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MArRcO BIROLI (¥)

On the almost periodic solution

to some parabolic quasi-variational inequalities (**)

A Groregio SEstinNi per il suo 70° compleanno

1. = Introduction and results

The problem of existence and uniqueness of an almost periodic solution to
a parabolic quasi-variational inequality has been treated exhaustively in the
case of coefficients independent on the time, [3], ,,, and such a treatement can
be extended to the case of coefficients depending almost periodically on the time.

The aim of this paper is to give an existence-uniqueness result for the
almost periodic solution of the parabolic quasi-variational inequalities treated
by A. Bensoussan, J. L. Lions [1].

Let be Qc R¥ a bounded open set with smooth boundary 22, I',c 02
a bounded open set in 2£2 with smooth boundary, I = T, Let be a;(t, @)
in °(Rx Q) (,j=1,..., N) with

ps
(1.1) > agt, ) 68>l a.e. in Rx 0,
ij=1
(1.2) t— a;(t, -) almost periodic in #=(02) .
(*) Indirizzo: Istituto di Matematica del Politecnico, via Bonardi 9, 20133 Milano,

Italy.
(**) Lavoro eseguito nell’ambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 6-XI-1978.
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Let be 7 the subspace of H'({2) defined by
- (1.3) {ve HY(Q); »|, = 0}

H = Z%Q), V* the dual of V for the duality (,>, V<> H <> V* Tet be
A@): V — V* defined by

~ () dz + 2 f w(@)v(z)de ,

(1.4)  <A@u,v é‘ éf

(A0 it I'=002, 2> 0 if I's% 00Q) and M: L(Q2) - £>(2) such that

(1.5) Mep(@) =1+ Inf g@-+).

atfe, Iz0

We indicate
KEv={veV, vr)<yp() a.e. in Q}, ype LYQ) such that K 5= 4.
‘We consider the problem

') + A@Du(t) — 1), o) — w()>>0 ae.,

1.6) wve .

loc

R; V), wv(t)eK¥™ ae.,

(1) almost periodic in C(Q), uc H}

LR VRN ZE (R V), u(t)e K" ae.,.
where, Yoe V,

G0, = 3 [ 1ty 2) 5 (@) ds + [ 1 2)o(o) o,

~,

with ¢ —f,(¢,-) almost periodic in £7(Q), p >N (i = 0,1, ..., N).

Theorem 1. Let be g(t) = v'(t) + A(t) w(t) almost periodic in ZL2(82); the
problem (1.6) has a unique solution.

The Th. 1 allow us to define a mild solution of (1.6) in the case p(t,+) al-
most periodic in C(2).

We indicate by # = S,% the solution to (1.6) in the case of Th. 1.

Theorem 2. The operator S, has a wunique continuous extension S, to
the space of the C(Q)-almost periodic functions.
r
Definition 1. Let be u(t,") C(2)-almost periodic, u = S;p is the mild
solution of (1.6). r
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We consider now the problem

Cu'(ty + At ult) — F(2), v(t) — u(t)> >0 a.e.,
(1.6) Yoe Z: (R;V), ot)el™ ge.,

loc

loc

u(t)almost periodic in C(Q), ue HL (B; V)N L2 (R; V), u(t)e KW a.e.

Definition 2. The funcltion wuy(t,®) 48 a mild subsolution of (1.6") iff.
Uy << Sy 2ty .

Theorem 3. ILet be M: O(Q) — C(Q), u, a mild subsolution such that

(I) u(',(zi) - A@)uo(t) is (W' ye-almost periodic (1/p -+-1/p'=1, Wi (Q)
= {7) e Wb (Q), v|p= O})7
(IL) ay(t) + A@)uo(t) <F (@) in (WE)%,
(II1) wu{t, )>—1+4 & ae. in RxQ, §>0.

The problem (1.6)" has a unique solution.

In the n. 2 we give a proof of Th. 1 and in the n. 3, we show the Th. 2;
the proof of the two results uses some classical methods in almost periodicity,
a result of Charrier-Tronieniello [4] with (%-regularity for parabolic equations.

In the n. 4 we give a proof of Th. 3, which uses an iterative method [2], [9]
and an extension to our case of the estimate on convergence of iterates in
F2(82) given in [3], [6].

Remark 1. The Th. 2 has been given by T. Norando [10] in the case
A@)y= A, I'= 20.

