## SILVIA TOTARO (\*)

# Approximation of evolution problems in Banach spaces (\*\*)

A GIORGIO SESTINI per il suo 70º compleanno

#### 0. - Introduction

Sequences of Banach spaces approximating a given Banach space X were introduced by Trotter, [4], to show that a linear initial-value problem in X can be interpreted, in some sense, as the limit of a suitable sequence of linear initial-value problems in spaces not necessarily coinciding with X.

In this paper, we prove that Trotter's method can be used to study semilinear and non-linear initial-value problems. To this aim, we summarize some of Trotter's definitions and results in sect. 1 and some basic results on semilinear and non-linear problems in sect. 2 and 3. Trotter's method is then generalized to a semilinear problem with global (in time) solution in sect. 4 and to a semilinear problem with local (in time) solution in sect. 5. Finally, a non-linear problem is studied in sect. 6.

Most of our results can be proved with some formal (but not substantial) complications for more general semilinear and non-linear problems.

#### 1. - Preliminaries: sequences of Banach spaces

Following Trotter, [4], we say that a sequence of Banach spaces (B-spaces)  $\{X_n, n=1, 2, 3, ...\}$  is a sequence of B-spaces approximating a given B-space X

<sup>(\*)</sup> Indirizzo: Istituto di Matematica Applicata, Università, Via Morgagni 44, 50134 Firenze, Italy.

<sup>(\*\*)</sup> Ricevuto: 2-VIII-1978.

if an operator  $P_n$  exists such that

(1) 
$$P_n \in B(X, X_n)$$
 with  $||P_n|| \leq 1, \forall n = 1, 2, ...,$ 

(2) 
$$\lim_{n\to\infty} \|P_n f\|_n = \|f\| \qquad \forall f \in X,$$

where  $\|\cdot\|_n$  is a norm in  $X_n$  and  $\|\cdot\|$  is a norm in X.

Now given a sequence  $\{f_n\}$  with  $f_n \in X_n$ , n = 1, 2, ..., by definition, we say that  $\{f_n\}$  converges to  $f \in X$  if

(3) 
$$\lim_{n \to \infty} \|f_n - P_n f\|_n = 0.$$

Note that (3) implies  $\lim ||f_n||_n = ||f||$ .

The following theorems can be proved on the approximation of a given semigroup in X by means of a sequence of semigroups in  $X_n$ , [4], (notations are those of  $[2]_1$ ).

Theorem 1. Let A a linear operator of class  $G(M, \beta_0; X)$  and let  $A_n$  be of class  $G(M, \beta_0; X_n)$ , n = 1, 2, ... If

(4) 
$$\lim_{n \to \infty} \|P_n R(z, A) f - R(z, A_n) P_n f\|_n = 0$$

for some z with  $\text{Re } z > \beta_0$  and for each  $f \in X$ , where  $R(z, A) = (zI - A)^{-1}$  and  $R(z, A_n) = (zI - A_n)^{-1}$ , then

(5) 
$$\lim_{n\to\infty} \|P_n \exp(tA)f - \exp(tA_n)P_n f\|_n = 0$$

uniformly in any finite interval of  $t \ge 0$ .

Theorem 2. If A,  $A_n$  are as in Theorem 1 and if

(6a) 
$$P_n[D(A)] \subset D(A_n)$$
  $(n = 1, 2, ...),$ 

(6b) 
$$\lim_{n\to\infty} \|P_n Af - A_n P_n f\|_n = 0 \qquad \forall f \in D(A) ,$$

then (4) is satisfied and (5) holds.

Theorem 1 and 2 can be used to approximate the initial value problems in  $\boldsymbol{X}$ 

$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = Au(t) \qquad (t > 0), \ A \in G(M, \beta_0; X),$$

$$X - \lim_{t \to 0^+} u(t) = u_0 \in D(A),$$

by means of the sequence of the initial-value problems in  $X_n$ 

$$\frac{\mathrm{d}u_{n}(t)}{\mathrm{d}t} = A_{n}u_{n}(t) \qquad (t > 0) , \ A_{n} \in G(M, \beta_{0}; X_{n}) ,$$

$$(8)$$

$$X_{n} - \lim_{t \to 0^{+}} u_{n}(t) = u_{n_{0}} \in D(A_{n}) ,$$

where  $\{X_n\}$  is a sequence of *B*-spaces approximating *X*. In fact, if (5) holds and  $u_{n_0} = P_n u_0$ , then we have

(9) 
$$\lim_{n \to +\infty} \|P_n u(t) - u_n(t)\|_n = 0,$$

because  $u(t) = \exp(tA)u_0$ ,  $u_n(t) = \exp(tA_n)P_nu_0$ .

