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MArcoO MoODUGNO (%)

On the structure of classical kinematics.

Absolute kinematies (*%)

A Giorgio SEsTix1I per il suo 70° compleanno

In this paper we study the general event framework constituted by the
event space, its partition into the simultaneity spaces, which generate the
time, and the spatial metric.

‘We analyse some remarkable spaces and maps conneeted with the previous
ones. TIinally we study the one-body absolute motion, velocity and accelera-
tion. All these elements are considered regardless of any frame of reference.

1. - The event space

First we introduce the general framework for classical mechanies.
Bvent space, simultaneity, spatial metrie, future orientation, time.

1.1. — Basic assumptions on primitive elements of our theory are given
by the following definition, which constitutes the framework of classical mech-
anics.

Definition. The classical eveni framework is a 4-plet

0 ={&, S, G, 0}

Il
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where
B ={E, E, o} is an affine space, with dimension 4;

S~ E is a subspace of E_, with dimension 3;

é is a conformal euclidean metric on S; ;

0 is an orientation on the quotient space E/S_.

E is the event space; E is the event interval space;

S is the simultancous interval space or the spatial interval space;
G is the spatial conformal metric;

0 is the future orientation;

— 0 is the past orientation.
Henceforth we assume a classical event framework 0 to be given.

L1.2. — The previous definition contains implicitly the notion of absolute
time, which we are now giving explicitly.

Definition. The time space is the quotient space
T=ES.

The time veclor space is the quotient space

The time projection is the quotient map
t: E~>T.

The space at the time v e T is the subspace

The ttme bundle is the 3-plet

n=(E1tT).
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Hence, each equivalence class is of the type
Ter=[c]=c¢+S=S8<E,

Thus v and S, coincide, but 7 is viewed as a point of T and S
Moreover we will denote by j the injective map
j={,idg): E>TxE.

1.3. — We get immediate properties for the previous spaces.

(a) (T, T) results naturally into an affine 1-dimensional oriented space.

Proposition.
(b) ¢ is an affine surjective map. We get S = (Dt)=2(0).
(¢) For each te T, (S, .§, o) is an affine 3-dimensional subspace of E;

hence {S:},.r is a family of parallel, (not canonically) isomorphic affine sub-

reT

spaces of E and we have E = U S;.
(d)  is an affine, (not canonieally) trivial bundle.

1.4. — We have absolute time component of an event interval.
Detinition. The time component of the vector u € Eis w0 = {(Dt,uye T.

u is future oriented ov past oriented, according as u®e T+ or u* e T~. Moreover

u is spatial if and only if °= 0.

1.5. — Thus, the sequence
0 >S>E—-T-—-0
is exact, but we have not a canonical splitting of E, as we have not a canonical

projection E — 8, or a canonical inclusion T E. However, each vector v € E,

such that (Dt, v) st 0, determines a splitting of E.
oiv by 2 2
given by Y

Namely we get the inclusion
T>E,
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and the projection

— — 0
pi: E—~8, given by u}——wa-—,%av,
which determine the decomposion in the direct sum
= AT . u® A
E=T®S given by u =3 + (u——;&v) = pll(w) + pi(u).

1.6. — According to the bundle structure of E on T, we can define the
vertical derivative of maps, i.e. the derivative along the fibers. Generally
we will denote by «.» the vertical quantities connected with 7.

Definition. Let F be an affine space and let f: E — F be a ¢° map.
The vertical derivative of f is the map

Df = Dfg E S~ S*Q F.

1.7. — Poincaré’s and Galilei’s maps. A Poincaré’s map is a map E -~ E
which preserves the structure of § and the associated Galilei’s map is its deri-
vative.

Definition. A Poincaré’s map is an affine map
G.E—~>E,
such that
(a) DG (S) =S,
(b) DG e U(S),

(e) if @°: T — T is the induced map on the quotient space T = E/E,
then DG° = id.

DG: E — E is the Galilei’s map associated with G.

G is special if it preserves the orientations of E and S (hence of f).

1.8. — Proposition. Kach Poincaré’s map G is bijective.

Proof. It follows from DG e U(S), DQ® = .
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1.9. — Space and time measure unity. We have assumed a l-parameter

family G of euclidean metrics on S. A 1-parameter family G° of euclidean

metrics on T is given a priori, for dim T = 1.
An arbitrary choice of one among these makes important simplifications
in the following.

Definition. A spatial measure unity is a metric ge G. A time measure
wnity is a metric g° € G°.
The choice of a spatial measure unity ¢ is equivalent to the choice of the

sphere (in the family determined by é) of §, with radius 1 as measured by 5
The choice of a time measure unity ¢° is equivalent to the choice of the
vector
e T* such that go(Ae, 20 =1.

