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A, BELLENI MORANTE (*)

Particle transport

in a slab bounded by capturing and reflecting planes (**)

A Glorero SESTINT per il suo 70° compleanno

1. - Introduction

Consider the following integro-differential problem

0 ¢
1) g ula i) = — vy 5 ule, i) —voule,y; 1) +
+1
+ dvo, [ ulz,y'3t)dy’ +alz, 95 1), [z|<a, y|<1, i>0,
-1
]
(2a) yu(—a, y;t) = [ by, y") |y |ul—a,y'; 1) dy’, ye(0,1), 1> 0,
~1
1
(2D) lylula, ;1) = [ k@, y )y wla,y'5 1) dy’, ye(—1,0), >0,
0
(3) w(®,y; 0) = wolz, ¥) lzl<a, {y|<1,

where ¢ and v are positive constants; ¢ and o, are nonnegative constants;
q(@, y; 1) and (2, y) are given nonnegative summable functions; h(y, y') and

(*) Indirizzo: Istituto di Matematica Applicata, Facolta di Ingegneria, Universita,
Viale Morgagni 44, 50100 Firenze, Italy.
(**) Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.). — Ricevuto: 28-VI-1978.
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k(y, y') are nonnegative functions, such that

1

I iy, y)dy = Rly')<b<1 Vy'e (—1,0),
o

(4) ,
[k, y)dy = k') <b<1 Vy' e (0,1),
-1

[2], [3], [5]. System (1)-(3) is a one-group particle-transport problem in a
homogeneous slab of thickness 2a (<< oo), under the assnmptions of plane sym-
metry and isotropic seattering. The unknown funection u(z, y; ) is a particles
density (e.g., a photon density), i.e., w(z, y; t)dedy is the number of particle
that, at time ¢, are between & and # -+ dz and are such that the cosine of the
angle between their velocity » and the positive # axis is between y and y - dy.
Moreover, q(#,y; 1) is a source term, u,(z,y) is the initial particle density,
and o, o, are cross sections that charaterize the physical properties of the
materials of the slab. Finally, the boundary conditions (2) show that particles
are either captured or reflected by the boundary planes # = — ¢ and # = a,
(for instance, h(y,y’)dydy’ is the probability that a particle at # = — ¢ and
such that the cosine between its velocity » and the positive 2-axis is between y’
and y' - dy’ with y'e (— 1, 0) is reflected by the plane # = — a and emerges
with a cosine between y and y + dy, with y € (0, 1)).

Remark 1. If
_ 1
Ry') = | My,y') dy =1 Vy'e (—1,0),
0
_ [
ky') = | ky,y)dy =1 Vy'e (0,1),
~1
then the boundary planes do not capture particles because
1 [
Jywl—a,y;00dy = [ |y |w(—a,y';1)dy’,
[ b 3
0 1
I lylwa, y;0dy = [ y'ula, y'5t)dy’.
-1 o

Since

1 +a
(5) N@)= [ dy | wlz,y;t)dw
-1 —a
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is the total number of particles in the slab at time ¢, and w{x, y; t) is a particle
density (i.e., a nonnegative function), we introduce the (real) Banach space

+a

. , 4 +1 .
X = I(—a,0x(~1,1)), Ifl={ay { [ftw,9)|de
-1 —-a
and the (closed) positive cone of X
Xo={f: fe X; f(z,9) =0 for a.e. (x,9)€(— a, a)x(—1,1)}.

To write system (1)-(3) as a problem of evolution in the space X, we define
the operators

(6) Agf = —vyoffox, D(4,) = {f: feX; yof/fowe X; f satisfies
the boundary conditions (2)},

(7 A= Ay—vel, D(A)= D4,

®) Jf=1 [ fey)dy, D) =X,

1
where ¢f/ce is a distributional derivative. Then, (1)-(3) becomes

(9) (%u(t) = Au(t) + vo,Ju(t) + q(t) (t>0), Hm Ju(t) —u ] =0,

where u(t) = u(., .; t) and ¢(?) = ¢(., . ; 1) are now to be interpreted as func-
tions from [0, -+ oo) into X (or into X,), du/d? is a strong derivative, and it is as-
sumed that u, is a given element of D(4) N X,. Moreover, u(i),t €[0, + o0}, is
said to be a (striet) solution of (9) if (i) u(?) is continuously differentiable at
any t>0, (i) u(f) e D{A) Vi>0, (iii) u(f) satisfles (9).