Hence,  $P_n u(t)$ , the representation in  $X_n$  of the solution of (7), is close to the solution  $u_n(t)$  of the approximating problem (8) provided n is large enaugh.

Since we intend to generalize the above theorems to semilinear and non-linear initial-value problems, we list some existence and uniqueness results for such problems.

#### 2. - The semilinear problem

If  $A \in G(M, \beta_0; X)$  and F = F(f) is a map from X into X, the semilinear initial-value problem

(10a) 
$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = Au(t) + F(u(t)) \qquad (t>0),$$

(10b) 
$$X - \lim_{t \to 0^+} u(t) = u_0$$
,

is said to have the *strict* solution u = u(t) over  $[0, t_0]$  if

- (a)  $u(t) \in D(A) \cap D(F), \forall t \in [0, t_0],$
- (b) u(t) is strongly continuous  $\forall t \in [0, t_0]$  and strongly differentiable  $\forall t \in (0, t_0]$ ,
  - (c) u(t) satisfies (10a)  $\forall t \in [0, t_0]$  and (10b).

Theorem 3. Under the assumptions

— F has a domain D(F) and range R(F) contained in X and an open and convex set  $D \subset D(F)$  exists such that

(11a) 
$$||F(f) - F(f_1)|| \le \alpha ||f - f_1|| \quad \forall f, f_1 \in D$$
,

where a is a non negative constant,

— F(f) is Fréchet-differentiable at any  $f \in D$  and its Fréchet-derivative  $F_f$  is such that

(11b) 
$$||F_f g|| \leqslant \alpha_1 ||g||, \quad \forall f \in D, g \in X,$$

where  $\alpha_1$  is a non negative constant that doesn't depend on f and g,

$$(11c) \hspace{1cm} \|F_fg-F_{f_1}g\|\to 0 \hspace{0.5cm} \text{as} \hspace{0.5cm} \|f-f_1\|\to 0 \hspace{0.5cm} \forall g\in X \hspace{0.5cm} \text{with} \hspace{0.5cm} f,f_1\in D \hspace{0.5cm},$$

(11d) 
$$u_0 \in D(A) \cap D$$
,

then the semilinear initial-value problem (10a) + (10b) has a unique strict solution u(t) over  $[0, \hat{t}]$ , provided that  $\hat{t}$  is suitably small. Moreover,  $u(t) \in D(A) \cap D$   $\forall t \in [0, \hat{t}]$ .

To prove Theorem 3, [3], one first shows that assumptions (11a), (11d) ensure the existence of a unique continuous solution  $u(t) \in D$ ,  $t \in [0, \hat{t}]$  (where  $\hat{t}$  is suitably small) of the integral equation

(12) 
$$u(t) = \exp(tA) u_0 + \int_0^t \exp((t-s)A) F(u(s)) ds,$$

that can be obtained by integrating formally system (10a) + (10b) over [0, t]. Then, under the assumptions (11b), (11c), one proves that the continuous solution of (12) (which is called a *mild* solution of (10a) + (10b)) is the strict solution of the semilinear problem over [0, t].

This solution is obviously «local in time» because u(t) is defined only over the small interval  $[0, \hat{t}]$ .

Now, if we want a unique strict solution u(t) of (10a) + (10b) over a « large » interval  $[0, t_0]$  given a priori, i.e. a global solution of (10a) + (10b), the following assumptions can be used

— F has a domain D(F) = X and a range  $R(F) \subset X$  and

(13a) 
$$||F(f) - F(f_1)|| \leq \alpha ||f - f_1|| \quad \forall f, f_1 \in X,$$

where  $\alpha$  is a non negative constant or a non decreasing function of ||f|| and  $||f_1||$ ;

— F(f) is Fréchet-differentiable at any  $f \in D(F) = X$  and its Fréchet-derivative  $F_f$  is such that

(13b) 
$$||F_f g|| \leqslant \alpha_1 ||g|| \qquad \forall f, g \in X,$$

where  $\alpha_1$  is a non negative constant or a non decreasing function of ||f||;

$$(13c) ||F_f g - F_{f_1} g|| \to 0 as ||f - f_1|| \to 0 \forall g, f, f_1 \in X,$$

(13d) 
$$u_0 \in D(A)$$
;

if a strict solution w = w(t) of (10a) + (10b) exists over  $[0, t_1] \subset [0, t_0]$ , then

$$||w(t)|| \leqslant \eta \qquad \forall t \in [0, t_1],$$

where  $\eta$  is a suitable constant depending only on  $u_0$  and  $t_0$  (and without loosing in generality such that  $||u_0|| \leq \eta$ ).

Note that, if  $\alpha$  is a constant, then (13e) follows from (13a).

