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Compact perturbations

of some nonlinear Hammerstein equations (*¥)

A Grorcio SEsTINI per il suo 70° compleanno

Introduction

Much research has been devoted in recent years to abstract nonlinear
Hammerstein equations in Banach spaces and the interested reader may consult
Browder’s survey paper [4]. Those results on Hammerstein equations have
been used by Browder [4] and by Brézis and Browder [3] to prove Leray-
Schauder’s type continuation theorems for noncompact perturbations of the
identity. '

The aim of this paper is first to present an unified abstract scheme for
those type of continuation theorems, by the introduction in 1 of the concept
of pairs of continuwously Hammerstein compatible mappings and the proof of
the corresponding continuation theorems via the usual Leray-Schauder’s
theory [8].

In 2, we first generalize and complete, with a much simpler proof, a result
of De Tigueiredo-Gupta [5] on the existence and uniqueness of solutions of
the Hammerstein equation

(0.1) U+ MNu=f

(*) Indirizzo degli AA.: Institut de Mathématique, Université de Louvain, B-1348
Louvain-La-Neuve, Belgium.

(**) Work realized in part when the first author was visiting professor at the Colo-
rado State University, F't Collins, Colorado, U.S.A. — Ricevuto: 25-1X-1978.
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in a Hilbert space where 3 satisfies a nonlinear version of a condition intro-
duced by Hess [6] and N is not necessarily monotone. By proving for (0.1)
& result on the continuous dependence of the solution of (0.1) with respect to
M, N and f, we are then able to associate to the type of assumptions introduced
by De Figueiredo and Gupta a class of pairs of continuously Hammerstein
compatible mappings. By the results of 1 a corresponding Leray-Schauder’s
type continuation theorem is then available which has been shown in [9] to
be useful in the study of the range of nonlinear perturbations of linear mappings
with an infinite dimensional kernel and will be applied to other alternative
problems in a subsequent paper. One also obtains in this section a result on
the convergence of Galerkin’s approximations to the solution.

In 3, we give a direct and simple proof of an existence and unigueness
result due to Koscikii[7] and De Figueiredo and Gupta[5], for the solutions
of (0.1) when ¥ is strongly monotone and M is and indefinite linear mapping
which splits in a certain way. Again a result of the continuous dependence
of the solutions with respect to M, N, f is proved and applied to the description
of an associate pair of continuously Hammerstein compatible mappings and
to the convergence of the Galerkin’s approximations.

1. - Pairs of continuously Hammerstein compatible mappings and continuation
theorems for noncompact perturbations of the identity

Let X and Y be real Banach spaces and let J = [0,1].

Definition 1.1. A pair (4,47 of mappings #: Y xJ ->X, N
XX dJ — Y is said to be continuously Hammerstein compatible (shortly
ch-com- patible) if, for each A eJ and each fe X the Hammerstein equation

1.1) w A (A (4, 1), 2) = |
has a unique solution and the corresponding mapping
S XX =X, (f, 2) =TI+ AH(AN (-, A), )]

is continuous and bounded.

Recall that a mapping between metric spaces is called bounded if it takes
bounded sets into bounded sets.

A simple but useful example of ch-compatible pair ean be obtained by
the use of the Banach fixed point theorem (see e.g. [1]), the details of the
proof being left to the reader.
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Proposition 1.1. ILet #: ¥YxXJ X and A: X XJ = Y be mappings
such that, for some ke[0,1], all LedJ, ue X, ve X onc has

[ A (A (g 2)y ) — (A (0, 2), 2)| < K]0 — 0],
and such that, for each we X, the mapping
Do (A (uy 2, 1)

28 continuous and bounded. Then (M, N) is ch-compatible and, for cach
{(f, Ay e X xJ, one has

F(f, A) = lim un,

n—roe .

where u, € X is arbitrary and
Unyy = [ — AN (Uny 1), A) m=1,2,..),
with the estimate
[, — L(f, V<L — B)y2Er|f — uy — (A (g, 2), 2)] .

We shall now show how the concept of continuously Hammerstein com-
patible pair is useful in formulating Leray-Schauder’s type continuation the-
orems for some not necessarily compact perturbations of the identity. Recall
that @ mapping F: A — B between the metric spaces A and B is called compact
if F is continuous on A and F(A) is relatively compact in B.

Let 2c X be an open bounded set, with closure £ and boundary 20.
If F: © — X is such that F = I -+ @ with I the identity on X and ¢: @ — X
is compact, and if f e X\ F(22), the Leray-Schauder degree [8] of I in £ at §
is defined and we shall denote it by d[F, 2, f].

