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Non-repulsive fixed point theorems

and applications to fixed point theory (**)

A Grorero SEstTixNI per il suo 70° compleanno

Introduction

The definition of non-repulsive fized point goes back to F. Browder [1] (1965)
who proved the following stronger version of Schauder’s fixed point theorem.

«Let C be a compact, convex, infinite dimensional subset of a Banach
space I and let f: ¢ — C Dbe continuous. Then f has a non-repulsive fixed
point. »

Non-repulsive fixed points didn’t get too much attention until Zabreiko-
Krasnosel’skii [13] (1971) and Steinlein [12] (1972) proved independently the
so called « mod p » theorem. This result captured immediately the interest of
many mathematicians, the theory of non-repulsive fixed points, strietly related
to that result, received a strong impulse and many applications of the theory
have been given ever since (see for example [9],, [10],).

The purpose of the present paper is to present some new results on the
existence of non-repulsive fixed points and to use non-repulsive fixed point
theory for producing some new fixed point theorems and for presenting a
different proof of some others that have been already proved by means of
different techniques.

(*) Indirizzo: Department of Mathematics, University of California, Davis,
California, 95616, U.S.A.; Istituto Matematico « U. Dini», Viale Morgagni 67/A, Uni-
versitd, 50134 Firenze, Italy.

(**) Ricevubo: 23-V-1978.
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1. - Notations and definitions

Let Y be a nonempty subset of a topological space X and let f: ¥ — ¥V
be continuous. A point @, € ¥ is said to be a repulsive fimed point for f (see [1])
if (i) f(wg) = @,; (ii) there exists a neighborhood U of a, such that for any
neighborhood V of @, there exists an n, with the property that |J (X \ V)
c M. nm,

A similar definition is given in the case when f is a multi-valued -map.
We shall denote multi-valued maps by capital letters and we will use the
symbol F: ¥V —o Y.

Let X be a metric space and 4 c X be a bounded set. Following Kura-
towski [7], define «(A4) as the infimum of all ¢ > 0 such that 4 admits a cover-
ing with a finite number of sets with diameter less than e.

The following properties of « will be used in this paper.

(1) a(d)=20 if and only if 4 is totally bounded.
(2) If AcB and B is bounded, then «(d)<a(B).
(3) If 4, B are bounded subsets of X, then o(d U B) = max {x(A4), «(B)}.
(4) If 4 is a bounded subset of a normed space E then a{4d) = «{co (4))
(see [2]).
(5) If A, B are bounded subsets of I/ then «(d-+B)<a(4)-+o(B).
]

A map f: X — X is said to be a-Lipschitz with constant & if o(f(4)) < Fa(Ad)
for any bounded set 4 c X. Clearly an «-Lipschitz map sends bounded sets
into bounded sets. If % < 1, then f is called an a-contraction. If a(f(A)) < a(4),
for any bounded set 4 c X with «(4)>0, then f is said to be condensing.
Similar definitions are given for multi-valued maps.

2. - Results

We begin with a very elementary lemma, which is stated for single-valued
maps, but it holds as well for the multi-value ones.

Lemma 1. ZLet X be a topological space and let f: X — X be a continuous
map. Let ¥ X be invariant under f (ie., f(Y)c Y) and such that f|y has a
non-repulsive fized point in Y. Then f has a non-repulsive fized point in X.

Proof. Let x, = f(w,) be non-repulsive for f|y. Assume that x, is repul-
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sive for f. Then there exists a neighborhood U of #, such that for any neigh-
borhood V of @, there exists an n,, depending on ¥V, such that f#(X\FV)c AN\ T
for any n=n,. Since \V = (A\V)NnY, NU=XI\U)NnY, f(¥)c¥,

and f(4 N B)cf(4) N f(B) we have
) =Xy N Y)c/XO) N (Y XN\FV)Nn Yc@\U)NnY
= W\U .

Therefore, x, is repulsive for f
repulsive for f. Q.E.D.

Browder’s result deals with compact infinite dimensional convex sets ¢ of
2 Banach space I and continuous maps f: ¢ — C. It is natural to ask whether
or not Browder’s theorem holds in the finite dimensional case. We may answer
this question in the following way.

v. This contradiction shows that x, is non-

{a) Given a finite dimensional convex and compact set € it is always
possible to produce a continuous map f: ¢ — ¢ without non-repulsive fixed
points;

(b) nevertheless, a continuous map ¢: ¢ — € has a non-repulsive fixed
point if it lowers the dimension (in a sense that will be made precise later).