#### 3. - A non linear problem

Let us consider the following problem in the B-space X

$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = Au(t) \qquad (t > 0),$$

$$(14)$$

$$X - \lim_{t \to 0^+} u(t) = u_0 \in D(A),$$

where A is a non-linear operator with domain D(A) and range R(A) contained in X. If we assume that

(15) 
$$||f - g|| \le ||f - g - z(Af - Ag)|| \quad \forall f, g \in D(A), \forall z > 0,$$

(16) 
$$R(I-zA) = X$$
,  $\forall z > 0$ 

(17) X is an Hilbert space or a uniformly convex B-space,

then we have the following

Theorem 4. Under the assumptions (15)-(16)-(17), for each  $u_0 \in D(A)$  there exists an X-valued function u(t) on  $[0, +\infty)$  which satisfies (14) in the following sense

- (i) u(t) is strongly continuous for  $t \ge 0$  and  $u(0) = u_0$ ,
- (ii)  $u(t) \in D(A)$  for each  $t \geqslant 0$ ,
- (iii) the strong derivative du/dt exists and is strongly continuous except at a countable number of values t and equals Au(t).

The function u(t) solution of (14) in the sense of Theorem 4 is defined as follows

$$u(t) = X - \lim_{v \to \infty} u^{(v)}(t) ,$$

where  $u^{(r)}(t)$  is the strict solution of the initial-value problem

$$\frac{\mathrm{d}u^{(\nu)}(t)}{\mathrm{d}t} = A^{(\nu)}u^{(\nu)}(t) \qquad (t > 0) ,$$

$$X - \lim_{t \to 0^+} u^{(\nu)}(t) = u_0$$
,

with  $A^{(v)} = \nu(J^{(v)} - I)$  and with  $J^{(v)} = (1 - (\frac{1}{\nu}A))^{-1}$  (see [2]<sub>2</sub>).

## 4. - Approximation of a semilinear problem with global solution

Let X a B-space and  $\{X_n, n = 1, 2, ...\}$  a sequence of B-spaces approximating X.

Given the semilinear problem

$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = Au(t) + F(u(t)) \qquad (t>0),$$

$$(18)$$

$$X - \lim_{t \to 0^+} u(t) = u_0 \in D(A)$$

with  $A \in G(M, \beta_0; X)$  and F = F(f) such that

$$||F(f) - F(f_1)|| \le \alpha ||f - f_1||$$
  $\forall f, f_1 \in X = D(F),$ 

where  $\alpha$  is a non negative constant, consider the sequence of approximating problems

$$\frac{\mathrm{d}u_n(t)}{\mathrm{d}t} = A_n u_n(t) + F_n(u_n(t)) \qquad (t > 0) ,$$

$$(19)$$

$$X_n - \lim_{t \to 0^+} u_n(t) = P_n u_0 \in D(A_n) ,$$

with  $A_n \in G(M, \beta_0; X_n)$  and  $F_n = F_n(g)$  such that

$$||F_n(g) - F_n(g_1)||_n \leqslant \beta ||g - g_1||_n \quad \forall g, g_1 \in X_n = D(F_n),$$

where  $\beta$  is a non negative constant that doesn't depend on n. We have the following

Theorem 5. Under the above assumptions on  $A, A_n, F, F_n$ , if

(20) 
$$\lim_{n\to\infty} \|Z_n(t) P_n f - P_n Z(t) f\|_n = 0 \qquad \forall f \in X$$

uniformly in any finite interval of  $t \ge 0$ , with  $Z(t) = \exp(tA)$  and  $Z_n(t) = \exp(tA_n)$  and if

(21) 
$$\lim_{n\to\infty} ||F_n(P_n f) - P_n F(f)||_n = 0 \qquad \forall f \in X,$$

then the mild solutions u(t) and  $u_n(t)$  respectively of (18) and (19) are such that

(22) 
$$\lim_{n\to\infty} \|P_n u(t) - u_n(t)\|_n = 0,$$

 $\forall t \in [0, t_0], where t_0 is arbitrarly chosen with <math>0 < t_0 < + \infty$ .