Theorem 1.1. ZLet (M, #) be a pair of ch-compatible mappings A :

Yxd >X, N: XxJ >Y and let €: X xJ -+ X be a compact mapping
such that the following conditions are satisfied.

(1) For each (u, L) e 002 xdJ, one has
w A (N (uy A), ) = Cu, 1) .

(2) d[I_ t9()((5( 5 0), 0)9 Q, O] 7 0.
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Then, for each 2 €dJ, the equation
(1.2) W AN (u, X), ) = € (u, 1)
has at least one solution u € 0.

Proof. By definition of a pair of ch-compatible mappings, equation (1.2)
is equivalent to the equation

u=9(u, %), where I (u,2)=L(Cu,n),2%, (u,)elxJ,
so that

T : QxJ X is continuous and I (2xJ)=L(E(2xJ)xJT]
is relatively compact. Thus, by assumption (1), u =7 (u, 1) for every (u, 2)
€ 02 xJ and the homotopy invariance of Leray-Schauder’s degree (see e.g. [1])
implies that

(1.3) d[wa((g(-, }“)7 7‘)7 -Q’ 0] = d[I—y(%(') 0)7 O), Qy O] #0,

by assumption (2). The result then follows from (1.3) and the existence pro-
perty of Leray-Schauder’s degree (see e.g. [1]).

Corollary 1.1. Assume that #, A, € verify condition (1) of Theorem 3.1

and that €(u,0) = f for every we 2 and some fe X such that L(f,0)e Q.
Then the conclusion of Theorem 1.1 holds.

Proof. By the assumptions and usual properties of the Leray-Schauder’s
degree (see e.g.[1]), one has

(Z[I—Y((g( 5 0), 0)7 2, 0] =d[I, 2, 7(f,0)]=1
and the result follows from Theorem 1.1.
Corollary 1.2. Assume that 4, A", € verify condition (1) of Theorem 3.1,
that Q is symmetric with respect to 0, with 0 € Q, and that, for every e 20,

one has

(1.4) M(N (= u, 0),0) = — M (N (%, 0),0),
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(1.5) E(— u, 0) = — E(u,0).
Then the conclusion of Theorem 1.1 holds.
Proof. Clearly, (1.4) and (1.5) imply that, for each (%, 1) € 242, one has
S (€(—u, 0),0) =L (— €(u, 0),0) = — L (¥(u, 0), 0),
and then, by the Krasnosel’skii-Borsuk’s theorem (see e.g.[1]), it comes
a[I—S(%(-,0),0),2,0]=1  (mod. 2).

Thus the result follows from Theorem 1.1.

2. « A class of pairs of continuously Hammerstein compatible mappings in a
Hilbert space
Let now H be a real Hilbert space with inner product (,) and correspond-
ing norm |-|. Recall that a map F: H — H is called demi-continuous if u, — u
implies Fu, — Fu.
Definition 2.1. A pair (M, N) of mappings from H into H is said to

be Hammerstein-compatible with constants a and b (shortly h(a, b)-compatible)
if the following conditions hold.

i) 0<b<a; (ii) for each weH and each veH, one has
(Mu— Mo, «—v)>a|Mu— Mv|%
(iii) for each weH and each ve H, one has
(Nu— Nov, ¥ — v)>— blu— 0|2
(iv) N is demi-continuous on H; (v) M(0)=0.

Remark 2.1. We shall see that the class of h(a, b)-compatible pair of
mappings is related to the unique solvability of the Hammerstein equation

(2.1) u+ MNu=f,
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for every fe H. In this respect, the condition (v) is not really a restriction,
because if (M, N) satisfies (i) to (iv), then equation (2.1) is equivalent to

w4+ MNu=F,

where M(u) = M(u) — M(0) and f= f— M(0) and the pair (JZ, N) is now
h(a, b)-compatible.

Remark 2.2. One shall notice that condition (ii) implies that M is
monotone and Lipschitzian with Lipschitz constant ¢-!. Consequently, M is
maximal monotone. (See e.g.[2] for this result and the concepts of monoto-
nicity and maximal monotonicity).

The following result generalizes and completes, with a simpler proof, a
theorem due to De Figueiredo and Gupta [5] (see also Browder [4] for other
special cases). It has been announced, together with Proposition 2.2., in [9].

Proposition 2.1. Let (M, N) be a pair of h{a,b)-compatible mappings
from H into itself. Then, for each fe H, equation (2.1) has a unique solution u
which satisfies the estimate
(2.2) fu— 7l < (a— ) |N] .

