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Cylindrical waves in an anisotropic plasma

with generalized polytropic equations of state (**)

A GIorGI0O SEsTINT per il suo 70° compleanno

1. ~ Introduction

B. Abraham-Shrauner in [1] has introduced a general theoretical model
describing an anisotropic plasma with generalized polytropic equations of state.
We refer to [1] for the physical and mathematical pecularities of the model,
as well as for its range of applicability and for every detail.

For the plasma under consideration, in this paper solutions are obtained
for cylindrical waves (). The dispersion equation is given and discussed. In
particular torsional oscillations are studied. Subjeet to certain conditions, we
find two types of instability, which are related to the «fire-hose» instability
and to the «mirror» instability.

The contents of the paper are indicated by the titles of the sections.

2. - Basic equations

The basic equations governing the plasma are [1] (%)

(*) Indirizzo: Istituto di Matematica, Facoltdh d’Ingegneria, Universitd, 56100 Pisa,
Italy.
(**) Ricevuto: 12-VI-1978.
(*) Jeans’ gravitational instability has been examined in [7].
(2) Gaussian units arc used.
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dv . 1
(2.1) e = divP - P (curl B)A B,
(2.2) %?— = cwl(®AB),
co .
(2.3) 5; = — div (pv),
P, B P
(2.4) "Qﬁ = ¢, o B = L

(2.5) P =p I+ (p,—p)n®@n.

In these: ¢ is the mass density; » is the veloeity; ¢ is the time; P is the
pressure tensor; u is the (constant) magnetic permeability; B is the magnetic
induetion veetor; p, and p, are respectively the pressure parallel and per-
pendicular to the direction of the magnetic field; «, 4, ¥ and ¢ are the (constant)
polytropic indices; ¢, and ¢, are constants; I is the unit tensor; m is a unit
vector along B and & denotes dyadic product.

The polytropic relations (2.4) are the generalization of well-known equa-
tions of state in plasma physics. For example: ()ifa=2,=3,y =g =1,
we recover the equations of state introduced in [2] by G. F. Chew, M. L. Gold-
berger and F. E. Low (CGL plasma); (i) if x =9 =0, f=¢=1, we have
an isothermal equation of state for both pressures (this case should be of
interest for the ion acoustic waves); (iii) if « =0, f =y =¢=1, we find
an isothermal equation of state for the parallel pressure (this model seems to
be of interest for the study of the solar wind); (iv) if ¢, =¢,, x =y = 0,
f = & ==¢,fc,, where ¢, is the specific heat at constant pressure and ¢, is the
specific heat at constant volume, we recover the well-known model of an
adiabatic plasma described by the magnetoflniddynamic equations (MFD
plasma).

3. - Perturbation equations

We suppose that the unperturbed plasma is homogeneous, at rest and per-
meated by a uniform magnetic field B/u.
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The equations which the small perturbations of the field variables », 6P,
OB and dg satisfy are

v 1 .. 1

(3.1) AR div OP - - " (curl 6B)AB,

2
(3.2) En 0B = curl (vAB),

0 .
(3.3) PR dg = —pdivw,

op, 0B 0o op,  Op 0B

(3.4) », +to—o —/357 fpj—eg—!—“/—g-

Using (3.4) we obtain from (2.5) the perturbation in the pressure tensor

B &P yP Bp, —ep apy + yp .
3.5) OP=( OL(SQ—{—?J'(SB)I—{—(——‘L?———& (5Q~———~1’~—1~;-—56B)n@ n 4

4

+ (py —p)(n® dn -+ on® n),

in which Jdn can be derived from
(3.6) 0B =0Bn-+-Bdn.

The system (3.1)-(3.3), in which JP is specified by (3.3) and (3.6), is a
linear system of seven scalar partial differential equations with seven scalar
unknowns (do and six from » and 0B).

4, - Perturbation equations in cylindrical coordinates

Introducing a frame of reference 7 (0; r, ¢, 2), where », ¢, 2 are cylindrical
coordinates with the z-axis parallel to B, we suppose that the perturbations
are endowed with cylindrical symmetry about such an axis.

The resolutes of 0B relative to .77, denoted by b,, by and b, (= 0B), are
expressed in terms of the covariant components b, b,, b, of 6B by (see[3],
Chap. II, Sect. 8, n. 5)

(4.1) by="b,, bp=byr, b,=b,.
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To calculate div 6P, we note that if T is a second order symmetrical
tensor, then in an orthogonal coordinate system (ot 2%, %) with metric coef-
ficients R, (see [8], Eq. (12.9))

dloghy,
/vl.

@.2) (divT) = (g 1T+ — T, y (VG = hhyhy) .

\/ axk

In our case we have hy=hy=1, hy =17, Vg=1.

Using (4.2), (4.1) and (3.6), we obtain from (3.5) the resolutes of the
vector div 6P

g ob, ‘ ob, p, ob
p.L (5 _‘_Vpl _l_plB]’.Laz, ¥y B] aw

e

Py—PL100b) | Ppy B xpy O

B v o | 9 % B &%

Denoting v,, v, v, the resolutes of » in J we find the resolutes of (3.1)
to be

v, B | 0b, B\ b, L 0
O ) e O ) e T e =0,

(4.3) ot T 4ot doru’ O 0
0o py,—p, B abm

(4.4) S + B 4wy %
av:+ —p,12(d,) +ﬂpl, 69—-0—%—"—%20.

