DELFINA ROUX and ELISABETTA MALUTA (*)

Contractive Kannan maps in compact spaces (**)

A GIORGIO SESTINI per il suo 70º compleanno

1. - Let (X, d) be a metric space and $T: X \to X$ satisfy, for every $x, y \in X$,

$$(1.1) d(Tx, Ty) \leqslant b(x, y) d(x, Tx) + b(y, x) d(y, Ty)$$
(1)

with $b: X \times X \rightarrow [0, 1)$, such that

(1.2)
$$b(x, y) + b(y, x) \leq 1$$

$$(1.3) b(x, y) \to 1 \Rightarrow \operatorname{Max} \{d(x, Tx), d(y, Ty)\} \to 0 \text{or } \infty.$$

We call such a map a (generalized) Kannan map; if, moreover, in (1.1) the strict inequality holds for every x and y in X, $x \neq y$, we call T a contractive Kannan map.

A Kannan map can't have more than one fixed point; if (X, d) is complete and $\sup_{x,y \in X} (b(x,y) + b(y,x)) < 1$, then T has a fixed point u (and, for each $x \in X$, $T^n x \to u$). If $\sup_{x,y \in X} (b(x,y) + b(y,x)) = 1$ the result is no longer true,

^(*) Indirizzo degli AA.: Istituto Matematico, Università, Via Saldini 50, 20133 Milano, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 21-VIII-1978.

⁽¹⁾ Maps satisfying (1.1) were first considered by R. Kannan [1]₁ (in the case $b(x,y)=b(y,x)=K<\frac{1}{2}$), by S. Reich [4]₁ (in the case $K=\frac{1}{2}$); by R. M. Tiberio Bianchini [6] (in the case $b(x,y)+b(y,x)\leqslant K<1$) and by S. Massa [2] (in a more general form).

even if T is a contractive Kannan map and, moreover, b(x, y) = b(y, x). (It suffices to consider the space (X, d) of the points $x_n \in l^1$ of the form $x_n = (1 + 1/n)e_n$, where e_n is the natural basis of l^1 and the map $T: x_n \to x_{n+1}$).

In this paper we give a simple fixed point theorem for mappings of Kannan type in compact topological spaces. We obtain, as a consequence, that every contractive Kannan self-mapping of a closed ball in a conjugate normed space has a fixed point.

The result seems to be new and of some interest.

2. – Let O(x) be the set $\bigcup_{n=0}^{\infty} \{T^n x\}$ and $\overline{O(x)}$ its closure. The following theorem holds.

Theorem 1. Let (X, τ) be a topological Hausdorff compact space; $\varphi: X \times X \to R^+$ be lower semicontinuous and $T: X \to X$ be such that $\forall x, y \in X$

(2.1)
$$\varphi(Tx, Ty) \leqslant b(x, y) \varphi(x, Tx) + b(y, x) \varphi(y, Ty)$$

with $b: X \times X \rightarrow [0, 1)$ satisfying (1.2) and

$$(1.3)' b(x, y) \to 1 \Rightarrow \operatorname{Max} \{ \varphi(x, Tx), \varphi(y, Ty) \} \to 0 or \infty$$

Ιf

(2.2)
$$x \neq Tx \Rightarrow \exists y \in \overline{O(x)} : \varphi(y, Ty) < \varphi(x, Tx)$$

then T has a fixed point in X.

Moreover, if $\lim_{n\to+\infty} \varphi(T^n x, T^{n+1} x) = \inf_{x\in X} \varphi(x, Tx)$ (2), then the limit points of the sequence $\{T^n x\}$ (if any) are fixed points of T.

Remarks. 1.- The theorem doesn't contain any hypothesis of continuity of T.

2. Even if $\varphi(Tx, T^2x) < \varphi(x, Tx) \ \forall x \neq Tx$, and moreover b(x, y) = b(y, x), T can have more than one fixed point and $\lim_{n \to +\infty} \varphi(T^nx, T^{n+1}x) = \inf_{x \in X} \varphi(x, Tx)$ doesn't imply that $\{T^nx\}$ converges. (Indeed, let X = [-2, 2] with the usual metric d, A = [-1, 1], $\varphi(x, y) = \min \{d(x, A), d(y, A)\}$ and consider the map Tx = x if $x \in A$, $Tx = -\frac{1}{2}(x + x/|x|)$ if $x \in X \setminus A$).

3. – If $\lim_{n\to +\infty} \varphi(T^n x, T^{n+1} x) \neq \inf_{x\in X} \varphi(x, Tx)$, the limit points of $\{T^n x\}$ don't need to be fixed, even if $\varphi = d$ and T is a sequentially contractive (3) Kannan

⁽²⁾ Observe that (2.1) ensures $\varphi(Tx, T^2x) \leqslant \varphi(x, Tx)$.

⁽³⁾ i.e. $\forall x \neq Tx$, $d(Tx, T^2x) < d(x, Tx)$.

map and b(x, y) = b(y, x). (Indeed let X, d, A as above, $\varphi = d$ and consider the map Tx = 0 if $x \in A$, $Tx = -\frac{1}{2}(x + x/|x|)$ if $x \in X \setminus A$).

4. – If (1.3)' doesn't hold, the theorem fails to be true, even if in (2.1) the strict inequality holds (consider X = [0, 1] with the usual metric d, $\varphi = d$, $Tx = \frac{1}{2}x$ if $x \neq 0$ and Tx = 1 if x = 0).

5. – If (2.2) does not hold, the theorem fails to be true (consider the metric space $\{0\} \cup \{1\}$ with d(x,y) = |x-y|, $\varphi = d$, T(0) = 1, and T(1) = 0).