Proof. We have for any  $t \in [0, t_0]$ 

If we put

$$w_n(t) = \|P_n u(t) - u_n(t)\|_n$$

$$\varphi_n(t) = \|P_n Z(t) u_0 - Z_n(t) P_n u_0\|_n + \int_0^t \|P_n Z(t-s) F(u(s))\|_{L^2(t)}$$

$$-Z_n(t-s)P_nF(u(s))\|_n + \operatorname{M} \exp \left(\beta_0(t-s)\right)\|P_nF(u(s)) - F_n(P_nu(s))\|_n$$

then we obtain from (23)

(24) 
$$w_n(t) \leqslant \varphi_n(t) + M\beta \int_0^t \exp\left(\beta_0(t-s)\right) w_n(s) \, \mathrm{d}s .$$

To prove that  $\lim_{n\to\infty} \varphi_n(t) = 0 \quad \forall t \in [0, t_0]$ , we first note that (20) implies

$$\lim_{n \to \infty} \| P_n Z(t) u_0 - Z_n(t) P_n u_0 \|_n = 0$$

uniformly with respect to  $t \in [0, t_0]$  and

$$\lim_{n\to\infty} \|P_n Z(t-s) F(u(s)) - Z_n(t-s) P_n F(u(s))\|_n = 0.$$

Then, by using the theorem of dominated convergence we have

$$\lim_{n \to \infty} \int_{0}^{t} \{ \| P_{n} Z(t-s) F(u(s)) - Z_{n}(t-s) P_{n} F(u(s)) \|_{n} + M \exp \left( \beta_{0}(t-s) \right) \| P_{n} F(u(s)) - F_{n}(P_{n} u(s)) \|_{n} \} ds = 0 ,$$

because for each  $n \geqslant \overline{n}$ 

$$||P_n Z(t-s) F(u(s)) - Z_n(t-s) P_n F(u(s))||_n +$$

+ M exp 
$$(\beta_0(t-s)) \| P_n F(u(s)) - F_n(P_n u(s)) \|_n$$

$$\leq 3M(\alpha k + ||F(\theta_x)||) \exp(\beta_0(t-s)) + M \exp(\beta_0(t-s))(\beta k + 1 + ||F(\theta_x)||),$$

where  $\overline{n}$  is such that  $||F_n(P_n\theta_x) - P_nF(\theta_x)||_n \leqslant 1$ , and k is a constant such that  $||u(s)|| \leqslant k$   $\forall s \in [0, t] \subset [0, t_0]$ . Hence,  $\lim \varphi_n(t) = 0$   $\forall t \in [0, t_0]$ .

On the other hand if

$$\eta_n(t) = w_n(t) \exp(-\beta_0 t), \qquad g_n(t) = \varphi_n(t) \exp(-\beta_0 t),$$

(24) becomes

$$0 \leqslant \eta_n(t) \leqslant g_n(t) + M\beta \int_0^t \eta_n(s) ds$$
.

Using Gromwall's inequality, [1], we obtain

$$\eta_n(t) \leqslant g_n(t) + M\beta \int_0^t g_n(s) \exp(M\beta(t-s)) ds$$
.

Since  $\lim_{n\to\infty} \varphi_n(t) = 0$ , we have finally

$$\lim_{n\to\infty}\eta_n(t)=0\;,\quad \text{i.e.}\quad \lim_{n\to\infty}\|P_n\,u(t)-u_n(t)\|_n=0\qquad \qquad \forall t\in[0,\,t_0]\;.$$

Corollary 1. Under the assumptions of Theorem 5, and if assumptions (13b), (13c) are satisfied by F(f) and by  $F_n(g)$  with  $X_n$  instead of X, then (22) holds, where u(t) and  $u_n(t)$  are the  $g \mid o \mid b \mid a \mid a$  solution of (18) and (19).

Proof. Our assumptions ensure that the mild solutions of (18) and (19) are the global solutions of (18) and (19) over  $[0, t_0]$ .

Remark. (20) is certainly satisfied if (4) or (6a) + (6b) hold.

## 5. - Approximation of a semilinear problem with local solution.

Now, consider the semilinear problem in the B-space X

(25a) 
$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = Au(t) + F(u(t)) \qquad (t>0),$$

(25b) 
$$\lim_{t \to 0^+} u(t) = u_0 \in D(A) \cap D,$$

where  $A \in G(M, \beta_0; X)$  and F = F(f) is such that

(26a) 
$$D(F) \subset X$$
,  $R(F) \subset X$ ,

an open and convex set  $D \subset D(f)$  exists such that

(26b) 
$$||F(t) - F(t_1)|| \le \alpha ||t - t_1|| \quad \forall t, t_1 \in D$$

where  $\alpha$  is a non negative constant.

Correspondingly, the approximating problem reads as follows

(27a) 
$$\frac{\mathrm{d}u_n(t)}{\mathrm{d}t} = A_n u_n(t) + F_n(u_n(t)) \qquad (t > 0),$$

(27b) 
$$\lim_{t\to 0^+} u_n(t) = P_n u_0 \in D(A_n) \cap D_n,$$

where  $A_n \in G(M, \beta_0; X_n)$  and  $F_n = F_n(g)$  is such that

(28a) 
$$D(F_n) \subset X_n$$
,  $R(F_n) \subset X_n$ ,

an open and convex set  $D_n \subset D(F_n)$  exists such that

(28b) 
$$||F_n(g) - F_n(g_1)||_n \leqslant \beta ||g - g_1||_n \quad \forall g, g_1 \in D_n$$

where  $\beta$  is a non negative constant which doesn't depend on n.