(4.5) 0%

B v or o 0z

From (3.2) we have

0b, oo,

(4.6) ER I
ob ov

(&7 ki

b, | B @)
¥
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whilst from (3.3)

] ov, . 10o(rv,),
(4.9) 300 Tolg + 551 =0

Equations (4.3)-(4.9) are the perturbation equations in cylindrical coor-
dinates.
5. - Torsional oscillations. Cylindrical waves, Instabilities

Equations (4.4) and (4.7) are independent of the remaining ones (uncoupled)
and from these we deduce that v, and b, satisfy the same equation

02 h o°
(5.1) (8753 5 5) (vey bg) =0,
with
(5.2) h=2p,-+p,—p,,

where p,, = B?/8mu denotes the magnetic pressure. Equations (5.1) have the
solutions

(5.3) vy == f(r) exp[H{wt— ke)], by = g{r) exp[¢{wi— k2)],

where f and ¢ are arbitrary functions of » and o (the pulsation) and % (the
wave-number) satisfy the dispersion equation

y/
:—bk‘-’.

e

2

(5.4) w

If h > 0, the perturbations v, and b, are propagated along the axis of # (tor-
sional oscillations) with the (real) phase velocity

(5.5) w =& (L—”“;p ' A

<

(where 42 = B?/4muo is the square of the Alfvén velocity) and with an am-
plitude which is an arbitrary function of #. When the pressure is isotropic
we have u = + A.
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If h< 0, v becomes imaginary and this fact is related to a well-known
instability phenomenon in the anisotropic plasma: the « fire-hose » instability.
(For this type of instability see, for example, [1] and [5], pp. 228-229).

We may note that the propagation of waves (h > 0) or the fire-hose insta-
bility (h < 0) are independent of polytropic indices.

It can be shown that the system of the remaining equations (4.3), (4.5),
(4.6), (4.8) and (4.9) admits, subject to the dispersion equation (5.8) below,
the following solution, corresponding to the propagation along the z-axis of
cylindrical waves

v, = 7,J,(ar) expli(wi— k2)], v, = U,y (ar) exp[i(wi— kz)],
(5.6)
b, = b,J,(ar) exp[i(wt— k2)], b, = b.Jy(ar) exp[i(wt— k2)],

80 = 00 J,(ar) exp[i(wt— k2)],

where « is a real constant and J, and J, are Bessel functions of the first kind
of order unity and zero respectively and %,, 7., b,, b, and do are small constants
in our linearized approximation. The constant « will be determined by the
boundary conditions. If, for example, the boundary conditions to be specified
on a cylindrical surface of radius R are

(5.7) v N=0, (B+06B)N=0

(for the discussion of these conditions see, for example, [6] Chap. 11), where N
is a unit vector normal to the surface, we see that these conditions are satisfied
by (5.6) provided a =§&,/R (n=1, 2, 3, ...), where ¢, is the n-th zero of J,(&);
in fact, the above conditions are equivalent in our case to b, = 0 and », = 0.
The solution (5.6) is regular and finite in the whole of the field.

The algebraic system deduced from equations (4.3), (4.53), (4.6), (4.8) and
(4.9) in correspondence to the solution (5.6), yelds the dispersion equation

(5.8) wt— Cw*+ D=0,

where the coefficients (real) are given by the expressions

a

0:D
0C = (h 4 Pp)E> e [(y + &)p, + 2p.], “]—2 = fhp, k> + Ma?,

with

(5.9) M =By -+ elo + 1)]pnp¢+2‘ﬁpnpm_ Epi.



[7] CYLINDRICAL WAVES IN AN ANISOTROPIC PLASMA ... 83

We may therefore conclude that the linearized equations describing an
anisotropic plasma with generalized polytropic equations of state are satisfied
by the solutions (5.3) and (5.6), where w and k satisfy the dispersion equations
(5.4) and (5.8).

Considering & to be real, the equations (5.4) and (5.8) show that there are
in general three distinct roots for w2 We can therefore say in general that
there are three modes of propagation. Besides the fire-hose instability, which
is related to the azimuthal component of » and 6B, equation (5.8) also indicates
the possibility of an instability (i.e. the existence of roots of w for which
exp [twt] diverges with respect to the time). In fact, for particular values of
the wave-number and of the parameters which characterize the physical pro-
perties of the plasma, we can have D << 0. This instability is of « mirror»
type (for this type of instability see, for example, [1]) and it is affected by
the polytropic indices.

From (5.8) it follows that if > 0 and M > 0, none of the three modes
of propagation will be diffusive, whatever be the value of the wave-number.
(The equations of dispersion have no purely imaginary roots w in this case).

For the CGL plasma, the condition 3 > 0 becomes (from (5.9))

(5.10) 6p, (P +p)—p7>0.

The condition (5.10) is well-known in the theory of the CGL plasma (see,
for example, [4], p. 768).
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Abstract

Solutions are obtained for ecylindrical waves of the equations governing am anisotropic
plasma with generalized polytropic equations of state. The dispersion equalion is given
and discussed. In particular torsional oscillations are studied. Subject lo certain condi-
tions, we find two types of instability, which are related to the «firve-hose » imstability and
to the «mirror » instability.