To prove part (a) of this statement we may assume, without loss of generality,
that the convex closed and bounded set € is a subset of R» with non-empty
interior.

Let w, € €[00 and let ¢ > 0 be such that B(w,, &) ¢ €. We may also assume
that x, = 0. Define f: ¢ — ¢ in the following way

—2 it o] <3,
OES 2
— if:i it o e

Clearly f is continuous and 0, the only fixed point of f, is a repulsive fixed
point.

In the above example, one can easily see that the image of f has the same
dimension of (. It is therefore natural to ask if it is possible to produce
an example of a map f: C — ¢ which lowers the dimension but it does have
only repulsive fixed points. The answer is negative as we will show in a
moment, proving the second part of the statement. We need to recall first
the following theorem due to H. O. Peitgen [10],.
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«Let X be a metric ANR, 2,6 X, f: X — X a compact map such that
(i) @, is a repulsive fixed point of f relative to a neighborhood U of z, and
fl@) = o for all € 8U, (ii) there exists a neighborhood V of #, such that
Vc U and the inclusion 4: X\V — X induces isomorphisms in H* Then
WX, 1, U)=0 and (X, f, X\T) = A(f, X).»

In the above result H* stands for the singular homology functor with
rational coefficients, A(f, X') denotes the Lefschetz number in the generalized
sense as given by J. Leray [8] and (X, f, U) is the fixed point index for
metric ANR’s developed by A. Granas [6].

Theorem 1 below, as it is stated, is a consequence of Theorem 1.1 of R. D. Nuss-
baum in [9];. But the proof given here can be repeated almost verbatim for the larger
class of upper-semicontinuous admissible maps (the definition of which is given later)
by means of a result of C. C. Fenske - H. O. Peitgen [3] analogous to the one recalled
above (H. O. Peitgen [10],). Therefore the theorem is stated and proved for single-
valued continuous maps and its natural extension to the class of upper-semicontinuous
multi-valued and admissible maps is mentioned later without any proof.

Theorem 1. Let C be an n-dimensional, convex, closed and bounded sub-
set of a Banach space E and let f: C — C be continuous and such that Im f is
contatned in a linear variety V™ with m < n. Then [ has a non-repulsive fized
point.

Proof. We may assume, without loss of generality, that ¢ c R* and
0e (ON\0C. Let V»1 be a linear variety such that Im fc V»-1. Denote by
H* one of the two closed halfspaces of R» which have V»! as boundary
and such that 0 € f,. Put ¢, = € N Hx. Clearly O, is closed, convex, inva-
riant under f, and C,\2C, 5= 0. Moreover, Im f c 3C,. Therefore all repulsive
fixed points of f are boundary points of C,. Since repulsive fixed points are
isolated fixed points, they can be only finitely many: @, #,, ..., , and we can
find neighborhoods V,, V., ..., V, of ax,a, ..., 2, respectively, such that
it CN\V — 0y, V =) V,, induces isomorphisms in H*, and V c U where
U= U,, U, being a suitable neighborhood of »; such that x, is repulsive
relative to U,. Therefore, i(Cy, f, U) = 0 and #(C,, f, C\U) = A(f, Co) = 1,
where A(f, C;) is the Lefschetz number of f|,. Hence f has a fixed point &
in ON\U which is clearly non-repulsive for fle, and, in view of Lemma 1,it
is also non-repulsive for f. Q.E.D.

The above theorem clarifies, in some sense, what we mean by the state-
ment: «f lowers the dimension ». We can give a more general version of the
theorem, which, in turn, enlarges the class of «lowering dimension maps »,
namely.

Let f: C — C be a continuous map of a compact n-dimensional convew subset
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of @ Banach space B into itself. Asswme that there is a homeomorphism ¢: ¢ — C
such that Im g o f is contained in a linear variety of dimension at most n— 1.
Then f has a non-repulsive fiwed point.

It is well known that there are three versions of Schauder’s fixed point
theorem.