Theorem 6. If conditions (26a, b), (28a, b) are satisfied and

(29) 
$$\lim_{n \to \infty} ||P_n Z(t) f - Z_n(t) P_n f||_n = 0 \quad \forall f \in X,$$

uniformly in any finite interval of  $t \ge 0$ , and if

$$(30) P_n[D] \subset D_n ,$$

(31) 
$$\lim_{n\to\infty} \|P_n F(f) - F_n(P_n f)\|_n = 0 \qquad \forall f \in D,$$

then the mild solution u(t) and  $u_n(t)$  of (25a) + (25b) and (27a) + (27b) respectively are such that

(32) 
$$\lim_{n \to \infty} ||P_n u(t) - u_n(t)||_n = 0 \quad \forall t \in [0, \tilde{t}],$$

where  $\tilde{t}$  is suitably small and doesn't depend on n.

Proof. Problem (25) has a unique mild solution  $u(t) \in D$ ,  $\forall t \in [0, \hat{t}]$ , where  $\hat{t}$  is chosen suitably small and such that

$$q(\hat{t}) < 1,$$

with

(34) 
$$q(\hat{t}) = \frac{1}{r} \max \left( \|Z(t)u_0 - u_0\|, t \in [0, \hat{t}] \right) + \frac{M}{r} \frac{\exp \left(\beta_0 \hat{t}\right) - 1}{\beta_0} \left( \gamma r + \|F(u_0)\| \right),$$

where  $\gamma = \max(\alpha, \beta)$  and r is the radius of a sphere in D.

In an analogous way, (27a) + (27b) has a unique mild solution  $u_n(t) \in D_n$ ,  $\forall t \in [0, \hat{t}_n]$ , where  $\hat{t}_n$  is chosen such that

$$(35) q_n(\hat{t}_n) < 1$$

where

(36) 
$$q_n(\hat{t}_n) = \frac{1}{r} \max \left\{ \|Z_n(t)P_n u_0 - P_n u_0\|_n, t \in [0, \hat{t}_n] \right\} + \frac{M}{r} \frac{\exp(\beta_0 \hat{t}_n) - 1}{\beta_0} \left( \gamma r + \|F_n(P_n u_0)\|_n \right).$$

Now, choose  $\varepsilon \in (0, 1)$  and take  $\tilde{t} > 0$  such that  $p(\tilde{t}) < 1$ , where

$$\begin{split} p(\tilde{t}) &= \frac{1}{r} \left\{ \varepsilon + \max \left( \| Z(t) u_0 - u_0 \| \ t \in [0, \tilde{t}] \right) \right\} \\ &+ \frac{M}{r} \frac{\exp \left( \beta_0 \tilde{t} \right) - 1}{\beta_0} \left( \gamma r + \varepsilon + \| F(u_0) \| \right). \end{split}$$

Then, we have from (33) and (34) that  $\tilde{t} < \hat{t}$ , whereas (36) with  $\tilde{t}$  instead of  $\hat{t}_n$  gives

$$\begin{split} q_n(\tilde{t}) &= \frac{1}{r} \max \left\{ \| Z_n(t) P_n u_0 - u_0 \|_n \ t \in [0,\tilde{t}] \right\} \\ &\quad + \frac{M}{r} \frac{\exp \left(\beta_0 \tilde{t}\right) - 1}{\beta_0} \left( \gamma r + \| F_n(P_n u_0) \|_n \right) \\ &\leqslant \frac{1}{r} \max \left\{ \| Z_n(t) P_n u_0 - P_n Z(t) u_0 \|_n + \| P_n Z(t) u_0 - P_n u_0 \|_n \ t \in [0,\tilde{t}] \right\} \\ &\quad + \frac{M}{r} \frac{\exp \left(\beta_0 \tilde{t}\right) - 1}{\beta_0} \left( \gamma r + \| F_n(P_n u_0) - P_n F(u_0) \|_n + \| P_n F(u_0) \|_n \right). \end{split}$$

By using (29), (31) it follows that an integer  $\overline{n}=\overline{n}(\varepsilon)$  exists such that for  $n\geqslant\overline{n}$ 

$$||Z_n(t)P_nu_0-P_nZ(t)u_0||_n<\varepsilon$$
,  $||F_n(P_nu_0)-P_nF(u_0)||_n<\varepsilon$ .