Proof. If we define 7: H — 2% by

Tu=— MYf—u)+ Nu,
equation (2.1) is clearly equivalent to equation
(2.3) 0eTlw,
and the existence and uniqueness result will follow if we show that T is
maximal monotone and strongly monotone (see e.g. [2]). Using (ii) and (iii)

in Definition 2.1 we obtain easily that, for every (u,,v,) and (u,,v,) in the
graph of 7', one has

(01— Doy Uy — %) > (@ — b) |2y — U,|?

so that, by (i) in Definition 2.1, T is strongly monotone. Define now A; H — 2%
and B: H - 2¥ respectively by

Ay = — M-Y(f— u)— bu, By = Nu + bu,
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so that 7 = A -+ B. By conditions (iii) and (iv), B is monotone, demi-conti-
nuous on A and hence maximal monotone (see e.g. [2]). By conditions (i)
and (i), 4 is monotone and A -+ bl =-— M(f— -) is maximal monotone
because M is maximal monotone. Consequently, by Minty’s characterization
of maximal monotone operators (see e.g.[2]), one has using (i),

Im(A+al)=Im((4A +bI)+ (a—b)I)=H,

and hence, by the same characterization, 4 is maximal monotone. A result
of Rockafellar (see e.g. [2]) then implies that 7 = A + B is maximal mono-
tone. Now, to prove (2.2), let us notice that, using (ii), (iii), (v) and (2.1),
one has
— blf— w|*<(Nf— Nu, f— u) = (Nf— Nu, MNu)
< (Nf, MNu)— a|MNu|*<|u~— f||Nf] — a|f — u|2,

which gives (2.2) and completes the proof.

The following proposition, which is modelled after a result of Brézis and

Browder [3] for another situation, shows how the solution of (2.1) depends
on M, N, f.

Proposition 2.2. Let (M, N) be a pair of hia', b')-compatible mappings
from H to H, (M,,N,) be a sequence of pairs of h(a, b)-compatible mappings

from H to H and let (f,) be a sequence in H which converges to fe H. Assume
that the following conditions hold.

(1) For cach bounded subset Sc H, |J N.(S) is bounded.

n=1

(2) Por each weH, M ,Nu > MNu if n — oco.
(3) For each weH, N,u—>Nu if n— co.
Then, if we write
u= I+ MN)f, = {4+ M,N,), (n=1,2,..),
we have u, —u for n — co.

Proof. Assumption (1) and the estimate (2.2) imply that the sequence
(w,) is bounded, and so the same is true for the sequence (N,u%,). On the other
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hand, by the definition of %,, one has

(2.3) (M, N,u,— M, Nu, Nyu,— Nu) = (fn — 14,— M,Nu, N,u,— Nu)
= (U— Uy + G0, Nytty— Nyu+hy,),

where
gn=fn—u— M, Nu and h,= N,u— Nu (n=1,2,..).
By assufnptions 2 and 3, one has
g0 and h,—0 if n » 0.
Now, using conditions (ii) and (iii) of Definition 2.1 and (2.3) we obtain

(2.4) a| M, Nty — M, Nu2— blu— u,|*
< (M, Nyu,— M, Nu, Ny — Nu) + (Not— Nty 16— )
:(g"’ h") + (’ll/— uﬂ’ hﬂ) + (0717 N'ﬂun— ]\T'n'u/) - 5,: ('n = 1, 2‘, -..) .

Clearly, 6, -0 if n — oc.
By (2.4) and the definition of u, u, and g., we obtain

g, + w— |2 — blu— wa|?< 0 (n=1,2,..}),

i.e.

(@ — Y|t — 1|2 < 0 — €|gn]® — 20{(U — Uy, ¢u)

and the result follows from the fact that « > b and the boundedness of the
sequence (%,). ,
An immediate consequence of Proposition 2.2 is the following

Corollary 2.1. TLet (M, N) be a pair of h(a, b)-compatible mappings from
H to H. Then, if N is bounded, (I + MN)*: H - H is continuous.
Another important consequence of Proposition 2.2 is the following

Theorem 2.1. Let #: HxJ - H and A" : HXJ — H be mappings such
that the following conditions are satisfied.

(a) There ewist 0<b < a such that, for each Aed, (M(-,2), N (-, A) 18
h(a, b)-compatible. '
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(b) &1 HxJ —H is bounded.
(¢) For each weH, the mapping A (u, -} is continuous on J.

(d) For cach weH and cach ved, the mapping.d (AN (u,v), ) is con-
tinuous on J.

Then the pair (M, AN) is ch-compatible.

Proof. It follows from assumption (a) and Proposition 2.1 that equa-
tion (1.1) has a unique solution for each fe H.