(1) «Let € be a compact convex subset of a Banach space B and f: ¢ — C
be continuous. Then f has a fixed point. »

(2) «Let C be a convex, closed and bounded subset of a Banach space E
and f: ¢ — C be continuous and compact. Then f has a fixed point. »

(3) «Let C be a convex closed subset of a Banach space F and f:
¢ — (¢ be continuous and such that f(C) is compact. Then f has a fixed
point. »

Clearly 3 —2—1. On the other hand it is not difficult to show that 1 — 3.
Therefore the three formulations are equivalent.

Browder’s theorem is stated in terms of the first formulation and we may
ask if it is possible to state it in terms of the other two. In other words we
may agk if the following hold.

(2") «Let C be a convex, closed, bounded and infinite-dimensional subset
of a Banach space F and let f: ¢ — ¢ be continuous and compact. Then f
has a non-repulsive fixed point. »

(3’') «Let C be a closed, convex, infinite dimensional subset of a Banach
space B and let f: ¢ — C be continuous. Assume that f(C) is compact. Then f
has a non-repulsive fixed point. »

Clearly 3'—>2'—1' (= Browder’s theorem). Therefore we will be allowed
to say that they are equivalent if we show that 1’— 3’. This is our aim in the
following theorem, which is a consequence of Browder result.

Theorem 2. Let C be a closed, convex, infinite dimensional subset of a
Banach space E and let f: C — O be continuous and such that f(C) is compact.
Then f has a non-repulsive fized point.

Proof. Let PcC be infinite dimensional and compact. By Mazur’s
theorem co (f(0) U P) = (, is compact. Moreover it is clearly infinite dimen-
sional, and f(C,) c C,. Therefore, by Browder’s theorem, f o, has a non-repulsive
fixed point, which is also non-repulsive for f in view of Lemma 1. Q.E.D.
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It is known that Schauder’s fixed point theorem in its 2-formulation was
extended by Darbo [2] to the class of continuous «-contractions. More precisely
Darbo proved the following result.

«Let € be a closed bounded, convex subset of a Banach space I/ and
f: C— C be a continunous «-contraction. Then § has a fixed point. »

It is natural to ask if Browder’s theorem can be extended to «-contractions,
or, more generally, to condensing maps. The answer is positive, as the follow-
ing theorem shows. In proving it, some ideas of Sadovskii [11] and Fenske-
Peitgen [3] are used.

Theorem 3. Let C be a closed, convexr, bounded and infinite dimensional
subset of a Banach space E and let f: C — C be a continuous condensing map.
Then | has a non-repulsive fizxed point.

Proof. Let Pc C be compact and infinite dimengional. Construct a

transfinite sequence of sets {Ga}, following Sadovskii [11], with a slight mod-
ification

Co=CUP=0,

co (f(Cpy) U P) if f# is an ordinal number of the first kind ,
Cs
n ¢» if f is an ordinal number of the second kind .
y<B

[t is easy to see that, for every f,
(1) Cp is convex, closed and bounded;
(2) Cp is invariant under f, ie., f(Cs) C O
(3) Pc0Cs.

Moreover, there exists an ordinal number J, whose power does not exceed
the power of the set of all subset of ¢ such that Cs= Cs ;.

This implies «(Cs) = 0, i.e., Us is compact. In fact for that é we have
co (f(Cs) U P) = Cs,q = Us; since f is condensing, a(co (f(Cs) U P)) = a(f(Cs))
< a(Cs) it «(Cs)>0. In addition, Cs is infinite-dimensional. Hence f|,, has
a non-repulsive fixed point x,, by Browder’s theorem [1]. This point is non-
repulsive for f, by Lemma 1. Q.E.D. , '

Owr aim now is to prove that a continuous e-contraction f: § — 8, where §
is the unit sphere in an infinite dimensional Banach space F, hag a fixed point.
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The above result was first proved by Nussbaum [9], by means of other
arguments. Here we give a proof using non-repulsive fixed point theory.

We need the following proposition which was stated and proved in Furi-
Martelli [4], for single-valued maps. Here it is stated and proved for the class
of upper-semicontinuous multi-valued maps.

