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SiLviAa ToTARO (%)

Approximation of evolution problems

in Banach spaces (**)

A Groreio SEsTIN1 per il suo 70° compleanno

0. - Imtroduction

Sequences of Banach spaces approximating a given Banach space X were
introduced by Trotter, [4], to show that a linear initial-value problem in X
can be interpreted, in some sense, as the limit of a suitable sequence of linear
initial-value problems in spaces not necessarily coinciding with X

In this paper, we prove that Trotter’s method can be used to study semi-
linear and non-linear initial-value problems. To this aim, we summarize some
of Trotter’s definitions and results in sect. 1 and some basic results on semi-
linear and non-linear problems in sect. 2 and 3. Trotter’s method is then gen-
eralized to a semilinear problem with global (in time) solution in sect. 4 and
to a semilinear problem with local (in time) solution in sect. 5. Finally, a non-
linear problem is studied in sect. 6.

Most of our results can be proved with some formal (but not substantial)
complications for more general semilinear and non-linear problems.

1. - Preliminaries: sequences of Banach spaces
Following Trotter, [4], we say that a sequence of Banach spaces (B-spaces)

{X., n=1,2,3,..}is a sequence of B-spaces approximating a given B-space X

(*) Indirizzo: Istituto di Matematica Applicata, Universith, Via Morgagni 44,
50134 Tirenze, Italy.
(**) Ricevuto: 2-VIII-1978.
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if an operator P, ewists such that

) P,e B(X, X,) with 1Pull<l, Yo =1, 2, ...,
(2) lim [P, /], = |f] VieX,
where |- ||, is @ norm in X, and |- is a norm in X.

Now given a sequence {f,} with f,€X,, n=1,2, ..., by definition, we
say that {f.} converges to fe X if

(3) lim “fn—Pnf”n:O'

n—ro

Note that (3) implies lim [f,], = |f]-

The following theorems can be proved on the approximation of a given
semigroup in X by means of a sequence of semigroups in X, [4], (notations
are those of [2],).

Theorem 1. Let A a linear operator of class G(M, fo; X) and let A, be
of class G(M, f,; X,), »n =1, 2,.... If

@) lim |P,R(z, A)f — R(z, A) Pof]n=0

n—rcwo

for some z with Rez> B, and for each fe X, where R(z, A)= (21 — A)' and
Bz, A,) = (&I — 4,7, then

) lim | P, exp (t4)f — exp (t4,) Pofla =0

11=> 0

uniformly in any finite interval of 0.

Theorem 2. If A, A, are as in Theorem 1 and if
(62) P.[D(A)] c D(4,) (n=1,2,..),

n—ro

then (4) is satisfied and (5) holds.
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Theorem 1 and 2 can be used fo approximate the initial-value problems
in X

El%ga = Au(t) (t>0), 4deG(M, f,; X),

X — lim u(t) = uye D(4),

t—0*
by means of the sequence of the initial-value problems in X,

du, (%)
dt

= A, u.(t) (t>0), A, eG(M, ﬂo; X)),

(8)
X, — lim wu,() = u, € D(4.),

t—ot

where {X,} is a sequence of B-spaces approximating X.
In fact, if (5) holds and U, = P,u,, then we have

(9) Im || P,u(t) — u.,(t) .= 0,

n—>+co

because u(f) = exp (t4)u,, 'un(t) = exp (t4,) P u,.
Hence, P,u(t), the representation in X, of the solution of (7), is close to
the solution w,(f) of the approximating problem (8) provided = is large enaugh.
Since we intend to generalize the above theorems to semilinear and non-
linear initial-value problems, we list some existence and uniqueness results
for such problems.

2. - The semilinear problem

If AeG(M,py; X) and F = F(f) is a map from X into X, the semilinear
initial-value problem

(100) WU — duly) + Pl (4> 0),

(10b) X-lim u(t) = o,

t—0%
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is said to have the strict solution u = u(f) over [0, {,] if
(a) w(t) e D(A) N DI, Yte[0,t,],

(b) wu(t) is strongly continuous Vie{0,?,] and strongly differentiable
Ve (0, 1],

() u(t) satisfies (10a) Yie [0, t,] and (10Db).

