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On quadratic termination

of the conjugate gradient method (**)

A Grorgio SEstTiNI per il suo 70° compleanno

1. - Introduction

In Crowder’s and Wolfe’s paper [1], it is claimed that the conjugate gradient
method [3] does not present quadratic termination property on a guadratic
objective function f(x), # € B in the absence of the standard initial starting
condition. That is shown by numerical examples.

This note provides the theoretical reason of this failure. Namely, by the
theorem exposed in 2, it is proved that, when the initial search vector is quite
arbitrary, the directions, which are built in » successive iterations by the pro-
cedure implemented from Crowder and Wolfe, are not mutually conjugate
with respect to the hessian matrix of f(#). Thus is not guaranteed to terminate
at the solution in at most n steps.

The thesis of the theorem is proved for whichever conjugate gradient method
with standard one-term correction formula.

Therefore it is of primary importance, in order that the termination ensues,
to choose the standard start, that is to assume the initial search direction
opposed to the gradient, g,, of f(#) in the initial approximation, »,, of the
minimum. However, by the proof of the theorem it will be evidentiate an
initial condition which is necessary and sufficient for termination in the qua-
dratic case. This condition will be formulated in the corollary presented in 2.

(*) Indirizzo: Istituto di Matematica, Universita, 43100 Parma, Italy.

(**) Lavoro eseguito nell’ambito del G.N.I.M. (C.N.R.). Nota presentata al Con-
vegno Nazionale G-N.LM. (C.N.R.), Rimini 20-22 Seftembre 1978, — Ricevuto:
12-X-1978.
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2. - Theorem on the directions comjugaey

The objective function, that will be considered in the following, is the
quadratic

(2.1) fl)=3%a"Gx 4+ T2 4 ¢, (xeR"),

where ¢ is a scalar constant, b is an n-th vector and @ is an (# xn) symmetric
and positive definite matrix.

Moreover the procedure of the conjugate gradient methods, that will be
analyzed, is the following. Given @, and d,, for any k>1, let ,,, = 2, + A.d,,
where 2, is such that f(z, + Avdy) = minf(z, + Ad,). Then, if g, .1 =10 stop,
if not let #

(2.2) Q1 = — Gy + frds s
where f, is chosen so that

(2.3) az,, Gd, =0,

and iterate the procedure.

The conjugate gradient methods, with one-term correction formula (2.2),
usually assume d, = —g;, while they differ in the rule to compute 8,. First
of all, we mention the rule

ﬁk == g:+1 Gdk/d,f G(Zk y

because this one is used in the Crowder’s and Wolfe’s numerical experiences;
but the more commonly used rules are the Hestenes’s and Stiefel’s one [3]

Br = Gers(Grir— 91)/ A (G — 95)
and the Fletcher’s and Reeves’s one [2]
B = Gr1al05 -
In all these methods it has been proved that the successive directions
dyy dyy ..., &, are all linearly independent and conjugate with respect to G,

that is

(2.4) A7 Gd, =0, for £k, Gy h=1,..,7m),
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and z, minimizes f(z) in the subspace R¥ ! = (d,, ..., d;_;). Consequently the
procedure terminates with ¢, = 0 for some k<n.

On the contrary, Crowder and Wolfe [1] by numerical examples have shown
that the conjugate gradient method, applied to the function (2.1), when
d, 5= —¢,, does not possess quadratic termination.

By the following theorem, we shall show that in their case the directions
dyy ds,y ..., d, ave not guaranteed to be all mutually conjugate and so the ter-
mination can fail.

Theorem. Let (2.1) be the objective function and let us apply to (2.1) @
congugate gradient method, with one-term correction formula (2.2), but with d, dif-
ferent from — g, and quite arbitrary. The divections dy, dy, ..., d, are not gua-
ranteed to be all mutually conjugate with respect to G.

Proof. By contradiction, assume that our iterative procedure constructs
search directions all mutually conjugate with respect to ¢. This means that
d., 2<k<n, is conjugate to d._,, 1<i<k—1, that is d;Gd, =0 and, by
supposing dy, da, ..., d;, all mutually conjugate, d;, d,, ..., d;,; arve also all mu-
tually conjugate.

We can soon prove this last thesis. Because @, is the minimum point
along d, and d,, d,, ..., d, are mutually conjugate, #,,, is the minimum of f(z)
in the subspace R* = (d,, ..., d;). Then it is

(2.5) G @ =10 (L<j<k).
If L(a, b, ¢, ...) defines a linear combination of a, b, ¢, ..., by (2.2) it is
(2.6) d; = L{g;, d;_;) (1<j<k),

and, because in the quadratic case ¢, =g, , + A1 Gd, 4, it s

(2.7 g; = L(g;1, Gd;_y) A<j<k),
then it is
(2.8) d; = L(gsa, Gds_s, d; ) A<ji<k).

But, from (2.5) and (2.6) we have

(2'9) glﬂc,+1g:f == g:+1g9'—1 =0 (1 <j<75) 3
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s0, from (2.5), (2.8) and (2.9), it is
(2.10) g7, Gd; =0 (1<j<k—1).

Therefore, by (2.2) d,.., is conjugate to d,, ds,...,d,, and, by (2.3), is
conjugate to d,. ’

We consider now df Gd,; because Gdy = 17"(¢.— ¢1) and dy = — g, -+ 1 d,
with d’ g, =0, we have

(2.11) dy Gdy = 2N — ¢+ g2 0. — P AT g1)

But, if d,%—g, or, more generally, d, is quite arbitrary, df@d,==0.
Therefore our conjecture on the mutually conjugacy of d,, d,, ..., d;, 2<k<n,
is false. Q.E.D. )

This theorem justifies the Crowder’s and Wolfe’s numerical results. From
its proof, moreover, some choice of d;, different from d, = — g,, but such
that the termination is retained, can be deduced. Infact from (2.11) we note
that if d, satisfies to the condition

(2.12) di gy =B 9. 9.—G3)

it is dy Gd, =0. Thus, in the proof of above theorem, the induction is com-
plete and hence all conjectures are true.

We can conelude with the following corollary.
Corollary. Let (2.1) be the objective function, and let us apply to (2.1) a
conjugate gradient method with one-term correction formula (2.2). If and only

if dy satisfies condition (2.12), the n-steps termination is achicved.

Note that d, = — g, satisfies condition (2.12).

Finally, since (2.12), from df g, = 0, it results

Ay (g1 —92) = (95 91— 93)
that is

(2.13) a7 Gd, = fM(g: Gdy,) = B7Hd] Ggs) .
So, from (2.13), it is evident that g, can be conjugate to d, with respect

to G [4] only if d, is trivial. In this case, however, it is obvious that, by choos-
ing d, =—¢,, (»-1)-steps termination follows.
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Sommario

Numericamente st ¢ osservato che il metodo a-gradiente coniugalo non presenia termi-

nazione quadratica per funzioni obiettivo quadratiche, con scelle arbitrarie della direzione
di ricerca iniziale.

La giustificazione teorica di cid viene fornila, e scelte iniziali alternative, tali da garan-

lire la proprietd suddetia, vengono messe in evidenza.






