MARCO BIROLI (*)

On the almost periodic solution to some parabolic quasi-variational inequalities (**)

A GIORGIO SESTINI per il suo 70º compleanno

1. - Introduction and results

The problem of existence and uniqueness of an almost periodic solution to a parabolic quasi-variational inequality has been treated exhaustively in the case of coefficients independent on the time, $[3]_{1,2,3}$, and such a treatment can be extended to the case of coefficients depending almost periodically on the time.

The aim of this paper is to give an existence-uniqueness result for the almost periodic solution of the parabolic quasi variational inequalities treated by A. Bensoussan, J. L. Lions [1].

Let be $\Omega \subset \mathbb{R}^N$ a bounded open set with smooth boundary $\partial \Omega$, $\Gamma_0 \subset \partial \Omega$ a bounded open set in $\partial \Omega$ with smooth boundary, $\Gamma = \overline{\Gamma}_0$. Let be $a_{ij}(t, x)$ in $\mathscr{L}^{\infty}(\mathbb{R} \times \Omega)$ (i, j = 1, ..., N) with

(1.1)
$$\sum_{i,j=1}^{N} a_{ij}(t,x) \xi_i \xi_j^x \geqslant \alpha |\xi|^2 \quad \text{a.e. in } \mathbf{R} \times \Omega ,$$

$$(1.2) t \to a_{ii}(t, \cdot) almost periodic in \mathscr{L}^{\infty}(\Omega).$$

^(*) Indirizzo: Istituto di Matematica del Politecnico, via Bonardi 9, 20133 Milano, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 6-XI-1978.

Let be V the subspace of $H^1(\Omega)$ defined by

$$\{v \in H^1(\Omega); \ v |_{\Gamma} = 0\}$$

 $H = \mathcal{L}^2(\Omega)$, V^* the dual of V for the duality \langle , \rangle , $V \hookrightarrow H \hookrightarrow V^*$. Let be $A(t) \colon V \to V^*$ defined by

$$(1.4) \qquad \langle A(t)u,v\rangle = \sum_{i,j=1}^{N} \int_{\Omega} a_{ij}(t,x) \frac{\partial u}{\partial x_{i}}(x) \frac{\partial v}{\partial x_{i}}(x) dx + \lambda \int_{\Omega} u(x)v(x) dx ,$$

 $(\lambda \geqslant 0 \ \ {
m if} \ \ \varGamma = \partial \varOmega, \ \ \lambda > 0 \ \ {
m if} \ \ \varGamma
eq \partial \varOmega) \ \ {
m and} \ \ M \colon \mathscr{L}^{\infty}(\varOmega)
ightarrow \mathscr{L}^{\infty}(\varOmega) \ \ {
m such that}$

(1.5)
$$M\varphi(x) = 1 + \inf_{x + \zeta \in \Omega, \, \zeta \geqslant 0} \varphi(x + \zeta).$$

We indicate

$$K^{\psi} = \{v \in V, \ v(x) \leqslant \psi(x) \text{ a.e. in } \overline{\Omega}\}, \qquad \psi \in \mathscr{L}^2(\Omega) \text{ such that } K^{\psi} \neq \phi.$$

We consider the problem

$$\langle u'(t) + A(t)u(t) - f(t), v(t) - u(t) \rangle \ge 0$$
 a.e.,

$$(1.6) v \in \mathcal{L}^2_{loc}(\mathbf{R}; V), v(t) \in K^{\Psi(t)} \text{ a.e.},$$

u(t) almost periodic in $C(\overline{\Omega}),\ u\in H^1_{loc}(\pmb{R};\ V^*)\cap \mathscr{L}^2_{loc}(\pmb{R};\ V),\ u(t)\in K^{\psi(t)}$ a.e.,

where, $\forall v \in V$.

$$\langle f(t), v \rangle = \sum_{i=1}^{N} \int_{\Omega} f_i(t, x) \frac{\partial v}{\partial x_2}(x) dx + \int_{\Omega} f_0(t, x) v(x) dx,$$

with $t \to f_i(t, \cdot)$ almost periodic in $\mathscr{L}^p(\Omega), \ p > N \ (i = 0, 1, ..., N).$

Theorem 1. Let be $g(t) = \psi'(t) + A(t) \psi(t)$ almost periodic in $\mathcal{L}^{\infty}(\Omega)$; the problem (1.6) has a unique solution.