Then ¢° determines the isomorphism

T—R given by i % .

Henceforth we assume a spatial and a time measure unity to be given. Hence
we get the identification

T~R

and the consequent identifications

LT,Ey~E, ILT,S=~S, LET =E, LST):

%,

il

In this way, the map DteL(E., f) is identified with the form
t >~ Dite E*.

1.10. — Besides the subspace S r—->E’, which results into S = $~1(0), an in-
teresting role will be played by the subspace of normalized vectors t~*(1).

Definition. The free velocity space is
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1.11. — Proposition. (U, S) results naturally into an affine (not vector)
3-dimensional subspace of E.

Of course U and S are isomorphic as affine spaces, but we have not a
canonical affine isomorphism between U and S.

L.12. — Special charts. In calculations can be useful a numerieal representa-
tion of E, which takes into account its time structure. For simplicity of nota-
tions, we consider only diffeomorphism E - R?, leaving to the reader the
obvious generalization to local charts, our considerations being essentially
local.

Definition. A special chart is a C® chart

w={a°,2'}: E—>RxR?,

such that 2° factorizes as follows

where 2°: T — R is a normal oriented cartesian map. Naturally x° (hence a°)
is determined up an initial time.
We make the usual convention
o By Ay pty .. =0,1,2,3 and iy by by .. =1,2,3.
We assume in the following a special chart « to be given.

1.13. — Let us give the coordinate expression of some important quantities.
Proposition. We have
Dx*=1, éwi:E—~>§;
if ueE‘, then v = «® dx, + ' dx;, where u® = {t, u);

= g Dr'@ Dt ;
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Al J— ey v ¥ - J— »| oy g —
= Ddwa(dxs, Da®) = — D*°(0wa, dap) = 0,
) A - ey N A p— 2l ; — e A
11” = Ddw (0x;, Dx*) = — D*x*(0x;, 0x;) = S g"™0: gus + 0 s — onGii)

Iio; + L= 00Yis, where I o= gl
Morcover

It = Dday(dw;, Da*) = — D0y, 01;)
and
Ik = Domy(dy, Da*) = — D*x*(0itg, 0ity)

can be different from zero, if da, is not constant.
Notice that Dx® = ¢ is fixed a priori and that the unique conditions im-
posed a priori on Oz ave <t, 0y =1, (i, éx;) = 0.

1.14. — Physical description. The event space E represents the set of all
the possible events considered from the point of view of their mutual space-
time collocation and without reference to any particular frame of reference.
This space E must be viewed exactly in the same sense as the event space of
Special and General Theory of Relativity.

The event space E is the disjoint union of a family {S.},.r of three dimen-
sional affine euclidean, mutually diffeomorphic, spaces. This partition represents
the equivalence relation of absolute simultaneity among events. The structure
of each space S: permits all the physical operations considered in the classical
time-independent Euclidean Geometry, as stright lines, parallelism, intervals,
sum of intervals, by the parallelogram rule, circles, ete. We have not selected
a priory a spatial measure unity, for it is not physically significant: by means
of rigid rods we can only find ratios between lengths in all dirvections and the
choice of a particular interval of a rigid rod is a useful but not necessary con-
venction.

The simultaneity spaces S; are mutually, but not canonically, isomorphice,
for a particular family of bijections among these leads to a determination of
positions, i.e. to a frame of reference, which we have excluded in the general
context. Notice that in S: we have not privileged points or axes.

The required four dimensional affine structure of E leads to the affine
structures of the subspaces S; and to the one dimensional affine structure of
the set T, whose points are the equivalence classes Sc. This space represents
the classical absolute time. Its affine structure admits the time intervals,
independent of an initial time, and their sum. The one dimensional affine
structure of T leads also to the measure of time intervals with respect to an
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arbitrary chosen unity. Hence the affine structure of E contains implicitly
the idea of « good clocks ». The dimension one describes also the total ordi-

nability of times and the assumed orientation describes the future orientation.
Notice that in T we have not a privileged initial time.

2. - Further spaces and maps

Now we introduce some further notions concerning applied vector spaces
and maps.

2.1. ~ Vertical and unitary spaces. We introduce the spaces of applied

vectors relative to S, and U.

Definition. The vertical space, with respect to (E,t, T), or the phase
space, or the acceleration space, is

A=TE=ker Tt = ExS <> TE .
The horizontal space with respect to (E,t, T) is
TE = TE/;E —ExT.
The unitary space, or the wvelocity space, is
V= .’IZ’EE (Tt)y YTx1) =ExUE.

2.2, - Let us remember that TE has two bundle structures, namely
(TE, Tt, TT) and (TE, ng, E).