Therefore, by using (1), we have for  $n \ge \overline{n}$ 

$$\begin{split} q_{\scriptscriptstyle n}(\tilde{t}) \leqslant & \frac{1}{r} \left\{ \varepsilon \, + \, \max \, \left[ \, \| Z(t) u_{\scriptscriptstyle 0} - u_{\scriptscriptstyle 0} \| \, \, t \in [0, \tilde{t}] \right] \right\} \\ \\ & + \, \frac{M}{r} \, \frac{\exp \left( \beta_{\scriptscriptstyle 0} \tilde{t} \right) - 1}{\beta_{\scriptscriptstyle 0}} \left( \gamma r \, + \, \varepsilon \, + \, \| F(u_{\scriptscriptstyle 0}) \| \right) \, = p(\tilde{t}) < 1 \; . \end{split}$$

Hence, for a fixed  $\varepsilon > 0$  (and, therefore, for a suitably small  $\tilde{t} > 0$ ), we obtain that (25a) + (25b) and (27a) + (27b) with  $n > \overline{n}$  have mild solution u(t) and  $u_n(t)$  respectively where  $t \in [0, \tilde{t}]$  and  $\tilde{t}$  doesn't depend on n.

To prove that  $\lim_{n\to\infty} \|P_n u(t) - u_n(t)\|_n = 0$ ; it is enough to take into account that  $u(t) \in D$  and  $u_n(t) \in D_n$  for  $n \geqslant \overline{n}$ ,  $\forall t \in [0, \overline{t}]$  and then we can proceed as in the proof of Theorem 5.

Corollary 2. Under the assumptions of Theorem 6, and if (11b) and (11e) hold for F and  $F_n$ , then

(37) 
$$\lim_{n \to +\infty} ||P_n u(t) - u_n(t)||_n = 0 \quad \forall t \in [0, \tilde{t}],$$

where u(t) and  $u_n(t)$  are the strict solutions of (25a) + (25b) and (27a) + (27b) and  $\tilde{t}$  is suitably small and doesn't depend on n.

Proof. See the proof of Corollary 1.

Remark. If we have instead of (25a)

(25a') 
$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = Au(t) + F(u(t), t)$$

and so, instead of (27a)

(27a') 
$$\frac{\mathrm{d}u_n(t)}{\mathrm{d}t} = A_n u_n(t) + F_n(u_n(t), t),$$

Theorem 6 and Corollary 2 are still true if suitable assumptions involving the Fréchet-derivatives of F and  $F_n$  are satisfied.

### 6. - Approximation of a non-linear problem

Consider the following evolution problem

(40) 
$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = Au(t), \quad X - \lim_{t \to 0^+} u(t) = u_0 \in D(A),$$

where A is a nonlinear operator with domain  $D(A) \subset X$  and range  $R(A) \subset X$ . If assumptions (15) and (16) are satisfied and the B-space X is uniformly convex (or it is an Hilbert space), Theorem 4 holds and so u(t) = X-lim  $u^{(p)}(t)$  uniformly with respect to  $t \in [0, \bar{t}], 0 < \bar{t} < +\infty$ .

Let  $\{X_n\}$  be a sequence of B-spaces approximating X, and consider the approximating problem

(41) 
$$\frac{\mathrm{d}u_n(t)}{\mathrm{d}t} = A_n u_n(t) \ (t > 0) , \quad X_n - \lim_{t \to 0^+} u_n(t) = P_n u_0 \in D(A_n) ,$$

where  $A_n$  are nonlinear operators with domain  $D(A_n) \subset X_n$  and range  $R(A_n) \subset X_n$  ( $X_n$  are also uniformly convex spaces).

Moreover, assume that

$$(42) ||f-g||_n \leq ||f-g-z(A_nf-A_ng)||_n \forall f, g \in D(A_n), z > 0,$$

$$(43) R(I - zA_n) = X_n \forall z > 0.$$

Then, Theorem 4 holds for each problem (41) and so an  $X_n$ -valued function  $u_n(t)$  exists, which is a strict solution of (41) except at a countable number of values of t.

We also have that  $u_n(t) = X_n - \lim_{\substack{t \to \infty \\ r \to \infty}} u_{n_{\bullet}}^{(r)}(t)$  uniformly in any finite interval of t, where  $u_n^{(r)}(t)$  are the strict solution of

(44) 
$$\frac{\mathrm{d}u_n^{(\nu)}(t)}{\mathrm{d}t} = A_n^{(\nu)}u_n^{(\nu)}(t) \qquad (t>0) , \qquad X_n - \lim_{t \to 0^+} u_n^{(\nu)}(t) = P_n u_0$$

$$(45) \hspace{1cm} A_n^{(v)} = \nu(J_n^{(v)} - I) \;, \hspace{0.5cm} J_n^{(v)} = (I - \frac{1}{v} A_n)^{-1} \;, \hspace{0.5cm} D(A_n^{(v)}) = X_n \;,$$