2. - The operators J and 4,

The following lemmas are needed to prove that system (9) has a unique
strict solution.

Lemma 1. (a)JeZ(X), [1], [4], with |Jf|<|f] VfeX; () Jfel,
and | Tfj=1f] ¥fe X,.
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Proof. (a) We have from (8)

+1 +a

7] = JdJI E f (g} dy’ [ do < fd’UJ [f(e,y') | dy" = |f]

—t —

VieX.

(b) follows directly from (8).

Lemma 2. (a) The operator (2l — A,)* ewists and belongs to B (X) for
any 2> 0; (b) (21 — Ay tge X,, VgeX,, 2> 0.

Proof. (a) If ge X and 2> 0 are given, consider the equation

(10) (RI—4Ay)f=y9,

where the unknown f must obviously be sought in D(4,). Since (10) can be
written as follows

d z .
o f(%?/)+;§f(% y) = -J(/( ) for ae. (2,y) € (—a, @) X(—1,1),
we have
(11a)  flz,y) = — [0 (y) exp [— (@ — )]
+ [ e 2 @—a) gy, ye (1,0,

1 J—
(11b)  floy ) = o [Caly) exp [7”/—"" (a + )]

¢ i % r ’
+ fexp LW (@ — 2] g, y)da], y€(0,1),

where C,(y) and C,(y) are to be chosen so that f(w, y) satisfies the boundary
conditions (2). Thus,

)

(12a)  Oyy) = [ k(y,y') exp (—2azfvy’) Culy') dy’

0

1
+ | ky,y)G(y)dy', ye(—1,0),

0
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(12b)  Oufy) = I Wy, y') exp (2azfvy’) Cy(y') Ay’
0

+ I My, y)Ghy)dy',  ye(0,1),
et §

where

G(y) = fe\p L— (@21 g, y)de’,  ye(—1,0),
(13)

+a —
Goly) = [ exp [— (e — )] g(@', y)da’, ye(0,1).
Za Y

To solve system (12a)-(12b), we introduce the Banach spaces

1
Palls = f
1]

(1]
Yi=ILY—=1,0), |pli= [ leuy)ldy; ¥,=1I%0,1), | Pa(y) | dy 5
-1

Y=Y, xY,, lp

e == H = [lg1]1 + 1 P2

and the operators

0
(14a) By = | My,y’) exp (2az/vy’)pu(y) Ay’ D(By) =Y,, R(B;)cl,,
—1

1 _ .

(14b) Brape = [ k(y,y') exp (—2az/vy )p:(y') dy', D(By) = Y., B(B)C Yy,
0

(15) B = 3, DB)=Y, RB)cY.

Then, system (12a)-(12b) becomes

& 7
(16) C=BC+7T, 0=<OZ), r (1,,1),
with
1
Puy) = [ ky,y) Gy dy', ye(—1,0),
a7 ’

oy f Wy, ') Ga(y') Ay’ ye(0,1).
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Now, for each z> 0, we have from (14) and from (15)

I Bay s 2 << b exp (— 2az/v) | ¢ )1, [ Bie@s 1 < b exp (— 2az/v)|

o
Pz s

[Bplie =|Brug:]i+ [Baugi.<bexp (— 2az/v)|p

i2

because of (4). Moreover, we obtain from the two (17)

4] 1 1 1 +a
(i< [ dy [ Ry, y) G Ay <b [ |Gy |dy' <b [ dy’ [ |g(a',y')|da’,
—1 0 1] 0