Theorem 3. Under the assumplions

— I has a domain D(T') and range R(F) contained in X and an open and convex
set D c D(F) exists such that

(11a) 17(F) — F(f)ll <elif — f1l Vi, e D,
where o 18 & non negative constant,

— F(f) is Iréchet-differeniiable at any fe D and its Fréchet-derivative I, is
such that

(11Db) 19l <ealgll VfeD, geX,
where oy is a non negative constant that doesn’t depend on f and g,
(11e) [#,9—F;g]l —0 as [f—fi] >0 VgeX with f,f,eD,

(11d) ueDA)ND,

then the semilinear initial-value problem (10a) - (10b) has a unique strict solu-
tion w(t) over [0, £], provided that { is switably small. Moreover, u(t) e D(4A)N D
Vi e [0, ).

To prove Theorem 3, [3], one first shows that assumptions (11a), (11d)
ensure the existence of a unique continuous solution w(t) € D, t e [0, {] (Where
{ is suitably small) of the integral equation

(12) w(t) = exp (t4) u, —{—ftexp ((t— s).4) F(u(s)) ds,

that can be obtained by integrating formally system (10a) -+ (10b) over [0, ¢].

Then, under the assumptions (11b), (11¢), one proves that the continuous
solution of (12) (which is called a mild solution of (10a) -- (10b)) is the strict
solution of the semilinear problem over [0, {].
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This solution is obviously «local in time » because wu(f) is defined only over
the small interval [0, {].

Now, if we want a unique strict solution w(f) of (10a) - (10b) over a
«large » interval [0, t,] given a priori, i.e. a global solution of (10a) - (10b),
the following assumptions can be used
— F has a domain D(F) = X and a range R{F)c X and
(13a) 1) — (i) | <ecllf— fal Vi, e X,

where « is a non negative constant or a non decreasing function of |f| and [f.|;

— F(f) is Fréchet-differentiable at any fe D(F) = X and its Fréchet-derivative
F, is such that

(13b) 17,9 <olgl Vf,9e X,

where o, s a non megative constant or a non decreasing function of |f|;

(13¢) 1¥r9— Fyg] -0 as If—fl—0 Vg, f, he X,

(13d) Uy € D(A) ; |

if @ strict solution w = w(t) of (10a) -~ (10b) ewists over [0, tl]‘c [0, %], then
(13e) @<y Vie [0, t],

where 1 s a suitable constant depending only on wu, and i, (and without loosing

in generality such that Jju,] <n).
Note that, if « is a constant, then (13e) follows from (13a).

3. - A non linear problem
Let us consider the following problem in the B-space X

it
cﬁﬂzAM“ (t>0),

X —limu(t) = u,eD(4),

t—>0*
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where A is a non-linear operator with domain D(4) and range R(A) contained
in X. If we assume thab

(15) If =gl <lf—g—2(4f— Ag)| ¥/, 9e D(4), Vz>0,
(16) R(I—2z4)=2X, Vo> 0

(an X is an Hilbert space or a uniformly convex B-space,
then we have the following

Theorem 4. Under the assumptions (15)—(16)-(17), for each u,c D(A)
there exvists an X-valued function wu(t) on [0, oo) which satisfies (14) in
the following sense

(1) u(?) is strongly continuous for t>0 and u{0) = w,,
(ii) u(t) € D(4) for each t>0,
(iii) the strong derivative du/dt exists and is strongly continuous ewcept at

a countable number of values t and equals Awu(?).

The function w(f) solution of (14) in the sense of Theorem 4 is defined as
follows

u(t) = X-lim u™(1) ,

where %%f) is the strict solution of the initial-value problem

du®(t)
dt

= A®yt)(t) (t>0),

X —lmu (i) = u,,

t—>0*

1
with A% = p(J®—1I) and with J® = (1— (;A))—1 (see [2],).