The Th. 1 allow us to define a mild solution of (1.6) in the case $\psi(t,\cdot)$ almost periodic in $C(\overline{\Omega})$.

We indicate by $u = S_f \psi$ the solution to (1.6) in the case of Th. 1.

Theorem 2. The operator S_f has a unique continuous extension S_f to the space of the $C(\overline{\Omega})$ -almost periodic functions.

Definition 1. Let be $\psi(t,\cdot)$ $C(\overline{\Omega})$ -almost periodic, $u=S_f\psi$ is the mild solution of (1.6).

We consider now the problem

$$\langle u'(t) + A(t)u(t) - f(t), v(t) - u(t) \rangle > 0$$
 a.e.,

 $(1.6)' \quad \forall v \in \mathscr{L}^{2}_{loc}(\boldsymbol{R}; V) , \quad v(t) \in K^{Mu(t)} \text{ a.e.},$ $u(t) \text{almost periodic in } C(\overline{\Omega}), \ u \in H^{1}_{loc}(R; V^{::}) \cap \mathscr{L}^{2}_{loc}(\boldsymbol{R}; V), \ u(t) \in K^{Mu(t)} \text{ a.e.}.$

Definition 2. The function $u_0(t,x)$ is a mild subsolution of (1.6') iff. $u_0 \leqslant S_f u_0$.

Theorem 3. Let be $M\colon C(\overline{\Omega})\to C(\overline{\Omega}),\ u_0$ a mild subsolution such that

- (I) $u_0'(t) + A(t)u_0(t)$ is $(W_{\Gamma}^{1,p'})^*$ -almost periodic $(1/p + 1/p' = 1, W_{\Gamma}^{1,p'}(\Omega) = \{v \in W^{1,p'}(\Omega), v|_{\Gamma} = 0\}),$
 - (II) $u_0'(t) + A(t)u_0(t) \leqslant f(t)$ in $(W_T^{1,p'})^*$,
 - (III) $u_0(t, x) \geqslant -1 + \delta$ a.e. in $\mathbf{R} \times \Omega$, $\delta > 0$.

The problem (1.6)' has a unique solution.

In the n. 2 we give a proof of Th. 1 and in the n. 3, we show the Th. 2; the proof of the two results uses some classical methods in almost periodicity, a result of Charrier-Tronieniello [4] with C^{α} -regularity for parabolic equations.

In the n. 4 we give a proof of Th. 3, which uses an iterative method [2], [9] and an extension to our case of the estimate on convergence of iterates in $\mathcal{L}^{\infty}(\Omega)$ given in [3], [6].

Remark 1. The Th. 2 has been given by T. Norando [10] in the case A(t) = A, $\Gamma = \partial \Omega$.

Remark 2. The condition $M \colon C(\overline{\Omega}) \to C(\overline{\Omega})$ holds in the case $\Gamma = \partial \Omega$; in the case $\Gamma \neq \partial \Omega$ is a condition on geometrical properties of Ω , which holds if $\overline{x}_i \to \Omega_{\overline{x}_i}$ ($\Omega_{\overline{x}_i}$ section of Ω with the hyperplane $x_i = \overline{x}_i$) is continuous in the Hausdorf topology or if Ω is strictly convex.

2. - Proof of Theorem 1

Let be $u_n(t)$ the solution to the problem

$$\langle u'_{n}(t) + A(t)u_{n}(t) - f(t), v(t) - u_{n}(t) \rangle \geqslant 0 \text{ a.e. } t \in [-n, +\infty[, \\ \forall v \in \mathcal{L}^{2}_{loc}(\mathbf{R}; V), \quad v(t) \in K^{\Psi(t)} \text{ a.e. } t \in [-n, +\infty[, \\ u_{n} \in H^{1}(-n, +\infty; V^{*}) \cap \mathcal{L}^{2}(-n, +\infty; V), \quad u_{n}(t) \in K^{\Psi(t)} \text{ a.e. }, \\ t \in [-n, +\infty[.]$$

We indicate again by $u_n(t)$ the prolongate of $u_n(t)$ to **R** by 0.

