MARIO SERVI (*)

A generalization of the exponential functor and its connections with the SH-formulas (**)

A GIORGIO SESTINI per il suo 70º compleanno

It is well known that the set theoretic exponential (Cartesian power), when extended to general categories, splits into three non-equivalent concepts: the Hom-functor (any category), the internal exponential (Cartesian closed categories) and the S-fold product of an object with itself (when such exists, S a set). In $[1]_2$ I studied a bifunctor $G: D^{op} \times D \to C$ under hypotheses which included the first two, as special cases, but failed to include the third one. In this paper I want to discuss a functor $G: E^{op} \times D \to C$ which, roughly speaking, generalizes G of $[1]_2$ and also includes $\Pi: S^{op} \times D \to D$, $\Pi(S, A)$ being the S^{th} power of A, D a category in which $\Pi(S, A)$ exists for every $S \in S$ and $A \in D$ and S the category of sets. The case of Π could not be taken care of by the bifunctor of $[1]_2$, since D does not coincide in general with S. I still make on G strong enough assumptions as to prove the usual result: if H is any SH and S any L-structure (in D), then H is true in S iff it is a uniformly true in the G(X, S)'s (induced structures), with $X \in |E|$.

1. - Setting the problem

Let E, D, C be three categories, D with finite products (as in [1]₂, C is not required to have *all* finite products, but it will turn out to have enough

^(*) Indirizzo dell'A.: Istituto di Matematica, Università, 43100 Parma, Italy.

^(**) Work supported by G.N.S.A.G.A. (C.N.R.). The results stated and proved in this paper were announced (without proofs) in [1]₁. — Received: 31-X-1978.

of them so that the interpretations of symbols of \mathscr{L}^* will make sense) (1). Let $G: E^{op} \times D \to C$ be a bifunctor, U an object of C, $K: D \to E$ a functor such that the following conditions hold.

- (A) The standard functor C[U, -] is full and faithful (2).
- (B) K is full and faithful and has a left adjoint $F \rightarrow K$.
- (C) There is a natural bijection

(1)
$$\Phi_{-,-}: E[-, K(-)] \to C[U, G(-, -)].$$

If $f: A \to K(B)$, we will sometimes write f for $\Phi_{A,B}(f): U \to G(A,B)$. First of all, let us check the claim above, i.e. that the present situation generalizes the one described in section 5 of $\lceil 1 \rceil_2$.

Take E = D, U = 1 (3), $K = \text{Id}_D$ and since condition (C) of $[1]_2$ is explicitly assumed, all the requirements of $[1]_2$ are thus fulfilled.

Now we can also make H to fit into present situation, provided we take C = D with products and sums and assume D[U, -] to be faithful and full. For, we can set K = D[U, -] and have

$$\Sigma(-, U) \dashv \mathbf{D}[U, -],$$

where $\Sigma(S, B) = S \cdot B$ is the S-fold sum of B with itself. This last example suggests that we consider three bifunctors

$$G: E^{op} \times D \to C$$
, $K: C^{op} \times D \to E$, $F: E^{op} \times C \to D$

and natural bijections

$$rac{F(E,\,C) o D}{E o K(C,\,D)}, \qquad rac{E o K(U,\,D)}{U o G(E,\,D)} \qquad \qquad (U \;\; {
m final})\,,$$

or, more symmetrically,

$$\frac{F(E,\,C)\to D}{E\to K(C,\,D)}\ ;$$

$$\frac{C\to G(E,\,D)}{C\to G(E,\,D)}\ ;$$

yet, we see no use for such complications.

⁽¹⁾ For symbols and terminology we will stick to [1]2,3.

⁽²⁾ We don't require U to be final; notice that this hypothesis, although assumed, was not used in $[1]_2$.

⁽³⁾ The final object; see footnote # 2.