4. - Approximation of a semilinear problem with glohal solution

Let X a B-spa,cé and {X,,n=1,2,..} a sequence of B-spaces approxi-
mating X.
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Given the semilinear problem

du(t)
dt

= Au(t) + F(u(t)) (t>0),
(18)
X —lim u(t) = u,e D(4)

t—o*

with 4 e G(M, Bo; X) and F = F(f) such that
17() — F(f) | <ellf — 1] Vf, e X = D(T"),

where « is a non negative constant, consider the sequence of approximating
problems

du,(t)
di

= An/u'n(t) + Fn('un(t)) (t> O) ’
(19)
X, —limu,(t) = Pu,e D(4,),

t—ot

with 4, G(M, f,; X,) and F, = I,(¢) such that

”Fn(g) - Fn(gl) Hn<ﬁng"’ gll}n Vg; g, € X, = —D(F'n) ’

where ( is a non negative constant that doesn’t depend on n. We have the
following

Theorem 5. Under the above assumptions on A, 4,, F, I, if

(20) im | Z,(t) Pof — PoZ(t)f]n= 0 VieX

n->c0

uniformly in any finite interval of >0, with Z(1) = exp (t4) and Z,(%)
= exp (t4d,) and if

(21) lim |[F(P.f) — P F(f)] = 0 VieX,

7>

then the mild solutions u(3) and u,(t) respectively of (18) and (19) are such that

(22) ‘ lim | P,u(t) — ()| =0,

n-->©
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Vi e [0, 1,1, where t, is arbitrarly chosen with 0 <t, < + oco.
Proof. We have for any te [0, t,]

(23) 1Pty — wa(0) o< | Pr Z(1) g — 1) P, to]n
F [{|P. Bt — 5) P(wls) — Zalt — 5) P, P(u(s )1+ Hexp (Buli— )-

(1P F(w(s) — Fo(Pyafs)) [ + [Fo(Purl(s)) — Po(ttafs)) )} ds .
If we put

w,(t) = | Ppu(t) — w.(t)]a,
Palt) = | P, Z(t) %o — Z,(t) Pn o] ~Hf{}Pn Z(t— s) F(u(s))

— Z(t— $) P, F(1(s)) |, + M exp (Bo(t — 5)) | P F(1ls)) — FulPruls))|ln s

then we obtain from (23)
i

(24) W, (t) < @a(t) + MPB fexp (Bo(t— $))wa(s) ds .
0

To prove that lim g,(t) =0 Vie[0,1{], we first note that (20) implies

fn—-oe

lim | P, Z(t) wo— Z,(t) P ttofn =0

n-» O

uniformly with respect to te [0, {,] and

lim | P, Z(t — s) F(u(s)) — Z.(t — s) P, F(u(s)) .= 0.

n—>c

Then, by using the theorem of dominated convergence we have

lim f{np,,za—s Fu(s)) — Z,(t— s) P, F(u(s)) ]

n—>w 0

+ M exp (Bolt — 8)) | Pu F(u(s)) — Fu(Pruls))]|a} ds =0,
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because for each n>7#
P, Z(t — s) P(u(s)) — Z,(t — s) Py F(u(s))]l. +
4 Mexp (Bolt — 8)) | Pn T (u(s)) — Fou(Prtuls)) |n
<3M(as + | F(0)]) oxp (Bult — 8)) + I exp (Bolt — ) (B + 1 + [P O]) »

where 7 is such that |F.(P,0;)— P,F(0y)].< 1, and &k is a constant such
that JJu(s)]<k Vse[0,t]c[0,t,]. Hence, limg,(f)=0 Vie[0,%].

fi—>

On the other hand if
nn(t) = ’Ll),,(t) exp (—‘ ﬁot) ’ gﬂ(t) = ‘Pn(t) exp (— /3015) 9
(24) becomes

0 <7u(t) <galt) - MB[7a(s) ds .