By the same methods used in [3], we have that, at more after an extraction of subsequence,

(2.2)
$$\lim_{n\to\infty} u_n(t) = u(t) \quad \text{in } \mathscr{L}^2_{\text{loc}}(\mathbf{R}; V) ,$$

(2.3)
$$\lim_{n\to\infty} u_n(t) = u(t) \quad \text{in } \mathscr{L}^{\infty}_{loc}(\mathbf{R}; H) ,$$

and from [4] we have

$$||u_n' + A(\cdot)u_n||_{\mathscr{L}^{\infty(-n,+\infty)}} \mathscr{L}^{\infty(\Omega)} \leqslant C.$$

From (2.2), (2.3), (2.4) we have easily that u(t) is the solution to the problem

$$\langle u'(t) + A(t)u(t) - f(t), v(t) - u(t) \rangle \geqslant 0$$
 a.e.,

(2.5)
$$\forall v \in \mathcal{L}^{2}_{loc}(\boldsymbol{R}; V), \quad v(t) \in K^{\Psi(t)} \text{ a.e.},$$

$$u(t) \in H^{1}_{loc}(\boldsymbol{R}; V^{*}) \cap \mathcal{L}^{2}_{loc}(\boldsymbol{R}; V) \cap \mathcal{L}^{\infty}(\boldsymbol{R}; H), \quad u(t) \in K^{\Psi(t)} \text{ a.e.}.$$

We can show as in [3]₂ that the solution to (2.5) is unique and from (2.4)

$$(2.6) ||u' + A(\cdot)u||_{\varphi_{\infty}(O)} \leq C,$$

where $Q = \mathbf{R} \times \Omega$. From (2.6) and [7] we have easily $u \in \mathcal{L}^{\infty}(\mathbf{R}; C^{\alpha}(\overline{\Omega}))$, $0 < \alpha < 1$. From (2.6), being $u \in \mathcal{L}^{\infty}(\mathbf{R}; C^{\alpha}(\overline{\Omega}))$, we can easily show by standard methods in almost periodicity that u is almost periodic in $C(\overline{\Omega})$.

3. - Proof of Theorem 2

Lemma 1. Let be $\psi \in W^{1,\infty}_{\Gamma}(\mathbf{R}; \mathscr{L}^p(\mathbf{R}^N)) \cap \mathscr{L}^{\infty}(\mathbf{R}^N; W^{1,p}(\mathbf{R}^N))$ and

(3.1)
$$n^{-1} (\psi'_n(t) + A(t) \psi_n(t)) + \psi_n(t) = \psi(t) + n^{-1} \psi'(t) .$$

The problem (3.1) has a unique solution $\psi_n \in \mathcal{L}^{\infty}(\mathbf{R}^{N+1})$ and

$$\|\psi' + A(\cdot)\psi\|_{\mathscr{L}^{\infty}(\mathbb{R}^{N+1})} \leqslant Kn^{\frac{1}{2}},$$

$$\|\psi_n - \psi\|_{\mathscr{L}^{\infty}(\mathbf{R}^{\Lambda+1})} \leqslant Kn^{-\frac{1}{2}}.$$

If ψ is almost periodic in $W^{1,p}(\mathbb{R}^N)$ and ψ' is almost periodic in $\mathcal{L}^p(\mathbb{R}^N)$, ψ_n is almost periodic in $C(\overline{\Omega})$.

The proof of the Lemma 1 uses a method given by E. De Giorgi, S. Spagnolo [5], in the elliptic case.

Let be $w_n = n(\psi_n - \psi)$ we have

$$n^{-1}(w'_n + A(t)w_n(t)) + w_n(t) = A(t)\psi(t)$$
.

Using the transformation $\tau = n^{-1}t$ and (6.11) of [7] (p. 105), we have (3.3) and from (3.1), (3.3) we have (3.2). If $\psi(t)$ is almost periodic in $W^{1,\infty}(\mathbb{R}^N)$ with $\psi'(t)$ almost periodic in $\mathscr{L}^p(\mathbb{R}^N)$ from the linearity of (3.1) we have that $\psi_n(t)$ is almost periodic in $C(\mathbb{R}^N) \cap \mathscr{L}^{\infty}(\mathbb{R}^N)$.