-

0 +a
1Fol<b [ dy' [ |g(=',y") |da’
-1 —a

because of (4) and (13), and so Fe Y with [Fl,.<b]g] < oo, Vg X. Since
[bexp(— 2az/v)]<<1l Vex>0, ([— B)ledg(Y),

with (I — B) @] <[1— bexp (— 2az/v)}* @l and (16) gives

(18) O=(I—B"F=3BTF,

i=g

with [Cl.<[1— bexp(— 2az2/v)]"* | Fll.<b[1— bexp (— 2az/v)"*|gy]. Rela-
tion (18) shows that ¢; and (¢, are uniquely determined by ¢ and depend
pnearly on g. In other words

(19) Ci= 9, GC= 1y,

with y,e #(X, Y,), § = 1, 2, because

(20) 1C:1= a9l <0<V — b exp (— 2az/v)] |g] .
Going back to (11b) ,we have for a.e. y €(0,1)

+a

I fte, y)lde <1 - exp (— 2az/vy) 1 Cs(y) |

+a +a
+ (fvy) | do’ fleXP [—2(z—a')[vyl|g@’, y) |de <zt | Culy) |
+a
42t [ {1 —exp[—z(a—a ) vyltlgla', y)|da’

+a
<z |G+ [ |9, y)|da'},
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{ ay f I, 1) 4w <2 {1 Gl + { dy f lg(@’, y)|da'} .

had 3

Since in an analogous way we obtain from (1la)

0 1 +a
[ dy J @ y) [de<e {{Ci+ [ dy [ |g', y)[da'},
0 -G

we conclude thatb
(21) 17l = [l — A gl < {[Cle + 91}
<z 1{B[1 — b exp (— 2az/v)]"+ 1} |g| Ve>0, geX,

and so (sl — A,) e FB (X), V2> 0

(b) If 2> 0 and g€ X,, then F, and F, are both nonnegative functions
(see (13) and (17)), and (14a), (14b) show that B, F, and B;,F, are nonnega-
tive. It follows that €, and (, are nonnegative because of (15) and (18).
Thus, f(z, y) is nonnegative (see the two (11)), ie., f= (I — 4,)1ge X,.

Lemma 3. |(2I — Ay gf<lgl/z, V2>0, ge X.

Proof. If 2> 0 and fe D(4,) N X,, we have

-+ +a

el — Al > | qu/ f [(2I — Aq)f]dx|

+1

=|2|f]+ v " [ ayly f (offow)dw] | = |2]fl+ v f yfla, y) — yf(—a, y)1dy|

= [z}f] +v{oJ‘ yf(a,y)dy —_{Iy [f(a, y) Ay} +v iﬂy [f(—a, y)dy — fl?/f(~ a,y)dy} |-

But

fl yf(a,y) dy —_J(3 ly [f(a, y) dy

-t

= [ yf(a,y)dy — f dy f k(y,y')y' f(a, y') Ay’ = f [1—k(y)]yfla,y)dy>0,

=

Jlwli-anay— § yf-anay = § 0—Rllyli-e g0,

because of (2) and (4) and because f(z, ¥) >0 for a.e. (@, y) € (— a, a) X (—1,1).
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Hence,
(22) Il — A)fl==lf] Va0, feD(A)NX,.

Now, if ge X, and f = (21 — 4,)'g, then fe X, because of (b) of Lemma 2,
(zI — Ay)f = g, and (22) gives

(23) (eI — Ay gll<lgl/z Vz>0, gelX,.

Finally, if g € X, let g=(2,y) = — g(z, y) it g(#, ¥) <0, g~(2, y) = 0 if g(z, ) >0,
g @, y) = glz,y) if g(»,9)>0, g*(@,y) =0 if g, y) < 0. Then, g=g"—yg,
g eX,, goeX,, lgl = lgt] + lg-| and we obtain from (23) (see also Appen-
dix A)

I — 4o) gl < [ (eI — Ay g¥ ] + (eI — Aoy gl < (lg*] + lg~1) /== lgl/z -

Remark 2. If the conditions (4') are satisfied, then (22) becomes
[T — A) | = #lf], V2> 0, fe D(4y) N X,, and so

(23) Il — A)2gl = lglfz Va0, geX,.