2. - The functor \hat{G}

As in $[1]_2$, we want $\hat{G}: \mathbf{D} \to \mathbf{C}^{E^{op}}$ to be the functor associated with G in the adjunction of the exponentiation, i.e. $\hat{G}(x)(y) = G(y, x)$, where $x \in \mathbf{D}$, $y \in \mathbf{E}$. With this notation we can prove the following theorem (see theorems 4 and 5 of $[1]_2$).

Theorem 1. G is full and faithful.

Proof. Let $\widehat{G}(D) \to \widehat{G}(D')$; from bijection

$$\frac{K(D) \to K(D)}{U \to G(K(D), D)}$$

one gets $\varrho_D = \widehat{\mathbf{1}}_{K(D)} \colon U \to G(K(D), D)$, hence $\varphi_{K(D)} \varrho_D \colon U \to G(K(D), D')$. Thus $\Phi_{K(D),D}^{-1}(\varphi_{K(D)}\varrho_D) \colon K(D) \to K(D')$. Using the fullness of K, let $f \colon D \to D'$ be such that

$$K(f)\Phi_{K(D),D}^{-1}(\varphi_{K(D)}\varrho_D)$$
.

Proving $\varphi = \widehat{G}(f)$ and \widehat{G} faithful requires now no more ingenuity than the proof of theorem 4 in $[1]_2$. (Same thing for faithfulness of \widehat{G} , with respect to theorem 5 in $[1]_2$).

Theorem 2. For every $X \in |E|$, the functor G(X, -) preserves limits.

Proof. Since K has a left adjoint, it preserves I-limits, for every diagram scheme I. Now use an argument similar to theorem 6 in $[1]_2$.

Corollary 1. For every $X \in |\mathbf{E}|$, the functor G(X, -) preserves finite products and monomorphisms.

Corollary 2. G preserves finite products and monomorphisms.

Notation. Given any finite limit preserving functor M, we will write $\alpha_n \colon M(A^n) \to M(A)^n$ and $\beta_n \colon M(A)^n \to M(A^n)$ for the (inverse to each other) canonical isomorphisms (4).

⁽⁴⁾ It is assumed that $A \times B$ is an arbitrary product, chosen once and for all.

3. - The lemmas leading to the conclusion

The lemma 6 in $[1]_2$ and its proof can be recorded as they stand:

Lemma 1. Let $\mathscr{C}^* = (C, \mathcal{Y}^*)$ be any \mathscr{L} -interpretation (in \mathbb{C}), let H_0 be an atomic SH-formula of rank n and let $\xi \colon Y \to \mathbb{C}^n$. Then H_0 is satisfied in \mathscr{C}^* by ξ if and only if it is satisfied by ξx , for every $x \colon U \to Y$.

Proof. As in $[1]_2$, because of condition (A).

The discussion which follows lemma 6 in $[1]_2$ can now be accepted as it is, since all the conditions used thereby still hold. Lemma 7 in $[1]_2$, on the contrary, splits into the following two lemmas, due to the presence of (non trivial) K(5).

Lemma 2. Let $\mathscr{D}^* = (D, \Psi^*)$ be any \mathscr{L} -interpretation (in \mathbf{D}) and let H_0 be an atomic SH of rank n. For every $g \colon Y \to D^n$, put $\hat{g} = \alpha_n \Phi_{K(Y),D^n}(K(g)) \colon U \to G(K(Y),D)^n$. Then H_0 is satisfied in \mathscr{D}^* by g if and only if it is satisfied in $\mathscr{D}^*_{K(Y)}$ by \hat{g} .