(46) 
$$\|A_n^{(v)}f - A_n^{(v)}g\|_n \leq 2\nu \|f - g\|_n .$$

Theorem 7. If (15), (16), (42), (43) hold and moreover

(47a) 
$$P_n[D(A)] \subset D(A_n)$$
  $(n = 1, 2, 3, ...),$ 

(47b) 
$$\lim_{n \to \infty} ||P_n Af - A_n P_n f||_n = 0 \qquad \forall f \in D(A) ,$$

then the strict solution u = u(t) and  $u_n = u_n(t)$  of (40) and (41) (in the sense of Theorem 4) are such that

(48) 
$$\lim_{n \to \infty} ||P_n u(t) - u_n(t)||_n = 0$$

for any  $t \in [0, \bar{t}]$ , where  $0 < \bar{t} < + \infty$ .

To prove this theorem, we state the following

Lemma 1. If the assumptions of Theorem 7 are satisfied we have

(49) 
$$\lim_{n \to \infty} \|A_n^{(\nu)} P_n g - P_n A^{(\nu)} g\|_n = 0 \qquad \forall g \in X, \ \forall \nu.$$

Proof. Taking into account (45) we obtain

$$||J_n^{(\nu)}P_ng-P_nJ^{(\nu)}g||_n\leqslant \frac{1}{\nu}||A_nP_nf-P_nAf||_n$$
,

with  $f = (I - (1/\nu)A)^{-1}g \in D(A)$  for any  $g \in X$ . Hence,  $\forall g \in X$ 

$$||A_n^{(\nu)}P_ng-P_nA^{(\nu)}g||_n=\nu||J_n^{(\nu)}P_ng-P_nJ^{(\nu)}g||_n\leqslant ||A_nP_nf-P_nAf||_n$$

where  $f \in D(A)$  and (49) follows from (47b).

Now, we can prove Theorem 7. Given  $\varepsilon > 0$ , we have that a  $\nu_{\varepsilon}$  exists such that for  $\nu \geqslant \nu_{\varepsilon}$ 

$$||u^{(\nu)}(t) - u(t)|| < \varepsilon$$

(because the sequence  $\{u^{(r)}(t)\}$  converges to u(t) uniformly  $\forall t \in [0, \bar{t}]$ ). Moreover, the following condition holds for the sequence  $\{u_n^{(r)}(t)\}$  (see [2]<sub>2</sub>)

(51) 
$$||u_n^{(v)}(t) - u_n(t)||_n^2 \leqslant 4 ||A_n P_n u_0||_n^2 \frac{\overline{t}}{\nu} \forall t \in [0, \overline{t}].$$

However,

(52) 
$$\|u_n^{(\nu)}(t) - u_n(t)\|_n^2 \leq 4 (\|A_n P_n u_0 - P_n A u_0\|_n + \|P_n A u_0\|_n)^2 \frac{\overline{t}}{\overline{\nu}}$$

$$\leq 4 (\|A_n P_n u_0 - P_n A u_0\|_n + \|A u_0\|)^2 \frac{\overline{t}}{\overline{\nu}} .$$

We have from (47b) that an integer  $\overline{n}$  exists such that for  $n \geqslant \overline{n} \|A_n P_n \cdot u_0 - P_n A u_0\|_n < 1$ , and so, (52) becomes for any  $n \geqslant \overline{n}$  ( $\overline{n}$  may depends on  $u_0$ )

$$||u_n^{(\nu)}(t) - u_n(t)||_{\mathbf{n}}^2 \le 4(1 + ||Au_0||)^2 \frac{\overline{t}}{\nu} \quad \forall t \in [0, \overline{t}], \quad \nu = 1, 2, 3, \dots$$

Then,  $\nu'_{\varepsilon}$  exists such that for  $\nu \geqslant \nu'_{\varepsilon}$ 

(53) 
$$\|u_n(t) - u_n^{(\nu)}(t)\|_n < \varepsilon \qquad \forall t \in [0, \bar{t}],$$

for each  $n \geqslant \overline{n}$ . Note that  $v'_{\varepsilon}$  depends on  $\varepsilon$  and does not on n. Hence, if we put  $\mu = \max(v_{\varepsilon}, v'_{\varepsilon})$ , both (50) and (53) hold (for  $v = \mu$  and  $n \geqslant \overline{n}$ ).

Then

$$||P_n u(t) - u_n(t)||_n \le ||P_n u(t) - P_n u^{(\mu)}(t)||_n$$

$$+ \|P_n u^{(\mu)}(t) - u^{(\mu)}(t)\|_n + \|u_n^{(\mu)}(t) - u_n(t)\|_n$$

$$\leq 2\varepsilon + \|P_n u^{(\mu)}(t) - u_n^{(\mu)}(t)\|_n$$
.