Remark 2. The condition M: C(2)— C(£2) holds in the case I' = 20Q;
in the ecase I's= 082 is a condition on geometrical properties of £2, which holds
it %, — 05 (£; section of £ with the hyperplane z; = &) is continuous in

*q

the Hausdorf topology or if Q is strictly convex.

2. = Proof of Theorem 1

Let be u,(f) the solution to the problem

QD) + At ua(0) — F0), o) — wa0)> >0 ae. t€[—n, + oof,
Yoe 22 (R; V), wo()eE™ ae. te[—n, + oof,

Up € HY(— my -+ 003 VYN LH—ny + 003 V), u,(t) e Kv aee.,
te[—mn, + oof .
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We indicate again by u,(¢) the prolongate of u,(¢) to R by 0.
By the same methods used in {3], we have that, at more after an extrac-
tion of subsequence,

(2.2) lim*u,(t) = «(f) in LL(R; V),
(2.3) lim w,(f) = a(t) in Z2(R; H),

and from [4] we have
(2.4) J, + A( ), | oo(—n, +eo; oo(oyy <O
From (2.2), (2.3), (2.4) we have easily that wu(f) is the solution to the problem

L' () + A () — f(2), v(E) — u(@)>>0 a.e.,
(2.5) Voe P (R; V), ot)eK¥® ae.,

loc
u(t)e H! R; VY P°R; H), u®)eEK"? a.c..

loc

(R; V5 &7,

We can show as in [3], that the solution to (2.5) is unique and from (2.4)

(2.6) w4 A()u] gy <O,

where @ = Rx Q. From (2.6) and [7] we have easily ue £*(R; 0%Q)),
0 <a<1l From (2.6), being u e £L°(R; *(Q)), we can easily show by stan-

dard methods in almost periodicity that u is almost periodie in C(£).

3. - Proof of Theorem 2

Lemma 1. Let be ye Wr™(R; £7(R¥)) N £°(RY; W™ (RY)) and
(3.1) 1=, (1) + AW pa(t) + pa) = () + 0 9'(0) .
The problem (3.1) has a unique solution vy, € L*(R¥) and
(3.2) I+ AC) 9l poorarny < Hnt,

(3-3) lvn — 9] goomasry <HEnt.
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If vy is almost periodic in W P(R¥) and ' is almost periodic in L7(R¥), ¢, is
almost periodic in C(2).

The proof of the Lemma 1 uses a method given by E. De Giorgi, S. Spa-
gnolo [5], in the elliptic case.

Let be w, = n{y, — ¢) we have
1w, + A@)w, (1) -+ wa(t) = A@) (1) .

Using the transformation v = n~'¢ and (6.11) of [7] (p. 105), we have (3.3)
and from (3.1), (3.3) we have (3.2). If y(?) is almost periodic in W= (R¥) with
y'(t) almost periodic in #7(R¥) from the linearity of (3.1) we have that v,(f)
is almost periodic in C(R¥) N Z*(RY).

Ag in [11],[10] we have

Lemma 2. Let be vy, L°Q), w;(t) 4+ A@t)pit)e L=Q) (1= 1,2)
Q = RxQ, with g,(t) = .(t) - A@t)p(t) almost periodic in L>(Q); we have

”Sf P — S, Poll oory < 91 — P2l gooqy -

From the Lemma 1 we have that the set N of functions {ype Z=(Q);
p'(t) + A@t)p(t) almost periodic in £>(2)} is dense in the set of C(2)-almost
periodic functions with |, = 0.

From the Lemma 2 we have that if {y,} ¥ and lim y, = y in (@), we have

n—re

lim gfwn =y in £°(Q),
where y depends only on p but not on the sequence {'(p,,}. We can define y = S,y
and it is easy to verify that 8; is the unique continuous extension of S, to the

space of O(Q)-almost periodic functions the result fullow easily.
Ir

4. = Proof of Theorem 3

Lemma 1. The map f — S;y is increasing.

It is enough to show the lemma in the case-p e N.

Let be f,>f, in (w}:”')*; we choose in (1.6) © = (uy -+ 4s)[2 + (Ua — 21)~/2
(uy = Sp 9, we = S;,p). We have

W' (1), wH()) + <A w(t), wH#)><0,
where w = u, — u,, then

1d

(4.1) 5T

[+ afwH)]3 <0
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By the same methods used in [3],, we have from (4.1) wt = 0.

Lemma 2. The map y — S,y i8 increasing.