As in [11], [10] we have

Lemma 2. Let be $\psi_i \in \mathscr{L}^{\infty}(Q)$, $\psi'_n(t) + A(t) \psi_i(t) \in \mathscr{L}^{\infty}(Q)$ (i = 1, 2) $Q = \mathbf{R} \times \Omega$, with $g_i(t) = \psi'_n(t) + A(t) \psi_i(t)$ almost periodic in $\mathscr{L}^{\infty}(\Omega)$; we have

$$\|\widetilde{S}_f \psi_1 - \widetilde{S}_f \psi_2\|_{\mathscr{L}^{\infty}(\Omega)} \leqslant \|\psi_1 - \psi_2\|_{\mathscr{L}^{\infty}(\Omega)}.$$

From the Lemma 1 we have that the set N of functions $\{\psi \in \mathscr{L}^{\infty}(Q); \psi'(t) + A(t) \psi(t) \text{ almost periodic in } \mathscr{L}^{\infty}(\Omega)\}$ is dense in the set of $C(\overline{\Omega})$ -almost periodic functions with $\psi|_{\Gamma} = 0$.

From the Lemma 2 we have that if $\{\psi_n\}$ N and $\lim_{n\to\infty}\psi_n=\psi$ in $\mathscr{L}^{\infty}(Q)$, we have

$$\lim_{n\to\infty} \tilde{S}_r \psi_n = \chi \quad \text{ in } \mathscr{L}^{\infty}(Q),$$

where χ depends only on ψ but not on the sequence $\{\psi_n\}$. We can define $\chi = S_f \psi$ and it is easy to verify that S_f is the unique continuous extension of \widetilde{S}_f to the space of $C(\overline{\Omega})$ -almost periodic functions the result fullow easily.

4. - Proof of Theorem 3

Lemma 1. The map $f \to S_f \psi$ is increasing.

It is enough to show the lemma in the case $\psi \in N$.

Let be $f_1 \geqslant f_2$ in $(w_T^{1,p'})^*$; we choose in (1.6) $v = (u_1 + u_2)/2 + (u_2 - u_1)^-/2$ $(u_1 = S_{f_1} \psi, u_2 = S_{f_2} \psi)$. We have

$$\langle w'(t), w^+(t) \rangle + \langle A(t) w(t), w^+(t) \rangle \leqslant 0$$

where $w = u_2 - u_1$, then

(4.1)
$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| w^+(t) \|_{\mathscr{L}^2}^2 + \alpha \| w^+(t) \|_{\mathscr{V}}^2 \leqslant 0 .$$

By the same methods used in $[3]_2$, we have from (4.1) $w^+=0$.

Lemma 2. The map $\psi \to S_t \psi$ is increasing.

It is enough to show the Lemma 2 for $\psi \in N$.

Let be $\psi_1 \geqslant \psi_2$, ψ_1 , $\psi_2 \in N$; we choose in (1.6) $v = (u_1 + u_2)/2 + (u_2 - u_1)^-/2$ $(u_1 = S_f \psi_1, u_2 = S_f \psi_2)$. We have

$$\langle w'(t), w^+(t) \rangle + \langle A(t) w(t), w^+(t) \rangle \leqslant 0$$

where $w = u_2 - u_1$, then

(4.2)
$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| w^+(t) \|_{\mathscr{L}^2}^2 + \alpha \| w^+(t) \|_{\mathscr{T}}^2 \leqslant 0 .$$

By the same methods used in $[3]_2$ we have from (4.2) $w^+=0$.

Lemma 3. Let be $T(\psi, f, g)$ (g = const) the mild solution of the problem

$$\langle u'(t) + A(t)u(t) - f(t), v(t) - u(t) \rangle \geqslant 0$$
 a.e.,

(4.3)
$$\begin{aligned} \forall v \in \mathscr{L}^{2}_{loc}(\boldsymbol{R}; H^{2}(\Omega)), & v(t) \in K^{\Psi(t)} \text{ a.e.}, & v(t, \cdot) \mid_{\varGamma} = g, \\ u(t), & C(\overline{\Omega}) \text{-almost periodic in } C(\overline{\Omega}); & u \in H^{1}_{loc}(\boldsymbol{R}; V^{*}) \cap \mathscr{L}^{2}_{loc}(\boldsymbol{R}; V), \\ u(t) \in K^{\Psi(t)} \text{ a.e.}, & u(t, \cdot) \mid_{\varGamma} = g. \end{aligned}$$

The map T is increasing in f, ψ and g.

The result is a consequence of two predicing lemmas.

