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AxNTONIO ROMANO (%)

A macroscopic theory of thermoelastic dielectrics (*¥)

A Grorgio SEsTIXNI per il suo 70° compleanno

1. - Introduction

Elagtic dielectrics constitute a well studied class of materials owing to
their related phenomenological bases (photoelasticity, piezoelectricity, electro-
striction, ferroelectricity, ete.).

In 1956, R. A. Toupin[15], proposed a statical theory of non-linear elastic
dielectrics in the absence of thermal phenomena. This Author, employing a
variational principle in which the Liagrangian is fixed « a priori», deduced the
local statical equation of dielectric, Maxwell’s equations of electrostatics and
finally boundary conditions. Moreover, in order to justify his choice of
the Lagrangian, he showed that the local statical equations could be also
deduced from a model in which the dielectric is regarded as a continuous
distribution of dipoles. In a following paper, R. A. Toupin [15], proved the
existence of infinite equivalent decompositions of the stress tensor in « me-
chanical » and «electrostatical » parts. In one of these decompositions, the
electric stress tensor is identical to that produced by a eontinuous distribu-
tion of polarization charges. Starting from a different variational principle,
A. C. Eringen [3], obtained results (see also[3],) similar to those of Toupin.

A dynamical theory of non-linear elastic dielectrics (always in the absence
of thermal phenomena) by R. A. Toupin [15], was developed employing the
balance equations of momentum, energy and angular momentum. Once more,
the equations of balance are written by using Lorentz’s model for the inter-

(*) Indirizzo: Via Domenico Fontana, 80128 Napoli, Italy.
(**) Work made under the auspices of G.N.F.M. (C.N.R.). — Ricevuto: 23-V-1978.
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action between the dielectric and the electromagnetic field. In this model, the
dielectrie is regarded as a fictitious continuous distribution of polarization
charges and polarization and magnetization currents. However, it must be
observed that in this theory Maxwell’s equations, which are covariant with
respect to Lorentzian transformations, are associated with the classical equa-
tions of motion which are covariant with respect to Galileian transformations.

In the aforsaid papers there are two fundamental restrictions: (a) the con-
stitutive equations of the dielectric are dependent only on the deformation
gradient F and the polarization P; (b) there are no thermal effects. On the
other hand, C. Mead [8] showed experimentally that the capacitance of a con-
denser does not go to infinity when the distance between the plates tends to
zero but reaches a finite value. This effects has been deduced theovetically
by R. D. Mindlin [9],, using a linear theory of a dielectric based on a
variational principle, in which the specific internal energy depends on F, P
and grad P. E. S. Suhubi[12] supplied a variational principle for the statics
of a mnon-linear dielectric whose specific internal energy depends on F, P
and grad P.

Restriction (b) (but not (a)) was removed by H. F. Tiersten [13], who
obtained the balance equations of momentum, angular momentum and energy,
of a heat conducting dielectric by employing a suitable structural model (1).
In this paper, the dielectric . is regarded as the whole of two distinct
interacting continua: the lattice continuum %, and the electronic continuum
&, which can move infinitesimally with respect to &,. Moreover, %, interacts
with &, by a local electric field ,E that exerts a couple Px . E per unit
volume of &;. A similar couple is produced by the electric field E. Finally,
on ., exterior body forces act as contact stress, the body couples — Px . E
(produced by .%,) and the electric force P. grad E.

More recently, G. A. Maugin[6] obtained the general equations of the
non-linear theory of interaction between thermoelastic and electric phenomena,
employing the « virtual power principle » alveady applied by P. Germain [5],,.
to thermomechanies of continua.

In concluding this brief review of the already proposed theories in [15],, 6],
we can observe that: (1) they derive results about the macroscopic behavior of
a dielectric & by structural models; (2). each of them assumes a well-defined
model of the interaction between matter and electric field. Similar consider-
ations can also be made in regard to the paper [6] because the virtual power

(*) This is essentially similar to the model employed in the study of ferromagnetic
substances by H. F. Tiersten [13],, H. F. Tiersten and C. Tsai [14], W. F. Brown [1],, [1],,
G. A. Maugin and C. A. Eringen [7],, [7],.
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principle leads to unkown multipliers whose physical meaning is again obtained
employing « a posteriori» a particular structural model of the continnum and
a particular interaction between matter and electric field.

In this paper, I propose a different point of view (%) for the analysis of
dielectries, namely that nothing need be presumed regarding the structure of
matter as in the usunal Continuum Mechanics of simple continua. In fact, it
seems interesting to me to require if the usual procedures of Continnum Mechanics
are able to lead to correct results also for more complicated materials and if
it is possible to obtain them regardless of any model.

To this end, I postulate equations of balance of momentum, energy and
angular momentum for the whole system of matter and electric field which
exibit fluxes of energy and angular momentum more general than the cor-
responding ones adopted in the theory of simple continua. These variables
are regarded as constitutive quantities because the theory is phenomenological
and there is no model to give them a physical interpretation «a prioxi».
Moreover, I postulate the balance of angular momentum must be satisfied in
every process. In other words, Maxwell’s equations and the balance of mo-
mentum and energy being sufficient to determine the unknown processes when
the constitutive equations are also given, the balance of angular momentum
can be interpreted as a further restriction on these constitutive equations.