However, we obtain from Theorem 5 with  $A=A_n=0,\ F=A^{(\mu)}$  and  $F_n=A_n^{(\mu)}$ 

$$||P_n u^{(\mu)}(t) - u_n^{(\mu)}(t)||_n < \varepsilon \quad \text{for } n \geqslant n_{\varepsilon} \quad \forall t \in [0, \bar{t}].$$

Therefore, given  $\varepsilon > 0$ , we obtain for  $n > \max(\overline{n}, n_{\varepsilon})$ 

$$||P_n u(t) - u_n(t)||_n < 3\varepsilon$$
  $\forall t \in [0, \bar{t}],$ 

i.e. (48) is proved.

## 7. - Examples

Example 1. Consider the B-space

(54) 
$$X = \{ f \colon f(x) \in C[a, b], f(a) = 0 \}$$

with norm  $||f|| = \max\{|f(x)||x \in [a, b]\}.$ 

If  $X_n$  is the B-space of all ordered real n-tuples, defined as follows

(55) 
$$X_n = \{f_n \colon f_n = (0, f_n^2, \dots, f_n^n)\}\$$

with norm  $||f_n||_n = \max\{|f_n^i|i=1,2,...,n\}$  it is easy to show that the sequence  $\{X_n\}$  is a sequence of B-spaces approximating X with

$$P_n f = (0, f(x_2), \dots, f(x_n)) \qquad \forall f \in X,$$

where  $x_i = a + (i-1) \delta_n$  (i = 1, 2, ..., n),  $\delta_n = (b-a)/(n-1)$  (n = 2, ...). If we define the following operators

(56) 
$$Af = -v \frac{\mathrm{d}f}{\mathrm{d}x} D(A) = \{f : f(x), \frac{\mathrm{d}f}{\mathrm{d}x} \in X\},$$

where v is a positive constant

(57) 
$$A_n f_n = -\frac{v}{\delta_n} (0, f_n^2, \dots, f_n^i - f_n^{i-1}, \dots, f_n^n - f_n^{n-1}) \quad \forall f_n \in D(A_n) = X_n$$

(58) 
$$F(f) = f^2$$
  $\forall f \in X, D(F) = X, R(F) \subset X,$ 

(59) 
$$F_n(f_n) = F_n(0, f_n^2, ..., f_n^n) = (0, (f_n^2)^2, ..., (f_n^n)^2),$$
$$D(F_n) = X_n, \quad R(F_n) \subset X_n,$$

it is possible to show that the following holds

Theorem 8. By using (56), (57), (58), (59) we have

(a) 
$$A \in G(1, 0; X), A_n \in G(1, 0; X_n);$$

(b) 
$$(11b)-(11c)-(11d)$$
 hold for  $F$  and  $F_n$ .

Thus, the evolution problem in X

(60) 
$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = Au(t) + u^2(t) \quad (t > 0) , \quad X - \lim_{t \to 0^+} u(t) = u_0 \in D(A) ,$$

where A is defined by (56) can be approximated (in the sense of Theorem 6 and Corollary 2) by means of the problems in  $X_n$ 

(61) 
$$\frac{\mathrm{d}u_n(t)}{\mathrm{d}t} = A_n u_n(t) + u_n^2(t) \quad (t > 0) , \quad X_n - \lim_{t \to 0^+} u_n(t) = P_n u_0 \in D(A_n) ,$$

where  $A_n$  is defined by (57).

Example 2. We can apply again Theorem 6 and Corollary 2 if X,  $X_n$ , A,  $A_n$  are as in Example 1 and

$$F(f)(x) = \int_{a}^{x} f^{2}(y) \, dy , \qquad D(F) \subset X , \ R(F) \subset X ;$$

$$F_n(f_n) = \delta_n(0, \ldots, g_n^i, \ldots, g_n^n) \qquad \forall f_n \in D(F_n) = X_n,$$

where  $g_n^i = \sum_{j=1}^i (f_n^j)^2$ .

#### References

- [1] J. Dieudonné, Elements d'Analyse, I, Gauthier-Villars, Paris 1969.
- [2] T. Kato: [•]<sub>1</sub> Perturbation theory for linear operators, Springer-Verlag, New York 1966; [•]<sub>2</sub> Non-linear semi-groups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.
- [3] I. Segal, Non-linear semi-groups, Ann. of Math. 78 (1963), 339-364.
- [4] H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8 (1958), 887-919.

## Summary

We show that Trotter's method of approximating sequences of Banach spaces can be used to study semilinear and non-linear initial-value problems.

\* \* \*