3. - The semigroups generated by A,, 4, 4 + vo, J

The operator A, is densely defined because D(4,) D € ((— a, @) X (— 1, 1)).
Furthermore, 4, is closed because — (2 — A)' e Z(X) c (X) for each 2> 0,
and so (4, —2I)e¥(X) and 4, = (4, — 2I) + 2 € €(X) because zi e Z(X).
Since A4, is densely defined and closed, it follows from Lemma 3 that
A, e 9(1,0; X), [1],[4]. Hence, A, generates the strongly continuous semi-
group {Zy(t),1>0}, with [Z,(t)g]<]|gl, V¢>0, and with

lim [Zy(t)g — (I — (t/n) Ag)g] =0 Vi=0, geX.

Now, if {> 0 and ge X,, then

i n n
I—— )"y =7 GI—4)7"geX,

because of (b) of Lemma 2 and so Z,(t)ge X,. If =0 and ge.X,, then
Zy(g) = g obviously belongs to X,. Thus, we have
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Theorem 1. (a) 4,€ %(1,0; X); (b) the semigroup {Z,(1),1>0} generated
by A, maps X, into itself for any t>0.

Remark 3. If the conditions (4)' are satisfied, then (23') gives

[ , no N
“(I— - Ao)_l.(/fi = = “(_ I”"Ao)_lgn = |g| Vge X,,
[ 4 14

n=1,2,..,1>0. Hence, |[[(I— (t/n)4,)"]*g] = |g|, and so

(24) 1ZM gl =1lgl  Vi0, geX,.

The physical meaning of relation (24) will be discussed later on, (see (28), (29)
and the discussion that follows).

Theorem 2. (a) The operator A generates the semigroup {Z(1),1>0},
which is such that Z(t) = exp (— vot) Zy(t), V1= 0; (b) 4 +vo.J e 9(1, v(0,— 0); X);
(e) if {S(#),1=0} is the semigroup gemerated by A - vo.J, then S(t)ge X,,
Yge Xy, t>0.

Proof. (a) is obvious becanse—vol commutes with 4,. (b) 4e%(1,—vo; X)
because |Z(t)f] <exp (—vot)|f], and vo,J e B(X) with |vo,Jf| <ve,]f| because
of (a) of Lemma 1. Hence, 4 + vo,J € ¥(1, — v + vo,; X). (¢) We have

lim [S(t)g— 3 Z,t)g] =0, 150, geX,
B> 3=0
with

t ;
Zy(t)g = Z(t)g, Z;n({t)g=ro, | Z(t—s8)JZ;(s)gds, j=0,1,...
[}
Thus, if geX,, Zy(t)g = exp(— vol) Z,(t) g, Zi(t)g, Z(1)g, ..., all belong to X,
because of (b) of Theorem 1. If follows that S(t)¢ also belongs to the closed

cone X,.

Remark 4. Under the assumptions (4'), (24) and (a) of Theorem 2 give:
1Zo(t) g]| = |Z(2) g| = exp (—vod)]g], geX,, 1>0, and so

1Z0g] = vo.] § Zt—:)TZi5)gas]
= w0, f 1Z(t—s)J Zy(s)g|ds = vo, fexp [—vo(t—s)]|IZ,(s) g||ds

== Vg, ft exp [— vo(t — 8)}|| Zo(s)g|ds = vo,t exp (— vdt) lgl
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because Z(t— s)JZs(s)ge X, ¥Yse€[0,t]. By a similar procedure, we have
1Z,() gl = [(vo,1)/j 1] exp (— wot)|g], VgedX,, >0, and so

(25) 1S gl = 2 [(vo,)/j!] exp (— vot) | ¢]

=0
= exp [v(o,— o)t]|g] VgelX,, 1>0.
4. - The abstract problem (9)

If 4, e D(4) N X, and ¢ = ¢(¢) is continuously differentiable and belongs
to X, at any t>0, then the unique strict solution of (9) can be written as follows

i
(26) w(t) = S, + [ S{t—s)g(s)ds, >0,

0
and u(t) e D(4) N X, Vi>0 because of (¢) of Theorem 2, [1],[4]. We have
from (26)

