from [0, + oo) into X,
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P,(0) ) L
Uy = ( P0(1)>’ and d/df is a strong derivative, [3]..

By wusing definition (8), we also consider the «approximating » initial-
value problem )

d .
(10) T w(t;r) = Ad,w(E;r), (>0); X—limw(t;s) = u,

t—>0t

where r € [0, 1).
As far as the «approximating » problem is concerned, we obtain from
Lemmas 1, 2 and 3:

Lemma 4. (a) The « approvimating » operator A,€ 9(1,0;X), 0<r<<1,[3],;
(b) the semigroup {Z,(t) = exp (¢4,), >0}, generated by A,, maps X+ into itself,
for every t>0.

The preceding lemma can be proved without difficulty, by means of pro-
cedures similar to those used in [3];.

Let us now return to the « approximating » problem (10). We can state
the following theorem.

Theorem 1. The «appromimating »inittal-value problem (10), with 1[0, 1),
has the unique strict solution w(t; r) = Z,.(t)u, € D(H), (t>0) if u, € D(H), and
w(t; r) e DH) N X+, if wye D(H) N X+, '

We are now in position to define the operator Z(t)

(11) Z2()f = X —Hlm Z.(t)f , t>0, felk,

r>1"

whose relevant properties are summarized in the following theorem, [3],.

“Theorem 2. (a) Z({) is a semigroup such that |Z(@)f|<]|fl, t>0,
feX; (b) Z(tyge X+, Yge X+ and |Z(t)g| = |g|, Vg € X+; (¢) the limit (11)
holds uniformly with respect to t in each finite interval [0,%,]; (d) #f G is the
generator of Z(t), then A,c— H + Kc Gc A.

Remark. Note that ¢ is the smallest extension of 4, (and also of
— H 4 K). In [3], is proved that, if {Z'(1),¢>0} is a semigroup such that
Z'(t)>0 and its generator @' is an extension of A,, then Z'({)>Z(t), ¢t>0.
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If we now consider the initial-value problem
d " .
(12) Etv(t) = Go(t), 1>0; X —limo(t) = upoe D(G),

t—0*

then, by using Theorem 2, system (12) admits one and only one solution of
the form

(13) (t) = exp (Gt)u, ’ U, € D(GF), (t>0).

On the other hand, if we assume that w,e D(H) N X+c D(G) N X+, then
the solution »(f) € D(G) N X+ c D(4) N X+ and

(14) o@) ] <uo] Vi=0.

Since @ is a restriction of 4, Go(t) = Av(t), Vi>0, and so v(f) also satisfies the
initial-value problem (9). We conclude with the following theorem.

Theorem 3. If wu,€ D(H) N X+, the initial-value problem (9) has the
strict solution u(t) = v(t) = exp (Gt)u,. Such a solution is the X-limit as r — 1~
of the strict solution of the « approximating » initial-value problem (10). More-
over JJu(t)] < [lue], Vi>0.

5. = Preservation of the norm of v(t)
In this section, we shall prove that
(15) lexp (GO)f || = /], fe X+ (t>0).
To this aim, we introduce the space X* of all bounded linear forms on X
Xo = {fr:fr = {f*), n=0,1,2,..}, |f*] < oo},

with norm |[f*| = sup {|f*®)], » = 0,1, 2,..}.
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If feD,, then we have

8

(16) (7% Aof) = 3 (F4n), — [p(n) + gm)nf(n) + pn — 1)[n— 11fn— 1)
+ gln 4+ 1) [n + 1ljn 4+ 1))

= — 3 up(a)fHn) fn) — 3 ngn)f*(n)f(n)

0

i

n

+ 2 mp(m)f*(m + 1)f(m) + 2 mq(m)f*(m — 1)f(m)
= i{“ a[p(n) -+ q()1f*(n)f(n) + npn)[*(n + 1)f(n)

+ ngn)f*(n — 1)j(n)} .
We are now in position to find the adjoint A, of the operator 4,, where D(4)
is composed of all f*e X* for which a g* e X* exists with (¥, 4,f) = (g%, /),
for all fe D,.