Using Gromwall’s inequality, [1], we obtain
14
Na() < gu(t) + MB[ga(s) exp (MB(E— s)) ds.
[

Since lim ¢,(t) = 0, we have finally

n—>o

Limn,t) =0, ie lim |P,u{t)— w()].=0 Vt e [0, 1,] .

n—>o n—>co

Corollary 1. Under the assumptions of Theorem 5, and if assumptions
(13b), (13c) are satisfied by F(f) and by F.(g) with X, instead of X, then (22)
holds, where u(t) and u,(t) are the global solution of (18) and (19).

Proof. Our assumptions ensure that the mild solutions of (18) and (19)
are the global solutions of (18) and (19) over [0, {,].

Remark. (20) is certainly satisfied if (4) or (6a) -- (6b) hold.

11
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5. - Approximation of a semilinear problem with local solution.

Novw, consider the semilinear problem in the B-space X

1
(25a) ¢ git) = Au(t) -+ F(u(f))
(25D) Im w(t) = we DA)N D,
t—r0*

where A € G(M, f,; X) and I = F(f) is such that

(264) DF)yc X, R(#F)c X,

an open and convex set D c D(f) exists such that

(26D) 17 — F(fol<elf — 1] Vi, e D

where « is a non negative constant.
Correspondingly, the approximating problem reads as follows

(27a) Yol _ g + Po(uatt)
(27b) im %,(t) = P,u,e D(4,)N D, ,
=0+ ’

where A,e G(M, f,; X,) and F, = F,(g) is such that

(28a) DF)cX,, RP)cX,,

an open and convex set D, c D(F,) exists such that

(28b) IPug) = Pulg)lw<Blg— gl Vo5 g1 Day
where f is a non negative constant which doesn’t depend on #.

Theorem 6. If conditions (26a,b), (28a, b) are satisfied and

(29) lim [P, Z{t) f — Z,() Poflln= 0 VieX,

n—>rCQ

[1o0]

(t>0),

(t>0),
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uniformly in any finite interval of 10, and if
(80) P,DicD,,

(31) lim ”Pn F(f) — Fn(P'nf)ﬁ w=0 VieD,

nN—>0

then the mild solution w(t) and w,(t) of (25a) + (25b) and (27a) -+ (27b) respec-
tively are such that

(32) Hm j P, u(t) — 2w, ()], = 0 Vte[o, 1],

n—>w

where T is suitably small and doesn’t depend on n.

Proof. Problem (25) has a unique mild solution u(t)e D, Vte]lo, ],
where £ is chosen suitably small and such that

(33) qf) <1,
with

2 1 iR 1 7
(34) q(f) = S max (1Z(t)ug — uoll, 1[0, £])

M exp (fot) — 1

,}_ - ﬂo

(rr + [F(w)])

where y = max (x, §) and » is the rading of a sphere in D.
In an analogous way, (27a) + (27b) has a unique mild solution w,(t) € D,,
Vi e [0, ,], where i, is chosen such that

(35) alta) <1
where

2 1 . A
(36) Galty) = S max {12.4(t) Pyrtg— Pruto], t [0, tn]}

zli[_ exp (/30511) —1

p Bo

(7 + | Fu(Puto) ) -
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Now, choose € (0, 1) and take > 0 such that p(f) < 1, where
- 1 TN
p() = ;{a - max (| Z(t)u, — o] t€[0,7]) }

% exp (fof) — 1

y SRS e P

Then, we have from (33) and (34) that f < {, whereas (36) with f instead of £,
gives

¢alf) = %max{}lz 1) Pouitg— o), 1€ [0, 8] }

M exp (fof) — 1

> Bo (Vr + “Fn(Pn %) ” n)

= max {| Z,(t) Pyito— P Z(t)tto]) s+ | PuZ(t)tto— Prutto]ln t€[0, 1]}

M ex fH-—1

3 SR (o g (Pt — PuF () BT (0]):

1]

By using (29), (31) it follows that an infeger % = 7i(e) exists such that
for n>%n

[ Zu(t) Pptty— PoZ{t) uol|n < €, | Fa(Pyatg) — Py Flug)], << €.