Proof. If $u: R \rightarrow D^m$ interprets an m-ary predicate in \mathscr{D}^* , put

(2)
$$u_{K(Y)} = \alpha_m G(K(Y), u) \colon G(K(Y), R) \to G(K(Y), D)^m$$

for the corresponding interpretation in $\mathscr{D}_{K(Y)}^{\bullet}$. Since G(K(Y), -) preserves finite products, if t is an n-ary term interpreted in \mathscr{D}^* and $t_{K(Y)}$ is the same term interpreted in $\mathscr{D}_{K(Y)}^{\bullet}$, then the following holds

(3)
$$t_{K(Y)} = G(K(Y), t) \beta_n.$$

Let $\{t\}$, $\{t_{K(Y)}\}$ stand for the generic bracket of m-ple of terms interpreted in \mathscr{D}^* and $\mathscr{D}^*_{K(Y)}$ respectively; for every $y \colon Y \to R$, put $\hat{y} = \Phi_{K(Y),R}(K(y)) \colon U \to G(K(Y),R)$. By the same method as in $[1]_2$, prove first that

(4)
$$uy = \{t\} g \quad iff \quad u_{\kappa(Y)} \hat{y} = t_{\kappa(Y)} \hat{y} :$$

from

$$(5) uy = \{t\} y,$$

get $\Phi_{K(Y),D^m}(K(u)K(y)) = \Phi_{K(Y),D^m}(K(\{t\})K(y))$, hence

$$G\big(K(U),\,u\big)\varPhi_{{\scriptscriptstyle K(Y)},{\scriptscriptstyle R}}\big(K(y)\big)=G\big(K(Y),\,\{t\}\big)\,\varPhi_{{\scriptscriptstyle K(Y)},{\scriptscriptstyle D^{\scriptscriptstyle R}}}\,K(g)\big)\;.$$

⁽⁵⁾ Remember (see section 1) that, in $[1]_2$, K is the identity functor.

Now, using (2) and (3), get

$$\beta_m u_{K(Y)} \Phi(K(y)) = \beta_m \{t_{K(Y)}\} \alpha_n \Phi(K(g)),$$

hence

$$(6) u_{K(Y)}\hat{y} = \{t_{K(Y)}\}\hat{g}.$$

Vice versa, get (5) from (6) using Φ injective and K faithful in last two passages. Then, using K full, notice that every $z \colon U \to G(K(Y), R)$ is of the form \hat{y} . The desired conclusion follows: there is a y such that $uy = \{t\} g$ if and only if there is a z such that $u_{K(Y)}z = \{t_{K(Y)}\}\hat{g}$.

Lemma 3. Let \mathscr{D}^* and H_0 be as in lemma 2 and let $X \in |\mathbf{E}|$. For every $\xi \colon \mathbf{Z} \to G(X, D)^n$ and every $x \colon U \to \mathbf{Z}$,

$$\underset{\mathbb{K}(\mathcal{Q}^{\bullet})}{ \longmapsto} H_0[g_x] \quad (in \ \textbf{\textit{E}}) \qquad iff \qquad \underset{\mathcal{D}_X^{\ast}}{ \longmapsto} H_0[\xi x] \quad (in \ \textbf{\textit{C}}) \; ,$$

where $g_x: X \to K(D^n) \xrightarrow{\alpha_n} K(D)^n$ is obtained via

$$\frac{U \xrightarrow{z} Z \xrightarrow{\xi} G(X, D)^n \xrightarrow{z} G(X, D^n)}{X \to K(D^n)}.$$

Proof. Very similar to that of Lemma 2. For every $y: X \to K(R)$, the diagram

$$\begin{array}{ccc}
K(D)^{n} & \xrightarrow{\left\{\begin{array}{c} t_{K} \right\}} & K(D)^{m} \\
 & & \uparrow \\
 & \downarrow \\
 & X & \xrightarrow{y} & K(R)
\end{array}$$

commutes if and only if the diagram

$$G(X, D)^{n} \xrightarrow{\left\{ \begin{array}{c} t_{X} \right\}} \\ & \downarrow \\ & \downarrow \\ U \xrightarrow{\Phi(Y)} \\ & \downarrow \\$$

does. Since Φ is a bijection, the claimed statement follows.

Corollary 3. If H is an SH, true in \mathscr{D}_{X}^{*} for every $X \in |E|$, then H is true in \mathscr{D}^{*} .

