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MARIO SERVI (¥)

A generalization of the exponential functor

and its connections with the SH-formulas (*%*)

A Giorero SesTiINI per il suo 70° compleanno

Tt is well known that the set theoretic exponential (Cartesian power), when
extended to general categories, splits into three non-equivalent concepts: the
Hom-functor (any category), the internal exponential (Cartesian closed cate-
gories) and the S-fold product of an object with itself (when such exists,
S a set). In[1], I studied a bifunctor ¢: D°® x D — C under hypotheses which
included the first two, as special cases, but failed to include the third one.
In this paper I want to discuss a functor G: E**xD — C which, roughly
speaking, generalizes & of [1], and also includes I1: S°* x D — D, II(S, A) being
the S* power of 4, D a category in which II(S, 4) exists for every SeS
and 4 e D and S the category of sets. The case of /I could not be taken
care of by the bifunctor of [1],, since D does not coincide in general with S.
I still make on G strong enough assumptions as to prove the usual result:
if H is any SH and B any L-structure (in D), then H s true in & iff it is
«uniformly true» in the G(X, %)’s (induced structures), with X € |E].

1. - Setting the problem
Let E, D, C be three categories, D with finite products (as in [1],, C is

not required to have all finite products, but it will turn out to have enough

(*) Indirizzo dell’A.: Istituto di Matematica, Universita, 43100 Parma, Italy.
(**) Work supported by G.N.8.A.G.A. (C.N.R.). The results stated and proved
in this paper were announced (without proofs) in [1];. — Received: 31-X-1978.
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of them so that the interpretations of symbols of %* will make sense) ().
Let G: E®xD — C be a bifunctor, U an object of C, K: D — E a functor
such that the following conditions hold.

(A) The standard functor C[U,—1 is full and faithful (2).
(B) K s full and faithful and has a left adjoint F — K.
(C) There is a natural bijection

1 o, : E[*y K(—)] - C[ U, G{—, -1

If f: 4 — K(B), we will sometimes write f for D, ,(f): U~— G(A4, B). First
of all, let us check the claim above, i.e. that the present situation generalizes
the one described in section 5 of [17,.

Take E = D, U =1 (®), K = Id, and since condition (C) of [1], is expli-
citly assumed, all the requirements of {1], are thus fulfilled.

Now we can also make [T to fit into present situation, provided we take
C =D with products and sums and assume D[U, —] to be faithful and full.
For, we can set K = D[U, —] and have

Z(“y U) — D[U’ ‘“] 3

where 2/(8, B) = 8-B is the 8-fold sum of B with itself.
This last example suggests that we consider three bifunctors

G:E*xD—~C, K:C°xD-—+E, F:E*XC—D
and natural bijections

F(B, C) — D B - K(U, D)
B K(0, D)’ U > &(&, D)

(U final),

or, more symmetrically,
&, Cy—D
I —K(C,D);
¢ - G(E, D)

yet, we see no use for such complications.

(!) For symbols and terminology we will stick to [1,5.

(?) We don’t require U to be final; notice that this hypothesis, although assumed,
was not used in [1],.

(3) The final object; see footnote z 2.
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2. = The funetor @

As in [1],, we want G: D — C®" to be the functor associated with & in
the adjunction of the exponentiation, i.e. G(@)(y) = G(y, ©), where ze D,
y € E. With this notation we can prove the following theorem (see theorems 4

and 5 of [1].).
Theorem 1. @ is full and faithful.

Proof. Let G(D) — @(D’); from bijection

K(D) - K(D)
U — G(K(D), D)

one gets op = Ipm: U — G(E(D), D), hence pxa gp: U~ G(K(D), D). Thus
Dty p(@rw 0p): K(D)—K(D'). Using the fullness of K, let f: D - D' be
such that ‘

K(f) (DJ—I%D),D(([)K(D) QD) .

Proving ¢ = G(f) and G faithful requires now no more ingenuity than the
proof of theorem 4 in[1],. (Same thing for faithfulness of ('}, with respect
to theorem 5 in [1],).

Theorem 2. For cvery X €|E|, the functor G(X,—) preserves limits.

Proof. Since K has a left adjoint, it preserves I-limits, for every diagram
scheme I. Now use an argument similar to theorem 6 in [17],.

Corollary 1. For every X €|E|, the functor G(X, —) preserves finite pro-
ducts and monomorphisms.

Corollary 2. G preserves finite products and monomorphisms.
Notation. Given any finite limit preserving functor M, we will write

ot M(A") — M(A)" and B,: M(A)» — M(A») for the (inverse to each other)
canonical isomorphisms ().

(1) It is assumed that 4 x B is an arbitrary product, chosen once and for all,
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3. - The lemmas leading to the conclusion
The lemma 6 in [1], and its proof can be recorded as they stand:

Lemma 1. Let €% = (0, ¥*) be any F-interpretation (in C), let H, be
an atomic SH-formula of rank n and let &1 Y — C» Then H, is satisfied in €%
by & if and only if ¥t is satisfied by Ew, for every z: U — Y.