Proposition.

N [
(a) TE is the submanifold of TE characterized by z° = 0. TE is the
submanifold of TE characterized by & =1,

~ 1 ~ ~
(b) TE and TE have two natural bundle structures, namely (TE,t, T)
~ -~ l | . 1 I
and (TE, ng, E), (TE,t, T) and (TE, =g, E).

(¢) The sequence 0 —- TE <> TE — iz’E -0 is exact.
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We have not a canonical splitting of TE, as we have not a canonical pro-
~ o
jection TE — TE, or a canonical inclusion TE < TE.

~ 1
In the same way we have not a canonical isomorphism TE — TE.
2.3. — We can extend the vertical derivative in terms of applied vectors.

Definition. Let F be a O manifold and f: E —~F a (° map. The
vertical tangent map of f, with vespect to (E,t, T), is the map

~

Tf=7Tf . TE-TF.

|TE

2.4. — We can view the metric as a function on T'E, which will become
the kinetic energy in dynamics.

Definition. The metric function is the function
g: TE >R, given by (e, w) > Lu®.

2.5. — Proposition. We have g =1}¢ %' @.

2.6. — Second order spaces, affine connection and canonical projection. We
consider now the second order tangent spaces.

Definition. The vertical space, with respect o (fE, ;, Ty, is
T E =ker Tt = ExS xS xS T°E.
The wvertical space, with respect to (I’E, t\; T) and (fE, 7e, E), is
v E = ker Ti N ker T = ExSx0xS <> T E .
The biunitary space, or bivelocity space, is
Vi = TE=STTE = ExUx8\ s, ExUxUxSe>T°E.
The wertical biunitary space, with respect to (II’E, 7‘zE, E), is

| | _
V2 =9T2E =vTTE = ExUx0xS—1T*E.
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2.77. - Proposition.
T:E is the submanifold of T*E characterized by
PV = 0= 0= 0.

yI*E is the submanifold of 72E characterized by

!
T*E is the submanifold of 7?E characterized by

Vi i 50
t=wt, #=0.

«(

'=0"=1,

&

1
I E is the submanifold of 72 E characterized by

#0=1, $*=0, =0.

2.8. - Let us consider some important canomical maps, which are used
to define the covariant derivatives.

Definition. (a) The affine connection map
I 1"E -+»1*E given by (e, u, v, w) > (¢, %, 0, W),

" induces naturally the maps

~ |

I T*E —vT*E and I 1"2E — VIIWE.
(b) The canonical projection (which is an isomorphism on fibers)
11: »7* E - TE, given by (6, u, 0, W) > (e, W) ,
induces natu.ra,Hy the maps
ﬂ: vI*E — ’I’E, and ]l_[: w'li’zE ~ TE.

2.9. — Proposition. We have

goll=a", %l =a%, &%I'=0, &l =i el =i*} Ita~".
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We have
w%o] | = a*, dro| [ = @

2.10. — Then we can introduce the covariant derivative in a way that,
not making an essential use of free vectors, can be extended to manifolds.

Definition. Let u = (idg, @): E — TE and v = (idg, 9): E - TE be
C= vector fields. The covariant derivative of v with respect to u is

Vo =[]oloTvou = (idg, Di(?)): E—TE.

3. = Absolute kinematics

Here we introduce the basic elements of one-body kinematics independent
of any frame of reference.

3.1. — Absolute world-line and motion. The basic definition of kinematics
is the following. Here we consider a C° world-line extending along the whole T.
We leave to the reader the easy generalization to the case when it is €2 almost
every where, or when it extends along an interval of T.

Definition. A world-line is a connected C* submanifold

M E

such that S: N M is a singleton, Yz e T.
The motion, relative to the world line M, is the map

M:T—E, given by 7 = the unique elemente S: N M .

Henceforth in this section we suppose a world-line M, or its motion M, to be
given.

3.2. — Proposition. M is an embedded 1-dimensional submanifold of E,
diffeomorphic to R. M is a section of (E, ¢, T), namely it is a 0° embedding,
such that

toM = idy, i.e. such that Mo = ado M =a°.
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Hence the map

M: T—-M is a €% diffeomorphism .
The world line M is characterized by its motion M.

3.3. — The affine structures of T and E admit a kind of privileged world-
lines.

Definition. M is inertial if it is an affine subspace of E.
34. - Proposition. M is inertial if and only if M is an affine map, i.e.
M(t) = M(z) + DM(z'— 1), with DM e U.

3.5. — Absolute velocity and acceleration. Previously we introduce useful
notations.