Remark 1. We can verify that the lemmas 1, 2, 3 holds again for $M: C(\overline{\Omega}) \to C(\overline{\Omega})$ increasing.

Lemma 4. Let be $u^n = S_t(Mu^{n-1})$ and u^0 given by

$$(u^{0})'(t) + A(t)u^{0}(t) = f(t),$$
 $u^{0}(t) \in V \text{ a.e.}.$

The sequence $\{u^n\}$ converges in $C(\bar{\Omega})$ to a fixed point \bar{u} of $\psi \to S_f(M\psi)$ and

$$||u^n-\overline{u}||_{\varphi_{\infty(n)}} \leqslant K\theta^n$$

where K, $0 < \theta < 1$ depends only on u^0 , u_0 , δ .

The method used in the proof is analogous to the method used in [3]⁴, [5]. From the hypothesis (I), (III) we can suppose $f \ge 0$, $u_0 = 0$

$$M_u \to M'u = 1 + u^{\scriptscriptstyle 0}(t,x) + \inf_{x+\xi\in\Omega,\xi\geqslant 0} (u-u^{\scriptscriptstyle 0})(t,x+\xi) \,.$$

We observe that $M': C(\overline{\Omega}) \to C(\overline{\Omega})$ is increasing, $\forall t \in \mathbb{R}$. Being $f \to S_f(\psi)$ increasing, the sequence $\{u^n\}$ is decreasing and non negative; then

$$\lim_{n\to\infty} u^n = \overline{u} \quad \text{in } V, \qquad \overline{u} = \bigwedge_{n=1}^{\infty} u^n.$$

To show the result it is enough to show

$$(4.4) u^n + R \leqslant \frac{\theta^{-n} + C}{\theta^{-n}} (u^p + R) \quad \forall p ,$$

where R, C, $0 < \theta < 1$ don't depend on n, p. We use a proof by induction. For n = 0, if we choose $CR \geqslant \sup_{x \in \mathbb{R}} u^0(t, x) = D$, (4.3) holds.

We suppose now that (4.4) holds for n-1 and we show that (4.4) holds for n.

Let $w^n = u^n + R$ we suppose

(4.5)
$$w^{n-1} \leqslant \frac{\theta^{-n+1} + C}{\theta^{-n+1}} w^p \quad \forall p ,$$

and we show

$$(4.4') w^n \leqslant \frac{\theta^{-n} + C}{\theta^{-n}} w^p \quad \forall p .$$

We have

$$w^n = T(M'w^{n-1}, f + \lambda R, R),$$

then

$$(4.6) \qquad \frac{\theta^{-n}}{\theta^{-n} + C} \, w^{n} = T \left(\frac{\theta^{-n}}{\theta^{-n} + C} \, M' \, w^{n-1}, \frac{\theta^{-n}}{\theta^{-n} + C} \, (f - \lambda R), \frac{\theta^{-n}}{\theta^{-n} + C} \, R \right)$$

$$\leq T \left(\frac{\theta^{-n}}{\theta^{-n} + C} \, M' \, w^{n-1}, f - \lambda R, R \right).$$

As in [9] (p. 168) we have

(4.7)
$$M'(\alpha w^{n-1}) \geqslant \frac{\theta^{-n}}{\theta^{-n} + C} M' w^{n-1},$$

if

$$\frac{1-\theta^{-n}/(\theta^{-n}+C)}{\theta^{-n}/(\theta^{-n}+C)-\alpha}\geqslant \delta^{-1}(D+R)=\widetilde{D}\;,$$

then we can choose

(4.8)
$$\alpha = \operatorname{Max}\left(\frac{\overline{D}\theta^{-n} - C}{\overline{D}(\theta^{-n} + C)}, 0\right).$$

From (4.6) (4.7) we have

$$\frac{\theta^{-n}}{\theta^{-n}+C} w^n \leqslant T \left(M'(\alpha w^{n-1}), f, R \right)$$

$$\leqslant T \left(M'(\alpha \frac{\theta^{-n+1}}{\theta^{-n+1}+C} w^p), f, R \right) \quad \forall p.$$

We have now the result if

$$\alpha \frac{\theta^{-n+1}}{\theta^{-n+1} + C} \leqslant 1.$$

Choosing $\theta = \overline{D}/(\overline{D}+1)$, we have (4.9) and the result.