Using of (16), we obtain

[y, = g*(n), DA} = {f*: f* e X%, g*e X%},

where
17 g*n) = — nlpn) + qn)]f*() + apn)f*(n + 1) + ng(nr)f*(n — 1)
provided that sup {|g*(n)], n = 0,1, 2, e} < oo

Now, the semigroup exp (G¢) satisfies (15), if, for some 1> 0, the equation
(18) (A — A)f*=0

has no solution f*=5£ 0, {3];.
By taking into account (17), the equation (18) may be put into the form

(19)  Af*(m) + nlp(n) + ¢@)1f*m) — ap) (0 + 1) — ng(n)f*(n— 1) = 0,

where n = 0,1, 2,.... It follows from (19) that f*(0) = 0; furthermore, we
obtain, for n =1, 2, ...

0+ n(pm) + q)} ) = np) fn + 1) + nglw) f5(n — 1) ,

where [f*] = sup {[/*n)], n = 1,2, ...} < co.
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Sinee 1 is a positive number, we have

1) = [2 + p(Q) + ¢ pM) (2
(20)
g*(n) = [2 + np@) + ng(n)"{pn)[n + 1lep*(n 4 1)

+ gm)n — 1 — 1)} ,

where p¥*(n) = f*(n)/n, n = 2,3, ....
If system (19) has a nontrivial solution f* eX\, it is possible to find an

integer 7 such that
(21) w=sup {{p*n)|, n=2,3,...} =|¢p*®)] .
By using (21), we have from (20)

np(n) + ng(n) + p(n) — g(n)
A mpm) + nglny

¥ =

with n = 2, 3, ...; and in particular for n = 7

. np(R) + ng(®) + p@) — q(7)
(22) ST T @) + ngm)

First, consider the case p,> ¢, (see [1]).

Then, A > p,— ¢, implies that

(23) s np( )

and so inequality (22) leads to u = 0. Secondly, consider the case p,<q,. Then
p(7) — q(7)<0 and g = 0, because A is a positive number. Hence, if p,, ¢,
Psy ¢ are given (see (4)), it is clear that the system (20) has only the trivial
solution ¢*n) =0 if 1>|p,— ¢| and so f*(n)=0, for n=2,3,.... On
the other hand, also f*(0) = 0 and f*(1) = 0. Hence, equation (18) has only
the trivial solution, provided that A>|p,— ¢].

We can now use theorem 3 of [3], and conclude that jexp (Gt)f| = |f],
fe X+ t>0.

Moreover, exp (G¢) is the only semigroup whose generator is an extension
of 4,.
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Let us now discuss briefly some consequences of (15). If w,e D, N X+

and fu,| = > Py(n) =1, then the solution u(f) = exp (Gt)u, of the initial-
n=0

value problem (9) is such that
fu®)] = fexp (Gt uy|| = |u,] = 1 t=0),

where u(t) = {P(0, 1), P(1,1), ..., P(n, 1), ...} € X+.
Since P(n,t) are probabilities, the meaning of the relation [u(t)]

= > P(n,t) =1 is obvious.

n=0
6. - Concluding remark

If it is assumed a deterministic law of growth for a «birth and death »
process, then the corresponding population size at time ¢ is the expected value
of population size under stochastic assumptions. Therefore, it is of some in-
terest to study the first moment of the population under consideration.

Now, the first moment is defined by

N(t) = {n)(t) = > nP(n, 1)
n=0

and is the expected value (average number) of individuals. If the parameters P
and ¢ in the system (1) are independent on =, i.e. they are given constants,
then it is possible to derive in a rigorous way the evolution equation for the
first moment N (1), (see [1]).

Unfortunately, in our case, because of the nonlinear nature of the birth
and death parameters, it is impossible to find a similar equation.

In any case, it is possible, for large population sizes, to approximate the
stochastic process by a deterministic process plus a noise term. However, such
an approximation is beyond our purposes.
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Sunto

Si studia un problema ai valori iniziali relativo ad uwn modello di crescila di una
popolazione in cui i parametri di nascita e morte dipendono non linearmente dal numero
di individui. Si prova Uesistenza e Uwnicita di una soluzione positiva ed imvariante in
norma, appartenente allo spazio di Banach delle successioni sommabili, facendo uso della
teoria dei semigruppi di operatori lineari.