Proof. As in[1],, because of condition (A).

The discussion which follows lemma 6 in [1], can now be accepted as it
is, since all the conditions used thereby still hold. Lemma 7 in [1],, on the
contrary, splits into the following two lemmas, due to the presence of (non
trivial) K (3).

Lemma 2. Let 2% = (D, ¥*) be any L-interpretation (in D) and let H,
be an atomic SH of rank n. For every g: ¥— D*, put § = a, D oo (K (9)) :
U — G(K(Y), D). Then H, is satisfied in Z* by g if and only if it is safisfied
in Dy by §-

Proof. If w: R > D» interprets an m-ary predicate in Z*, put
(2) Upr = o, F(E(Y), u): G(K(Y), R) » G(K(Y), D)»

for the corresponding interpretation in Dy Since G(K(Y),—) preserves
finite products, if ¢ is an n-ary term interpreted in 2% and iy, is the same
term interpreted in 9;(1,), then the following holds

(3) tK(Y) = G(I{( Y), t)ﬂn .

Let {i}, {txax} stand for the generic bracket of m-ple of terms interpreted
in 2* and Dy, respectively; for every y: Y - R, put § = Dy, (K (@)
U — G(K(Y), R). By the same method as in[1],, prove first that

(4) wy = {t}yg iff u/;(y)?j = tl{(y)ﬁ :
from
(3) uy = {t}yg,

get (px(r),pm(K(u)If(?/)) = (I)K(Y),D’"(If({t})lf(g))y hence
G(E(U), 16)@,((1,)’,1(]((111)) = G(K(Y), {}) D), pn K(g)) .

(%) Remember (see section 1) that, in [1],, JC is the identity functor,
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Now, using (2) and (3), get
ﬁm U gy (p(K("J)) = ﬁm{tlx'(Y)} X ([)(lf(g)) ]
hence
(6) g = {txen}d -
Vice versa, get (5) from (6) using @ injective and K faithful in last two passages.
Then, using K full, notice that every z: U — G(K(Y), R) is of the form 4.

The desired conclusion follows: there is a % such that wy = {t}¢ if and only
if there is a 2 such that wgyz = {{rw) §.

Lemma 3. Let &% and H, be as in lemma 2 and let X €|E|. For every
£ Z - G(X, D)y and every @: U — Z,

= Hlg.] (in E) iff  E=Hlé] (in C),
E(Z*) .@:{;

where ¢,: X — K(D") 22> K(D)* is obiwined via

Us>7 £5 (X, D) => G(X, D")
X — K(D%) :

Proof. Very similar to that of Lemma 2. For every y: X — K(R), the
diagram

K(D)" > k(D)™

9, |, K(u)

X 4 > K(R)
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commutes if and only if the diagram

$'x3

G(x, p)" > G(x, D)
£ x oL G(X, u)
¢
U > G(X, R)

does. Since @ is a bijection, the claimed statement follows.

Corollary 3. If H is an SH, true in Dx for every X €|E|, then H s
true in ¥,

Proof. Let H be H, — H,, with H, atomic, H, conjunction of atomic
SH’s, let g: ¥ — D" be such that =H,[g]. Then, by Lemma 2, = H,[§].
_@t

Gk
JK(Y)

But H is true in 2=

x(r)?

therefore =H,[¢] and hence = H[qg].
-CZ*

T

Lemma 4. Let 2% H,X be as before and let g: X — K(D)* (in E). Let
g: F(X) — D" be oblained through isomorphism K(D)* ~ K(D") and adjun-
ction B — K. Then

I;Ho[ﬁ] iff  =Hdgl.

K(F*)

Proof. Let y: X — K(R) and #: F(X) - R be adjoint morphisms in the
adjunction F' ~ K, and consider the following two diagrams.

> K(D)™M

k(p)"

M
g OLmK(u}

X ' s K(R)
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n t
D {r) > p'"
(8) g— IU
F(X) X >R

Being {t;} = o, K({t}) B, it is straightforward to check that diagram (7) com-
mutes if and only if diagram (8) does. Conclusion easily follows.

Corollary 4. Let H be an SH true in 9% and let X €|E|. Then H is
true in Dx.

Proof. Using Lemmas 1, 3 and 4, one has that for each atomic H,,

E=H[&] ittt for each w: U —Z, ==H)g.].
% 9

X

Conclusion follows easily.

4. - Behaviour of G with respect to SH’s

Theorem 3. Let H be an SH formula and let 2 be an L-structure (in D).
Then H is true in D iff it is uniformly true in the Ds (X €|E|):

xek
=H iff =H..
9 Dy

Proof. It follows immediately from Corollaries 3 and 4 (see also [1]2,1).
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Sunto

Si introduce un bifuntore G: Eoox D — C che generalizza quello introdotio in {1], e

XeE
tale che se H ¢ una SH e 2 wuna struttura in D, allova = H sse }=— H.
o Dy

) k%