It is enough to show the Lemma 2 for peN.

Let be > ., w1, w € N; we choose in (1.6) v = (u; + 43)/2 + (40— ;)72
(uy = Sep, 4y = S;y.). We have

Cw'(1), wH(t)y 4 <A(t)w(), wH(t)> <0,

where w = u, — u,, then

1d e
(4.2) 5m oot (2) | %z + oot (t)]3<< O
By the same methods used in [3]; we have from (4.2) w+ = 0.

Lemma 3. Let be T(yp,f,g) (g = const) the mild solution of the problem

' (t) + AR wu(t) — (), () — u(t)> >0 a.e.,
Ve 22 (R; HXQ)), o(t)eXEY ae., o, )|r=y,

loc

u(t), O(D)-almost periodic in C(Q); we H: (R; V) N L>

loc loc

(R; V),
ut) e K¥? ae., u(t," )| p=g.
The map T is increasing in f, v and g.
The result is a consequence of two predicing lemmas.

Remark 1. We can verify that the lemmas 1, 2, 3 holds again for
M: 0(2) — C(2) increasing.

Lemma 4. Let be u* = S(Mu?) and «° given by
(w0 (1) + A)u'(t) = f(1), w()eV a.e..
The sequence {ur} converges in C(D) to a fized point W of p — S(My) and
[ur — %] gooyy < KO,

where K, 0 <0 <<1 depends only on u°, w,, 9.
The method used in the proof is analogous to the method used in [3]t, [5].
From the hypothesis (I), (II), (III) we can suppose >0, u, =0

M, - Mu=1+4 u(x) + Inf (w— u®)t, x + &).

’ z2+ée, >0
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We observe that M’: C(2) — C(2) is increasing, Vie R. Being f — S,(v)
increasing, the sequence {u”} is decreasing and non negative; then

o0
lim* w»=% in V, =N u.

n-—o noesl
To show the result it is enough to show

6=+ C
0——11

(4.4) w4 B < (w»+ R) Vp,

where R, ¢, 0 <0 <1 don’t depend on »n, p. We use a proof by induction.

For n = 0, if we choose CR> Sup %%, ) =D, (4.3) holds.
(¢,2)€Q
We suppose now that (4.4) holds for » —1 and we show that (4.4) holds

for n.
Let w® = u*» + R we suppose

_ ) 6~n+1 _+_ G
(4.0) W W w? Vp ’
and we show
04 C
(4.4) W —Gj—lm w?  Vp.

‘We have
wr = T(M' w3, { - 2R, R),
then
we) e (= e, T am), U Ry
DU RNy 0= C g+ 0 " O
T (2 M, f— AR, R).
S g + ¢ ’ !

As in [9] (p. 168) we have

0—11 . ,
(4.7) M (o w™=?) > M

T+ C
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1—06="/(6~" + C)

o=y > P+ B=D,

then we can choose

Do — ¢

(iS) o == )[ﬂx(m

,0).

From (4.6) (4.7) we have

—1

a——-"—-J,—C WL T (ﬂI’(aw"*l), f, .R)

—n-+1

T(BII(OC mi

or), f, R)  Vp.

VAN

‘We have now the result if

49 0—11-1\—1

Choosing 6 = D/(D 4 1), we have (4.9) and the result.

From the Lemma 4 we have that %, which is ¢(2)-almost periodic is a fixed
point of y — 8, (My), then it is a solution to the problema (1.6)".

To show the uniqueness of a solution to (1.6)’ we use a method given by
Th. Laestch, [8].

We observe: # mild solution to (1.6) <> u fixed point of y — S, (My).
It is easy to verify that % is the maximum fixed point of y — S (Myp) in
{v]v>u,}.

We use the transformation w — w = w— uy, M — M.

We have now >0, w, = 0.

We observe that M’ is such that Y>>0, C(£)-almost periodic and 0<& < 1
there is & << f <1 such that M'(ap)>pM (p). '

Let be now w the maximum positif fixed point for y — S;(HM'yp).

Let be w0 a different solution of (1.6)’ and & the greatest real such that
aw<w, a>=0.

If « =1 we have w = w, then & <1.

There is & << f <1 such that M'(ei)>pM' (W), then being M', p — Sy(y)
increasing fw<w. ‘

We have a contradiction and the result is shown.
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Riassunto

8i da un risultato di esistenza ed unicita per la soluzione O(Q) quasi periodica di
certe disequazioni variazionali.
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