Therefore, by using (1), we have for n>7%
0. < {s + max [ Z(2)ue — uo]| 1[0, #1]}

M exp( t

R CD=L 4y + o+ (B) =) <1

[}

Henee, for a fixed ¢> 0 (and, therefore, for a suitably small > 0), we

obtain that (25a) - (25b) and (27a) + (27b) with #>% have mild solution
u(t) and w,(¢) respectively where ¢ [0, {] and ¥ doesn’t depend on n.

To prove that lim | P,u(f) — w,(?)]. = 0; it is enough to take into account

n—>c0

that «(f) € D and u,(f) € D, for n>%, Vi€ [0, ] and then we can proceed as
in the proof of Theorem 5.
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Corollary 2. Under the assumptions of Theorem 6, and if (11b) and (11c)
hold for I and I',, then

(37) Hm [P, w(f) — wn(8)]|n =0 Yiel[o, 1],

n—>+oo

where u(t) and u,(t) are the strict solutions of (25a) + (25b) and (27a) -+ (27b)
and T is suitably small and doesn’t depend on n.

Proof. See the proof of Corollary 1.

Remark. If we have instead of (25a)

dae(t
(25a’) -(—ﬁ—z = Au(t) + F(u(t), 1)
and so, instead of (27a)
du,(t
(27a') dtt) _ Aty () A Faua(t), 1)

di

Theorem 6 and Corollary 2 are still true if suitable assumptions involving
the Fréchet-derivatives of F' and I, are satisfied.

6. - Approximation of a non-linear problem

Consider the following evolution problem

dzit) = Au(t), X—limu(t) = weD(4),
>0

(40)

where A is a nonlinear operator with domain D(4)c X and range R(4)c X.
If assumptions (15) and (16) are satisfied and the B-space X is uniformly
convex (or it is an Hilbert space), Theorem 4 holds and so u(f) = X-lim u®(?)

uniformly with respect to te [0, 7], 0 <i<C -4 oo.
Let {X,} be a sequence of B-spaces approximating X, and consider the
approximating problem

du,(t .
(41) dt( ) = A, u,(t) (> 0) ) Xn,—lim u,(t) = Pyu,eD(4,),

t-—>ot
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where 4, are nonlinear operators with domain D(4,) c X, and range R(4,)
c X, (X, are also uniformly convex spaces).
Moreover, assume that

(42) W"'(/xln\]‘f—g'—ZAnf ‘Ang } Vf,_(/ED(Jln), z>0’
(43) R(I— z24,) = X, Ve>0.

Then, Theorem 4 holds for each problem (41) and so an X ,-valued function
u,(f) exists, which is a strict solution of (41) except at a countable number
of values of ¢.

We also bave that w,(f) = X,-lim uf,”’)(t) uniformly in any finite interval

r—rc0

of ¢, where uff)(t) are the striet solution of

dud(t)

() (1) — (1)
(44) dt -An (f) (t’> O) b -Xn {EI(}} Uy, ( ) P n Uy
(45) AP =9I —1), JP=(T— —A D7, DAYy =X,,
(46) 1AV — AP gl <2]f — gl -

Theorem 7. If (15), (16), (42), (43) hold and moreover

(47a) P,[D(A)] c D(4.,) m=1,238,..),

(47b) lim | P, Af — Ay Pof]a= 0 Vie D(4),

f—>0a

then the strict solution w = u(t) and u, = u,(t) of (40) and (41) (in the sense of
Theorem 4) are such that

(48) Iim [P, u(t) — %,(1) .= 0

N—>00

for any te [0, 1], where 0 <i<< -+ oo.
To prove this theorem, we state the following

Lemma 1. If the assumptions of Theovem T are satisfied we have

(49) lim AP P, g— P,ADg], =0 VgeX, V».

n—r
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Proof. Taking into account (45) we obtain
() ) 1 ! 1
”Jn -Png - -PnJ“)g”ﬂ< '; I[An-Pnf — PnAf”n y

with /= (I— (1/»)4)"'ge D(4) for any ge X.
Hence, Vge X

H-A,(,v)Png'— -PnAMg“n = 7’UJ(V)—Png'_‘ —Pnng”n< “An—Pnf_ Pn-Af“n ’