Now let (f, ) e HxJ and (f.) and (4,) be sequences such that f, —f,
Jn = A if m — co, and let

My= My 0), No=AH(,2), M=.u(2, N=WN(,2).

By assumptions (a) to (d), the conditions (1) to (3) of Proposition 2.2 are
satisfies and hence

Plfny M) =L, 2) if 0 oo.
On the other hand, by the estimate (2.2), one has for each (f, 4) € H xJ,
[ (f, A)— fl<(a— Dy |A(f, 2)]

and the boundedness of & follows from that of 4.

Under the assumptions of Theorem 2.1 it is no more possible in general
to approximate S(f, A) by an iteration process, but the following consequence
of Proposition 2.2 will show that the solution S(f) of (2.1), and hence the
solution & (f, A) of (1.1) for each fixed A€ J, can often be obtained as the
limit of Galerkin approximations.

Let (P,) be a sequence of orthogonal projectors from H into itself such
that the following condition

(2.5) for each feH, P,f—f Hn—>oo

is satisfied. By a Gealerkin approzimation of order n for the solution of (2.1)
we mean any solution.u, of the equation

un—}—PnMPnNu;z:fn,

where f, = P,.f (n=1,2,...). Obviously, #,eImP,.
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Proposition 2.3. Let (M, N) be a pair of h(a,b)-compatible mappings
from H into itself such that N: H — H is bounded. Assume that there ewists «
sequence (P,) of orthogonal projectors in H such that (2.5) holds. Then, for each -
n=1, 2, ..., there ewists a unique Galerkin appromimation w. of order n for the
solution w of (2.1) and lim u, = wu.

N—>0Q

Proof. Define, for each n =1,2,..., M,: H - H and N,: H - H by
M, =P, MP,, N,=N. For each u,veH and each » =1,2, ..., one has
(M, — Muv, 4 —v) = (MP,u— MP,v, P,u— P,v)
>a|MP,u— MPvi*>a|M,u— M,|2
and hence, as obviously M,(0)= 0, the pair (M,, N,) is k({a, b)-compatible
for each » =1, 2, ..., which insures the existence and uniqueness of u, for

each n =1,2,.... To complete the proof by the use of Proposition 2.2, it
remains to show that, for each ueH,

M. Nu— MNuy if n—co.
But, for each veH,

| Muv— Mv| < | P (MP,0— Mv)|-+ | P, Mv— Mv|
< |MPv— Mv|+ [P, Mv— Mv|<a'|Pv—wv|+|P,Mvo— M|,

using Remark 2.2, so that the result follows from (2.5).

3. - Anether class of pairs of continuously Hammerstein compatible mappings
in a Hilbert space

Let still H be a real Hilbert space with inner produect (, ) and correspond-
ing norm |-|, and let H, and H, be two closed orthogonal vector subspaces
of H such that H = H, @ H,. We shall denote by P the orthogonal projector
onto H, and write ¢ = I — P, so that @ is the orthogonal projector onto H,.

The following result completes a former result of Kosicky [7] and De Fl-
gueiredo-Gupta [5] with a substantially simpler proof.

Proposition 3.1. Let K: domKcH, ~>H, and L: domLcH,—H, be
linear mappings and let N: H — H be such that the following conditions hold.

(1) K is mazimal monotone.
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(2) L is closed, one-to-one and onto and |L7'| < a.
(3) N is hemi-continuous and strongly monotone with constant b.
Then, if b> a, the Hammerstein equation
(3.1) w-+ (KEP 4+ LQ)Nu = f
has for each fe H a wnique solution w. Moreover, the following estimate holds:
(3.2) lu—fl<(b—a)*|Nf|.
Proot. Let v=u—7f, N,=N(-+-), M= KP + LQ with dom
= {#: PredomK and QzedomL}.
Then (3.1) reduces to
(3.3) —v=MN;v.
Now, Mx =1y, yeH, if and only if KPx= Py, LQz = Qy, 1e.
PxeK-1Py, Quv=L"Qy i.e. ve(K1P + L1Q)y = My
with K-': H, — 2F1 maximal monotone. Consequently, (3.3) is equivalent to
(3.4) 0e N, (v) + MYv) = T)v),

with T,: H — 2%, Now, K-P: H —» 2% is maximal monotone; in fact, for
all (%, v), (w,v’) in the graph of K—1P, one has

w—2v,s—u)=@w—2,Pu—Pu)>0,

because K-1: H, — 2H1 is monotone, so that K-1P is monotone; moreover, for
each y € H, the equation

(3.5) ye (KP4 D
is equivalent to (with I, the identity in H,)

(3.6) . Pye(E4+I)Ps, Qy=Qu
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and, K-*: H, — 21 being maximal monotone, the first equation in (3.6) has
by Minty’s characterization (see e.g.[2]), a unique solution

Py = (K- 4 I,)* Py
so that (3.5) has the unique solution
@ = (K4 1,)7"Py + Qy .