We recall first that a multi-valued map F: X —o X, where X i3 a topological
space, is said to be upper-semicontinuous at x, € X, if for any neighborhood U
of F(a;,) there exists a neighborhood V of z, such that F(V) = U {F(»):
zeV}c U. 1f for any #€ X we have that F is upper semicontinuous at =
and, moreover, I'(x) is compact then F is said to be upper-semicontinuous
{on X). Itis known that upper-semicontinuous multi-valued maps send compact
sets into compaet sets.

Proposition 1. Let X be a complete metric space and let F be a non-
empty family of subsets of X such that for every &> 0 there exisis a finite sub-
family {G,, G., ..., G.} of F with the property that a(X\ UG < e Assume
that the restrictions I|,, G € %, of an upper-semicontinuous multi-valued map
F: X —oX are o-Lipschite with constant k. Then I' is «-Lipschitz with the
same constant.

Proof. Assume first that % admits a finite subfamily {¢:: ¢ = 1,2, ..., n}
which is a covering of X. If 4 c X is bounded we have (see item 3 in the
notation section)

of F(4)] =max {«[F((ANG))]: i=1,2,..,n}
< max{kae(ANG;): i=1,2,..,0n}=ke(d).

Assume hereafter that the finite covering property fails for #. Given any
finite union of elements of &, G, UG, U ..U G; = W, the subset XN\ W
is a closed nonvoid subset of X. Denote by & the family of all sets X\ W.
The family # of nonvoid closed sets has the finite intersection property, and
inf{x(B): Be#}=10. Therefore, by a vesult proved in [4];,, we have that
K = () {B: Be#} is nonempty and compact. Moreover, for any neighborhood
U of I, there exists an element B e # such that KX c Bc U; (see Furi-Mar-
telli [4],).

Let A cX be bounded, «(d) >0, and let V = F(X) 4 B(0, ¢), where
0 < 2¢ < ka(A). The upper-semicontinuity of F implies o F(K)) = 0, so by
items 5 and 6 of the notation section, «(V)<o(F(K)) + o« B(0, ) < ka(A).
Let U be a neighborhood of K such that P(U)c V and let B € # be such that
KL cBcU. Denote by {G;:i=1,2,..,n} the finite subfamily of # such
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that B = XN\ (G{ VU ... U G;). Therefore
a(F(A)) = max {«(F(4A N B)), (F(ANG)): i=1,2,..,p}
< max {kx(4), ka(A N G): i =1,2, ..., p}<ka(d) .
We are now in a position of giving a different proof of Nussbaum’s result [9],.
Theorem 4. Letf: S — S be a continuous a-contraction of the unit sphere 8
of an infinite dimensional Banach space E into itself. Then f has a fized point.
Proof. Let ¢:[0,1] — R be continuous and such that ¢(0) = ¢(1) =1,

1 <e(t)<1/k for any te(0,1) where %k is the o-Lipschitz constant of f.
Define f,: D —D, D= {z € E: |z|<1}, by

i1 (%) =70,

0, z=0,

fo(@) =

and consider the map j: D —D; f(@) = ¢(|||) fow). We want to show that f
is an a«-contraction with constant r <1, where r = k|gf, ||lp| = max {p():
rel0,1]}

Let 0 < ¢ <1 and define B, = {weD: ¢»*' <|2|<q"}. The family {R,: n e N}
satisfies the assumption of Proposition 1. Therefore, it is enough to show
that f],?" is an w-contraction with constant r/g.

Let A c R, and denote by A, the set 4, = {a/|z|, v e 4}. It is easily
shown that «(d,) < (1/g")a(4); in fact, 4, is contained in the convex closure
of the set A4, = {0} U (1/g") 4, s0 a(d,) <a(co(4;)) = a(4;) = (1/g™+) a(4).

Further, fo(4)clU {Af(4e): g"<A<gr} ceo({0} U ¢*f(4,)), and f(4)
cU {Mo(4): 1<A<|p|}ceo({0} U |op|fo(4)). Hence, by the properties of o
in the notation section, and the preceding inequality

a2(f(4)) < [lplla(fo(4)) < | pllg (f(4o)) <%, Flplo(4) -

Therefore, by Proposition 1, f is a-Lipschitz with constant r/q. Since this is
true for any 0 < q< 1, it follows that f is an «-contraction with constant
7 = k|/p|. On the basis of Theorem 3, f has a non-repulsive fixed point #, € D.
Clearly 0 is a repulsive fixed point for f, and no fixed points of f belong to
D\(S U {0}). Hence f has a non-repulsive fixed point @, on 8, which is clearly
a fixed point for f. Q.E.D.