Proof of Theorem 1. For each $r \in \mathbb{R}^+$ let us set

$$A_r = \{x \in X \colon \varphi(x, Tx) \leqslant r\}$$

and, if $A_r \neq \emptyset$, $B_r = \operatorname{el} T(A_r)$. Let $r_0 = \operatorname{Inf} \{r : A_r \neq \emptyset\}$.

Lemma. $A_{r_0} \neq \emptyset$ and $B_{r_0} \in A_{r_0}$ (4).

Indeed let $A_r \neq \emptyset$ and $x \in B_r$. For each $\varepsilon > 0$, there exists $y \in A_r$ such that

$$\varphi(x, Tx) - \varepsilon \leqslant \varphi(Ty, Tx) \leqslant b(y, x) \varphi(y, Ty) + b(x, y) \varphi(x, Tx)$$
.

From (1.2) and (1.3)' we get $x \in A_r$; hence $B_r \subset A_r$ and $B_r \subset B_{r'}$ if r < r'. Then $C = \bigcap_{r \in A_r} B_r \neq \emptyset$. But $x \in C \Rightarrow x \in A_{r_0}$ and the lemma follows.

Now observe that, if $x \in A_{r_0}$, the lemma gives $\overline{O(x)} = \{x\} \cup \overline{O(Tx)} \subset A_{r_0}$, absurd if $x \neq Tx$ when (2.2) holds. So $x \in A_{r_0} \Rightarrow x = Tx$.

Finally, if $\varphi(T^nx, T^{n+1}x) \to r_0$ and z is a limit point of $\{T^nx\}$, the lower semicontinuity of φ implies $z \in A_{r_0}$ and so z = Tz (5) and Theorem 1 is proved.

3. - Now let us list some consequences of Theorem 1.

Theorem 2. If (X, d) is a compact metric space, and $T: X \to X$ is a Kannan map such that $x \neq Tx \Rightarrow \exists y \in \overline{O(x)}: d(y, Ty) < d(x, Tx)$, then T has a fixed point u and, if T is asymptotically regular at x (6), $T^nx \to u$.

If $b(x, y) = b(y, x) = \frac{1}{2}$, we obtain Proposition 1 of $[4]_2$.

⁽⁴⁾ The Lemma doesn't require use of (2.2).

⁽⁵⁾ More generally, if $\varphi(y_n, Ty_n) \to r_0$, the limit points of the sequence $\{y_n\}$ are fixed.

⁽⁶⁾ i.e. $d(T^n x, T^{n+1} x) \to 0$. This condition cannot be omitted in this and in the following Theorems 3 and 4: see the counter-example in Remark 3.

Corollary 1. Every sequentially slowly contractive (7) Kannan map on a compact metric space (X, d) has a fixed point (8).

If $b(x, y) = b(y, x) = \frac{1}{2}$, we obtain Theorem 2 of $[1]_2$ without any hypothesis of continuity.

Corollary 2. Every contractive Kannan map on a compact metric space (X, d) has a fixed point.

Theorem 3. Let X be a weakly compact subset of a normed space S. If $T: X \to X$ is a sequentially slowly contractive Kannan map, then T has a fixed point u in X and, if T is asymptotically regular at x, $T^n x \to u$.

Proof. From Theorem 1, assuming $\varphi(x, y) = ||x - y||$, we obtain that the fixed point u exists. Moreover, if T is asymptotically regular at x,

$$||u - T^n x|| = ||Tu - T^n x|| \le b(T^{n-1}x, u) ||T^{n-1}x - T^n x||$$

and the theorem follows.

Corollary 3. If X is a closed convex bounded subset of a reflexive Banach space, every sequentially contractive Kannan map $T: X \to X$ has a fixed point in X.

If $b(x, y) = b(y, x) = \frac{1}{2}$, we obtain a result of [5], p. 111.

Theorem 4. Let X be a weakly*compact subset of a conjugate normed space S. If $T: X \to X$ is a sequentially slowly contractive Kannan map, then T has a fixed point u in X and, if T is asymptotically regular at x, $T^nx \to u$.

The proof is similar to that one of Theorem 3.

Corollary 4. If X is a closed ball in a conjugate normed space, every contractive Kannan map $T: X \to X$ has a fixed point in X.

The problem whether this result holds in any Banach space is still open.

⁽⁷⁾ i.e. $\forall x \neq Tx$, $\exists n = n(x) : d(T^n x, T^{n-1} x) < d(x, Tx)$.

⁽⁸⁾ Observe that this and the following results cannot be derived from Theorem 1 of [3] (indeed d(x, Tx) is not, in general, lower semicontinuous).

References

- [1] R. Kannan: [•]₁ Some results on fixed points, Bull. Calcutta Math. Soc. **60** (1968), 71-76; [•]₂ Some results on fixed points IV, Fundamenta Math. **74** (1972), 181-187.
- [2] S. Massa, Generalized contractions in metric spaces, Boll. Un. Mat. Ital. (4) 10 (1974), 689-694.
- [3] S. Massa e D. Roux, Applicationi densificanti e teoremi di punto unito, Boll. Un. Mat. Ital. (4) 4 (1971), 835-840.
- [4] S. Reich: [•]₁ Kannan's fixed point theorem, Boll. Un. Mat. Ital. (4) 4 (1971), 1-11; [•]₂ Remarks on fixed points, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 52 (1972), 689-697.
- [5] P. M. SOARDI, Struttura quasi normale e teoremi di punto unito, Rend. Ist. Mat. Univ. Trieste 4 (1972), 105-114.
- [6] R. M. Tiberio Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. (4) 5 (1972), 103-108.

Summary

We give a fixed point theorem for maps of Kannan type in compact topological spacesg We obtain as a consequence, among other things, that every contractive Kannan selfmappin. of a closed ball in a conjugate normed space has a fixed point.

* * *