Proof. Let H be $H_1 \to H_0$, with H_0 atomic, H_1 conjunction of atomic SH's, let $g \colon Y \to D^n$ be such that $\underset{\mathscr{D}^*}{\models} H_1[g]$. Then, by Lemma 2, $\underset{\mathscr{D}_K^*(Y)}{\models} H_1[\widehat{g}]$. But H is true in $\mathscr{D}_{K(Y)}^*$, therefore $\underset{\mathscr{D}_K^*}{\models} H_0[\widehat{g}]$ and hence $\underset{\mathscr{D}^*}{\models} H_0[g]$.

Lemma 4. Let \mathscr{D}^* , H_0X be as before and let $g: X \to K(D)^n$ (in E). Let $\bar{g}: F(X) \to D^n$ be obtained through isomorphism $K(D)^n \approx K(D^n)$ and adjunction $F \to K$. Then

$$\underset{\mathscr{D}^*}{ \longmapsto} H_{\scriptscriptstyle 0}[\bar{g}] \qquad \textit{iff} \qquad \underset{\scriptscriptstyle K(\mathscr{D}^*)}{ \longmapsto} H_{\scriptscriptstyle 0}[g] \; .$$

Proof. Let $y: X \to K(R)$ and $x: F(X) \to R$ be adjoint morphisms in the adjunction $F \to K$, and consider the following two diagrams.

$$K(D)^{n} \xrightarrow{\left\{ \begin{array}{c} t_{K} \\ \end{array} \right\}} K(D)^{m}$$

$$\uparrow \qquad \qquad \uparrow \qquad \downarrow_{m} K(u)$$

$$X \xrightarrow{\qquad \qquad y \qquad \qquad } K(R)$$

$$D^{n} \xrightarrow{\{t\}} D^{m}$$

$$\downarrow^{\overline{g}} \qquad \qquad \downarrow^{u}$$

$$F(X) \xrightarrow{X} R$$

Being $\{t_K\} = \alpha_m K(\{t\}) \beta_n$, it is straightforward to check that diagram (7) commutes if and only if diagram (8) does. Conclusion easily follows.

Corollary 4. Let H be an SH true in \mathscr{D}^* and let $X \in |\mathbf{E}|$. Then H is true in \mathscr{D}_{x}^* .

Proof. Using Lemmas 1, 3 and 4, one has that for each atomic H_0 ,

$$igorpu_x^- H_{\scriptscriptstyle 0}[\xi] \quad \text{ iff } \quad \text{for each } x \colon U o Z, \quad igorpu_x^- H_{\scriptscriptstyle 0}[\overline{g_x}] \; .$$

Conclusion follows easily.

4. - Behaviour of G with respect to SH's

Theorem 3. Let H be an SH formula and let $\mathscr D$ be an $\mathscr L$ -structure (in D). Then H is true in $\mathscr D$ iff it is uniformly true in the $\mathscr D_x$'s $(X \in |E|)$:

$$\underset{\mathscr{D}}{\models} H \quad iff \quad \underset{\mathscr{D}_{X}}{\stackrel{X \in E}{\models}} H.$$

Proof. It follows immediately from Corollaries 3 and 4 (see also $[1]_{2,1}$).

References

[1] M. Servi: [•]₁ SH-formulas and Generalized Exponential, Model Theory and Applications, II° Ciclo C.I.M.E., Bressanone 1975, Ed. Cremonese, Roma 1975; [•]₂ Su alcuni funtori che conservano le SH, Riv. Mat. Univ. Parma (3) 3 (1974), 291-308; [•]₃ Una questione di teoria dei modelli nelle categorie con prodotti finiti, Matematiche (Catania) 26 (1971), 307-324.

Sunto

Si introduce un bifuntore $G \colon E^{\mathrm{op}} \times D \to C$ che generalizza quello introdotto in $[1]_2$ e tale che se H è una SH e $\mathscr D$ una struttura in D, allora $\models_{\mathscr D} H$ sse $\models_{\mathscr D} H$.

* * *