NON-REP IVE FIXED POINT THEOREMS ... 5
9 NON-REPULSIVE FIXED PO EOREMS 51

We want to derive now the above result as a consequence of the following
more general theorem.

Theorem 6. Let I': S —o 8 be an upper-semicontinuous, admissible o-con-
traction of the unit sphere of an infinite dimensional Banach space E into itself.
Then F has a fiwed point.

We first recall some facts about admissible maps. Let X be a metric space
and let G: X —- X be an upper-semicontinuous multivalued map. If for any
z € X we have that G(x) is acyclic in the Cech cohomology with rational coef-
ficients, then we will say that & is acyclic.

Let X,, Xy, ..., X, . be metric spaces and ¢;: X;—o X, ; (i=0,1,2,...,n)
be upper-semicontinuous and acyclic. Then the composite map F: X, — X,
F=G,00G, 0..00G is called admissible (see [3]). Let ¥ be a subset of a
Banach space E, F': ¥ —o I/ be an admissible map and ¢: ¥ — R be con-
tinuous. Then F: ¥ — B defined by F(z) = ¢(z) F(z) is clearly admissible.

In [3] the following theorem is proved.

«Let C be a convex, closed, bounded and infinite-dimensional subset of
a Banach space F and let I': ¢ —o C be an upper-semicontinuous, compact
admissible map. Then F has a non-repulsive fixed point. »

By means of arguments similar to the ones used in the proof of Theorem 3
and applying the above result one can prove the following.

Theorem 7. Let C be a convex, closed, bounded and infinite dimensional
subset of a Banach space E and let F: C —o C be an upper-semicontinuous admis-
sible map. Assume that F is condensing. Then I' has a non-repulsive fized point.

We are now in a position of proving Theorem 6.

Proof of Theorem 6. Let ¢:[0,1] >R be as in Theorem 3 and
define Fy: D—oD, D = {z € E: |z|<1}, by

ol 7 (157 it a0,
Fo(zx) =
0, if 2=0.

Consider the map F: D—oD; F(w) = ¢(||z|) Fo(w). Clearly F is admissible,
upper-semicontinuous and it is an «-contraction. Thus by Theorem 7, F has
a non-repulsive fixed point. Since 0 is repulsive and = ¢ F(z) for any 0 <|f|< 1
we have z, € F(n,) for some @, 8. Thus z, € F(z,). QE.D.

We recall that in the case when C is a convezx, closed, bounded and finite
dimensional subset of a Banach space ' we can always construct a continuous
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map f: € — € without non-repulsive fixed points. Such an j can be regarded
as a multi-valued, npper-semicontinuous and admissible map.

Using the same argument of Theorem 1 one can prove that if an upper-
semicontinuous admissible map #: ¢ —o €, where ¢ is a finite dimensional
closed and convex subset of a Banach space E «lowers the dimension », then
it has a non-repulsive fixed point.

To obtain this result it is enough to repeat the construction used in the
case of a single-valued map and to apply the following theorem, proved by
Fenske-Peitgen [3].

«Let X be a compact mefric ANR, F: X —o X be an admissible map and
#y be a repulsive fixed point of I with respect to a neighborhood U of z,.
Assume that there exists a neighborhood V of x, such that P c U and
it ANV — X induces isomorphisms i*: H*(A\V) — H*(X). Then there are
arbitrarily fine coverings 7~ of X such that ind, (X, f, U) = 0.»

We end this paper by pointing out that our arguments in the proofs of
Theorem 3 and Theorem 7 break down in the case where f or ¥ are condensing
instead of «-contractions, leaving open an old question on whether or not a
condensing single-valued continuous (multi-valued upper-semicontinuous and
acyelic) map of the unit sphere § of an infinite dimensional Banach space into
itself has a fixed point.

I thank G. Gustafson for stimulating conversations on the subject matter of this
paper.
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Abstract

Some existence theorems in non-repulsive fixed point theory are given and they

are used to prove fized point theorems for single-valued (admissible multi-valued) o-con-
tractions defined in a sphere S of « infinite dimensional Banach space.