(27) lu(®)) = | 8{t)ue] + f 1S(2—s)q(s)ids
<exp [v(o, — o)t} -+ ft exp [v(o, —o)(t—s)]|l¢(s) | ds ,

where Ju(t)] = N(t), |u,] = N(0) are the total numbers of particles in the
slab at time ¢ and at time ¢ = 0, see (5).
If in particular assumptions (4) are satisfied, then (25) and (26) give

(28) ()] = exp [v(o,— o)E]|uo| -+ ft exp [v(o,— o)t — )]l g(s) | ds
and so
@0 LN = vle,—)N@ + @],  (201) N(0) = [uo].

dt

(29a) is an equation of balance which takes into account that particles are not
captured by the boundary planes. Note that (29a) can be derived in & heuristic
way by integrating both sides of (1) with respect to # and y and taking into
account (2a), (2b), and (4'). However, as it was proved above, (29a) can be
obtained by a rigorous procedure from (26) and by using (24), which shows
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that the evolution operator Z,(t) generated by the free-streaming operator 4,
does not change the total number of particles in the slab (provided that (4')
are satisfied).

The above results can be summarized as follows.

Theorem 3. Assume that u,c D(A) N X, and that ¢(t) is continuously
differentiable and belongs to X, at any t>0. Then if the assumptions (4) are
satistied the evolution problem (9) has a unique strict solution w = wu(l) that is
defined by (26), belongs to D(A) N X,, and satisfies the inequality (27). More-
over, under the assumptions (4'), N(t) = [u(t)| is the solution of system (292a)-(29D).

Appendixes

A. — The properties (zI — Ag)2e Z(X) and [(oI — A <g|/e Vo> 0,
ge X can be derived directly from (1la)-(11b) as follows.
If y € (— 1, 0), then we have from (11a)

+a

[ 1@, y) [do<e [1 — exp (2zafoy)) | Cu(y) |

+ 2t j ’ {1 —exp [2(a + @) Joyl} |g(e’, y) |da’,

whereas (11b) gives for y € (0, 1)

+a
_f [z, y) |de <z [1 — exp (— 2za/vy)]| Caly) |

“+a

4zt [ {1 —exp[—zla—a ) oyl}gla'y y)|da'.
On the other hand, we obtain from (12a) and from (12b)

0 -
[ 1G@) |ay< [ ky') exp (—2azfvy’) | Coly") |dy’
—1

]

+ fl [k(y') _fa exp [—z(a—a')[vy'T|gl@’,y") |da']dy",

1 0 _
J G ldy< | Ay') exp (2azfvy) | Cu(y") |dy’
-1

0

0o _ +a
+ [ [Wy') | exple(a + o) oy'llgla’, y') |[da'] dy’
-1 —a
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and so
0 0

z|fl< [ [Ciy)|dy— [ exp (2zafvy’) | Cy(y) |dy’
-1 t

[ 10y ay — § exp (—220)ey) | Cuty) |0y
+ fdJ f {1 —exp [(a + @) vy’ T} [g(@', y') | Ao’

- f dy’ j {1——@\1)[~—~(a-—vc)/vy By, y') |da’

fl[ky ) —1lexp (—2zafvy’) | Coly’) | dy’
0

+ f [7(y') —1] exp (2zafvy’) | Cy(y') | Ay’
1 — . +a
+ J dy'lk(y) —1] [ exp [—2(a—a")fvy']lg(=", y")| |Qa’
+ Idy [h(J)—ll_f exp [z(a + 2") vyl g(@', y') | da’
+1 +a
b —f dy’_f lgla’, y') Ao .

Hence, if 2> 0 and ge X, we have

(30) 2lfl<lgl+ 0 —1) exp (—22a/v)[ O], + (b —1)|g]
b(b—1) exp (—2zafv) . 1—exp(—2za/v) i
<blgl+ 1—0b exp (—2za/v) lgl = b 1—b exp (— 2za/v) lol
and so-
(81) 2Ifl<lgl

provided that b < 1.