By Minty’s characterization again, K—P is maximal monotone. Now, ¥, L-1Q
is defined on H and hemicontinuous; moreover, for u, v e H

(Nu -+ L'Qu— Ny — LQu, u— 0) > blu— 0|2 — (L1Q(u— v), ©w— )
>(b—a)lu—o[

so that N, - L-'¢ is maximal monotone and strongly monotone. By a result
of Rockafellar (see e.g.[2]), 7', is maximal monotone and strongly monotone,
50 that (3.3) and hence (3.1) has a unique solution. Now let us notice that,
for each vedom M,

(3.7) (Mv, v) = (KPv + LQv, v) = (K Pv, 1;7)) -+ (LQv, Qv)
> (LQv, Qv) = (LQv, L*LQv) >— a | LQv|*>— | Mwv |z
Therefore, if u is the solution of (3.1), one has Nuedom M and
blf—u|?<(Nf— Nu, f— u) = (Nf, f — w)— (Nu, MNu)
<(Nfyf—w)+ a| MNu|2<|Nf||f—u|+ a|f—ul®

which gives (3.2).

The following results shows how the solutions of (3.1) depend on K, L,
N and f.

Proposition 3.2. Let K, L, N, f be lilce in Proposition 3.1 and let (K,),

(L), (Na), (fa) be sequences such that f, —f if n — co and the following con-
ditions hold.

(1) For each n=21,2,..., K,: domKc H, -~ H, is linear mamimal mo-
notone, L,: domLc H, - H, is linear, closed, one-fo-one onto, and, for some
a>0, | L' <a.
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(2) For each n =1, 2, ... and some b > @, N,: H — H is demicontinuous
and strongly monotone with constant b.

(3) For each bounded subset ScH, |J N.(8) is bounded.

=1

(4) For each we H, such that PNuec domK and QNwedoml, M, Nu —
— MNu if n - oo, with M,=K,P-+L,Q, n=1,2,..; M=KP- LQ.

(5) For each we H, N,u —Nu if n — oo,
Then, if we write
w= I+ MNYf, wu,=UI+ M. N,) (=12, ..),
we have w, —u for n > co.

Proof. Assumption (3) and the estimate (3.2) imply that the sequences
(u,) and (N,u,) are bounded. On the other hand, we have, by assumptions
(1), (2) and relation (3.7),

blu— w, |2 < (Nt — Nty 0 — 1,) — a| My Nywy— M, Nu|?
<(M,N,u,— M, Nu, Nou,— Nu)
= — Uy -+ Gny Nothy— Nt -+ 1)
if we write
gon=Ffn—u— M, Nu, h,=DN,u— Nu n=1,2,..),
so that ¢, —0, h, >0 if n - co. Consequently,
b|%— ]2 — a|t— Un - g |2 < (@ — Uuy ha) + (G Nuthw — Ny) + (gny b)) = s
(n=1,2,..),
with §, -0 if % — oo, s0 that
(b—a)|u— un|2<0n + 20(8 — Uy, gu) + algn|> (n=1,2,...),

and the result follows.
An immediate consequence of Proposition 3.2 is the following.
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Corollary 3.1. ILet K, L, N be like in Proposition 3.1 with morcover N
bounded. Then

I+ (KP+LQYNT:H->H
28 continuous.

Another consequence of Proposition 3.2, whose proof can be modelled on
the one of Theorem 2.1 and then can be ommitted is the following,

Theorem 3.1. For cach Aed, let (-, A): Dyc H, — H, and ZL(-, A):
D,c H, — H, be linear mappings and let A+ HxJ —H be such that the
following conditions hold.

(1) For each Led, (-, 1) is mawimal monotone and L(-, ) is linear,
closed, ong-ot-one, onto and such that

L D] <a
with a>0 independant of 2.

(2) A& HXJ — H is bounded, there ewists b > a such thai, for each L& J,
AN(+, 2): H — H is strongly monotone with constant b, and, for each w e H, the
mapping A (u, -) s continuous on J.

(3) For each ueH, and for each ved such that PA (u,v)eD, and
QN (u, v) € D,, the mapping

MWy ), -) = (PN (w, 9), ) + LQN(u, ), -)

18 continuous on oJ.
Then the pair (M, N) = (H(P, )+ L(Q, "), ) is ch-compatible.
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