From the Lemma 4 we have that \overline{u} , which is $C(\overline{\Omega})$ -almost periodic is a fixed point of $\psi \to S_f(M\psi)$, then it is a solution to the problema (1.6)'.

To show the uniqueness of a solution to (1.6)' we use a method given by Th. Laestch, [8].

We observe: u mild solution to $(1.6)' \iff u$ fixed point of $\psi \to S_f(M\psi)$. It is easy to verify that \overline{u} is the maximum fixed point of $\psi \to S_f(M\psi)$ in $\{v \mid v \geqslant u_0\}$.

We use the transformation $u \to w = u - u_0$, $M \to M'$.

We have now $f \geqslant 0$, $w_0 = 0$.

We observe that M' is such that $\forall \varphi \geqslant 0$, $C(\overline{\Omega})$ -almost periodic and $0 \leqslant \overline{\alpha} < 1$ there is $\overline{\alpha} < \beta < 1$ such that $M'(\alpha \varphi) \geqslant \beta M'(\varphi)$.

Let be now \overline{w} the maximum positif fixed point for $\psi \to S_f(M'\psi)$.

Let be $w \ge 0$ a different solution of (1.6)' and $\bar{\alpha}$ the greatest real such that $\bar{\alpha}\bar{w} \le w$, $\bar{\alpha} \ge 0$.

If $\alpha = 1$ we have $w = \overline{w}$, then $\overline{\alpha} < 1$.

There is $\bar{\alpha} < \beta < 1$ such that $M'(\alpha \overline{w}) \geqslant \beta M'(\overline{w})$, then being M', $\psi \to S_f(\psi)$ increasing $\beta \overline{w} \leqslant w$.

We have a contradiction and the result is shown.

References

- [1] A. Bensoussan et J. L. Lions, Nouvelle formulation des problèmes de contrôle impulsionnel et applications, C. R. Acad. Sci. Paris 276 (1973), 1189-1192.
- [2] A. Bensoussan, M. Goursat et J. L. Lions, Contrôle impulsionnel et Q.V. stationnaires, C. R. Acad. Sci. Paris 276 (1973), 1189-1192.
- [3] M. Biroli: [•]₁ Solutions presque périodiques des inéquations d'evolution paraboliques, Ann. Mat. Pura Appl. 88 (1972), 51-70; [•]₂ Sull'unicità della soluzione limitata di una disequazione variazionale d'evoluzione, Atti Acc. Naz. Lincei Rend. 48 (1970), 409-411; [•]₃ Sur les solutions bornées on presque périodiques des équations d'evolution multivoques sur un espace d'Hilbert, Rend. Mat. 21 (1972), 17-47; [•]₄ An estimate on convergence of approximations by iterations of a solution to a quasi-variational inequality and some consequences on continuous dependence and G-convergence, Ann. Mat. Pura Appl. (in print).
- [4] P. Charrier and G. M. Troianiello, On strong solutions to parabolic unilateral problems with obstacle dependent on time, J. Math. Anal. Appl. 64 (1978), (in print).
- [5] E. De Giorgi e S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del 2º ordine, Boll. Un. Mat. Ital. 8 (1973), 391-411.
- [6] B. Hanouzet et H. L. Joly, Convergence uniforme des itérées definissant la solution d'une inéquation quasi-variationnelle, C. R. Acad. Sci. Paris 286 (1978).
- [7] O. A. LADYZENSKAYA and N. N. URAL'CEVA, Linear and quasi linear equations of parabolic type, Trans. Mat. Mon. A.M.S. 23 (1968).
- [8] Th. Laestch, An uniqueness theorem for elliptic quasi-variational inequalities, J. Functional Analysis 18 (1975), 286-287.
- [9] J. L. LIONS, Sur quelques questions d'analyse mécanique et contrôle optimal, Les presses de l'Université de Montréal 1976.
- [10] T. Norando, Sulla soluzione quasi periodica di una disequazione variazionale con convesso dipendente irregolarmente dal tempo, Ist. Lombardo Accad. Sci. Lett. Rend. (in print).
- [11] J. P. Puel, Thèse, Université Paris VI, 1975.

Riassunto

Si dà un risultato di esistenza ed unicità per la soluzione $C(\Omega)$ quasi periodica di certe disequazioni variazionali.

* * *

.