Remark 5. If k(y')=1 Vy'e(0,1), h(y")=1 Vy'e (—1,0), (see (4),
and if geX,, then the above procedures give z|f] = |g].



[13] PARTICLE TRANSPORT IN A SLAB BOUNDED BY CAPTURING ... 97

Remark 6. Inequality (30) holds even if b > 1. However, in this case,
zmust be taken larger than z,, with [b exp (—2%a/v)]= 1. Infact, if 2> ¢,
then [b exp (— 2za/v)] < 1 and (I — B) e #(X), i.e., ¢ is uniquely determined
by g, (see the proof of (a) of Lemma 2).

B. — Assume that (i) 0 = o,; (i) h(y,y’) = 2y for a.e. (y,y") € (0, 1) X (— 1, 0},
k(y,y’') = — 2y for a.e. (y,y')e(—1,0)x(0,1). Note that (i) and (i) imply
that the materials of the slab under consideration and the boundary planes
do not capture particles. Assumption (ii) also shows that an outgoing isotropic
density is reflected isotropically (i.e., if for instance f(— @, y') = ¢ = @ constant
for a.e. y'e(—1,0), then f(—a,y) = ¢ for a.e. y (0, 1)).

Under the assumptions (i), (ii), it is not difficult to show that the equation

(32) (do— vol 4+ vod)f=0

has the solution f(#, ¥) = ¢. In other words, (i) and (ii) imply that the transport

operator (A4,— wol -~ vcJ) has the eigenvalue #z = 0 and that the correspond-

ing eigenfunction f does not depend on « and y. Thus, if w(x,y) = ¢ and

g(t) = 0 Vi>0, then the unique solution of (9) is wu(f) = u(=, y; 1) = ¢, Vi>0.
To show that f(z, y) = ¢ satisfies (32), we re-write (32) into the equivalent

form

(33) f = vo(vel — A,)Jf,

where vo(vol — A,)~1Jf is given by (11a)-(11b) with & = vo and with ¢ = veJ 1.
Now, if f(z, ) = ¢, then g = voc and (11a)-(11b) with z = vo give

¢ = (— 1jvy) Ci(y) exp[o(e — x)/y]
(34) +efl—exp[— o(z— a)fyl}, ye(—1,0),
¢ = (1/vy) Cs(y) exp[— o(a + 2)/y]
+e{l—exp[—o(@ta)fyl}, ye(0,1).

On the other hand, we have from (12a)-(12b) with z = vo

1 1
C)(—y) =2 [ exp (—2acly’)Coly)dy'+ 2 | Gu(y")dy', ye(—1,0),
0 i

[ 0
Clylly =2 | exp (Raofy)Culy) ay' + 2 | Gily)dy's  ye(0,1),
B g



98 A. BELLENI MORANTE [14]

and so Cy(y)/(—y) = ¢, Cuy)/y = ¢,. Hence

1 1
ex= 206 [y exp(—2aofy)dy + 2ve [ y'[1— exp (—2acfy’)]dy’,
[} o
0 0
e, =—2¢, [ y' exp (2acfy’)dy’+ 2ve [ y'[exp (2acfy’) —1]dy’,
1 -1
ie.,
1
¢, = 2(c,—we) | y'exp (—2acly')dy’ -+ ve,
Q
1
¢, = 2(e;—ve) [ y' exp (—2acfy’)dy’ + ve .
0
It follows that ¢, = ¢, = ve, O,(y) = — yve, C,(y) = yve, and that consequently

the two (34) are identically satisfied. Thus, f(z, y) = ¢ satisfies (33) and (32).
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Sommario

8i prova esistenza ed unicita di una soluzione sommabile per un problema inlegrodif-
ferenziale della teoria del trasporto di particelle in un muro omogeneo limitato da piant capaci
di catturare ¢ di rifletiere particelle. Si studiano quindi alcune proprieta di ifale soluzione.