(@) Let F be an affine space and let ¢: T+ F be a C° map. Then
we put
de = (¢, Dp): T — T'F.
In particular, if p =f: T — E, we get
df = (f, Df): T -~ TE and d2f = (f, Df, Df, D¥f): T - T E .
(b) We put
Vdf = [Jol0d¥ = (f, D¥): T — TE .

The coordinate expressions are

df = Df*(dxsof),
A*f = Df*(@wa0df) - D2*(0gx0df)
Vaf = (D¥* + (I, of) Dff Df*)(0maof) .

3.6. — We can view the absolute velocity in terms of free or of applied
vectors, equivalently.

Definition. The free velocdy of M is the map DM: T — E.

The wvelocity of M is the map dM = (M,DM): T — TE.
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3.7. — Proposition. We have

() by DMy =1 .

Hence, we can write

{
DM: T U and dM: T -V =TE

and we get

DM =1, DM = dweoM + DMHdw,0l), AM = dweoM + DM @m0 M) .

Proof. (%) follows from to M = idy.

3.8. — We can view the absolute acceleration in terms of free or of applied

vectors equivalently and second order tangent space may intervene espli-
citly or not.

Definition. The free acceleration of M is the map D2M: T — E.

The lifted acceleration. of M is the map
Tod*M = (M, DM; 0, D:M): T —»1*E.

The acceleration of M is the map

VAM = [Jolod*M = (M, D*M): T — TE.

3.9. — Proposition. We have

(%) {y DMy = 0.

Hence, we can write

DM T8, TIodM: T—vI*E, VAM:T->Ad=1TE
and we get
DY —0,
DM — (D*Me 4 (%0 M) DM DM + 2(I",0 M) DI + Ity M) O3,
Tod*M — (D*M* -+
= (

(I 0 M) DM DM + 3(I0 M) DA + Iyo M) B
- vam

D2ME - (I 0 M) DM DM -+ (I 0 M) D + Iyo M) 2. .
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3.10. — Geometrical analysis. Here we give some further element of ana-
lysis of M, not essential from a kinematical point of view.

M has two structures: the € structure induced by E and the oriented
euclidean affine structure induced by T (but, in general, M is not an affine
subspace of E).

The embedding TM: IT — TM — TE is given by

(7, 2) v (M(z), 2 DM(7)) .
The embedding 72 M: T*T — I*M <> T*E is given by
(Ty A5 pty¥) — (M (%), A DM (7); w DM(v),» DM(t) + I DM (7)) .

Now, let us consider the two fields

M= dMoM—: M — TM, and M =VadMoM-': M — TE,,.

311 - Proposition. M results into the unitary oriented constant field,
with respect to the oriented euclidean affine structure of M induced by =.

Moreover, each vector field X: M — TM can be written as X = X°© M,
where X°= {1, X).

3.J2. — Proposition. Let X: M —7TM and Y: M— TM be two
fields. Then the covariant derivative

V.Y =][]ol'co TYoX: M — TE
is given by

VoY = p'ooV. ¥ 4 pgoV, T,

where

p'-oV, Y = X'DY'M,

results into the covariant derivative with respect to the affine structure of M
and

pJJ;oVXY = XYM
shows that the tensor

M® 1@t M — T E\y

can be considered as the second fundamental form of M.
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3.13. — Physical description. The world-line M of a particle represents
the set of all the events « touched » by the particle and the motion M is the
map that associates with each time the relative event. Of course the events
being absolute, i.e. independent of any frame of reference, the same occurs
for the world line and the motion. The affine structure of E allows a privileged
type of motions, namely the inertial ones.

As we have the absolute motion 3, we have the absolute velocity DM
and acceleration D2M. These contain all the information necessary to derive
the velocity and acceleration observed by any frame of reference, when it is
chosen. The fact that DM is a unitary vector and DM is a spatial vector
will put in evidence how the observed velocity changes and that the observed
acceleration does not change from an inertial frame of reference to an other.

We can describe the previous facts by pictures.

E
T2
M
Loy -7 & ' 1)
M(z1)
DMENY D (ret)
1%
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Summary

The classical kinematical framework is constituied by o four dimensional affine space E

(absolute evenis), a three dimensional vector space S c E (absolute simultaneity), an eucli-

dean melric § on S (spatial metric) and an ovientation on the one dimensional affine space
T = E/S (absolule oriented time). Then we get a bundle 1: E — T which is trivial but not
canonically a product.

An absolute motion is a section M:T — E. Iis absolute velocity is the first derivaiive
dM:T — TE and its absolute acceleration is the covariant devivative VA M :T — TE.
We get <dt,dM> =1 and <{di, VAI> = 0.

In the following steps we shall analyse the absolute motion of a continuum, which deter-
mines a frame of reference, leading to the observed limematics.
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