T n

where feD(A) and (49) follows from (470).
Now, we can prove Theorem 7. Given ¢ > 0, we have that a v. exists such
that for v>v,

(50) (@) — u@®)] <e

(because the sequence {u™(t)} converges to u(¢) uniformly Ve [0, i)
Moreover, the following condition holds for the sequence {u’(t)} (see [2],)

(81) lug(t) — wa(t) <4 i!AnPnuon:; Vielo,1].
However,
‘ i
(52) o6’ (2) = wa(t) |3 < 4 ([ AnPrtto— PoAtiont [ P Ato] )* =

<A APty — Py Aty + ”A“““)gg'

We have from (47b) that an integer % exists such that for n>7 [4,P,-
g — P, Ay, < 1, and so, (52) becomes for any n>n (% may depends on u)

Vie[0,8], »=1,2,3,...

2] et

Ju(8) — wa®) R <41 + [duo])®

Then, », exists such that for y>v,
(53) Jua(t) — w) | < € Vie[o, ],

for each n>7%. Note that v; depends on ¢ and does not on n. Hence, if we
put g = max (v, v,), both (50) and (53) hold (for v = u and n>n).
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Then

[Py w(t) — 1, () |n < | Pnu(t) — Pu(s)],

{16]

A P (t) — w(E) [, - ) — (D) ]

<2 + | Pui(t) — uP(@)], .

However, we obtain from Theorem 5 with 4 =4, =0, F = A®» and

P, = AP
[P ud(@) — w8, <e for m>me Yie[0,7].

Therefore, given ¢ > 0, we obtain for » > max (%, n.)

[P, (t) — wa(t)] . < 3¢ Vie[0,1],

ie. (48) is proved.

7. = Examples
Example 1. Consider the B-space
(54) X = {f: f(=) € Cla, b], f(a) = 0}

with norm |f| = max {|f(#)|x € [a, b]}.

If X, is the B-space of all ordered real n-tuples, defined as follows

(55) Xy={fu: fa=1(0,70, .., 1)}

with norm [f.|,= max {|fi]¢=1,2,...,n} it is easy to show that the se-

quence {X,} is a sequence of B-spaces approximating X with

-Pnf = (O’ f(wz), ey f(wn)) VfEX7

where ;=a + (1—1)0, (i=1,2,...,n), 6p,= (b—a)/(n—1) (n=2,...).

If we define the following operators

d
(56) af =T D) = gi: o), L e 3y,



[17] APPROXIMATION OF EVOLUTION PROBLEMS IN BANACH SPACES 163
where v is a positive eonstant

v 2 : i— n— 7
(57) Anfn:'“g“(o’fﬁ’--')m‘ n 17"-yf;:_‘fn h Vi.€ D(4,) =X,

(88) I(fy=1* VieX, D)= X, RF)cX,
(89)  Fulfa) = Fol0, 13, ooy 1) = (0, ()% s (1))
DF,)=X,, RF,)cX,,
it is possible to show that the following holds
Theorem 8. By using (56), (57), (58), (89) we have

() A6l 0; X), 4,€6(1,0;X,);
(b) (11b)-(11le)-(11d) hold for ¥ and F,.

Thus, the evolution problem in X

(60) d?Tit) = Au(t) + uw*(t) (>0), X——tlirﬁu(t) = u,€ D(4),

where 4 is defined by (56) can be approximated (in the sense of Theorem 6
and Corollary 2) by means of the problems in X,

du, (¢ . .
(61) _uaiQ = A, u, (1) + up(t) (t>0), X, —limu,(f) = P,u, e D(4,),
t—>0%

where A, is defined by (57).

Example 2. We can apply again Theorem 6 and Corollary 2 if X, X,
A, A, are as in Example 1 and

P()w) =[P dy,  DEF)cX, R(F)cX;

Fo(f) = 0a(0; vy Gy vs G2) Vi€ D(F,) = X,

i

where gi = > (f1)2

J=1
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Summary

We show thai Trotler’s method of appromimating sequences of Banach spaces can be
used to study semilinear and non-linear initial-value problems.