Specifically, after giving equivalent formulations of Maxwell’s equations and
after recalling the equations of balance I proposed in [11],,, (sections2, 3),
I also adopt the following constitutive equations (section 4)

(1) ¢ = {(F, 0, p, grad p, grad 0) ,

where { is a constitutive quantity, F the deformation gradient, 6 the local
temperature and p the specific polarization. In a phenomenological theory
of dielectrics without memory, functions (1) represent the simplest form of
the constitutive equations of dielectrics. Adopting them, we assume to be
more interested in the electric effects than in the mechanical ones because,
from the mechanical point of view, the dielectric is only thermoelastic. Restric-
tions imposed to the constitutive equations are deduced by the dissipation
principle.

Finally, in section 6, I show that in the absence of the electric dissipation
the previous results coincide with those obtained by other authors. In par-
ticular, the local electric field and the local equilibrium condition are natural
consequences.

(3) This point of view has also been expressed in another paper of mine [11],
regarding ferromagnetic substances.
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2. - Preliminary considerations on the Maxwell-Minkowsky equations in quasi-
static electricity

A continuous- dielectric & satisfies the conditions of quasi-static electricity
if: (1) The velocity of points of & are non-relativistic. (2) The electrothermo-
dynamical processes of . occur at low frequencies. (3) The system % is non-
magnetizable.

Introducing the characteristic quantities 7, U, L, E, with the dimensions
of time, velocity, lenght, electric fleld, we can easily prove that following re-
lations hold

U TU H H

(2.1) R, = pe <1, R=— ~1, R, UL~

I

where ¢ denotes the velocity of light in vacuum. Relations (2.1),, express
quantitatively conditions (1), (2). The other ones follow from hypothesis (3),
when we use the law of transformation

(2.2) H =H— xxD,

which connect the magnetic field H in the frame I to the magnetic field H°
in the proper frame Io, moving with velocity x with respect to I. In (2.2),
D denotes the electric induction.

A simple dimensionless analysis leads to the following Maxwell-Minkowky
equations for the quasi-static electricity

oD
(2.3) rotE=0, divD=0, rotHz—é-{, divB =0,

being E the electric field, B the magnetic induction. Moreover (2.3), are
covariant with respect to Galileian transformations when we use, together
with (2.2), the following other laws of transformation

(2.4) E—E, D'=D, B =B->xE,
c?

which are deduced by the relativistic laws when (2.1) hold. If P and M
denote respectively the electric polarization and magnetic polarization

(2.5) peM=B—u,H, P=D—¢E,
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where u, and g, are the magnetic and electric permeability of empty space, we
can write (2.3) in two other equivalent forms that will be useful later on.

In the meanwhile, from (2.2), (2.4) and condition (4) (i.e. M°®=0), there
follows

(2.6) , P = Po, M=_—xxP.

If we prefer to employ the fields {E, P, H, M} instead of {E, D, H, B}
equations (2.3) become

1ot E =0, ¢gdivE=—divP=yg,,

(2.7)
P
rot H = 80%1‘? 4 68_75 ) o livH = — pyydivM == g, .

We can obtain these equations from Maxwell’s ones for empty space replacing &
with continuous fictitious distributions of elecitric and magnetic dipoles.

Likewise, if we prefer to employ {E, P,B, M} instead of {E, D, H, B}
equations (2.3), owing to (2.5);, (2.6),, become

ot E =0, gdivE =—divP=gp,

(2.8)
B . oE oP .
rob (o +ExXP) =er + o, AVB=0.

We conclude observing that (2.8); can also be written

¥
(2.9) rot B — 60% +P—(divP) %,

o

where

*  oP ; . .
P= = - (div P) x 4 rot (P X x)
[
is the convected time derivative of P.

3. - Equations of balance of momentum and energy for a polarizable continuous
system in quasi-static electricity. Reduced dissipation inequality

Let & be a continuous polarizable system moving with respect to Galileian
frame I. Accepting approximations (1), ..., (4), we shall ignore all relativistic
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confributions to momentum and energy. So, if ¥ denotes a material volume
of & and n the exterior unit normal vector to surface element de of boundary
0% of ¥, the equations of balance of momentum and energy, can be written as

il .

£ foxd¥ = [T-ndo + [obd¥ ,
di g 8% @

(3.1)

1 . 4 . . .
£ g(} @4 e)d¥ =[(xT + ®) ndo+ [ob-x+1r)d¥,
dty='2 0% @

where ¢ = mass density, T = total stress tensor, ¢ = specific internal energy,
@ = energy flux vector, b = specific external body force, r = external energy
supply. : ,
These equations are invariant with rvespect to Galileian transformations
provided T, b, e, @, r are invariant.
As previously [11],, T assume
)

(3.2) ®=—ExXH +h+1p, (pE%)

being — E° x HC the clectromagnetic energy flum vector, h the heat fluz vector
and v is an extra flus of energy due to the presence of polarization. When
v =0, we obtain again the expression for @ adopted by B. Coleman and
E. Dill [2],, in their thermodynamics of rigid conductors in electromagnetic
fields. On the contrary, if © 0, beside — E°x H° and F, (3.2) presents ano-
ther flux of energy due to the variations of polarization. Quantity T has to
be considered as a constitutive quantity because we have no model to assigne
any expression to it. I shall prove that T = 0 when constitutive equations
do not depend on grad p.

Under suitable smoothness assumptions, (3.1) yields the following local
forms

ox = divT + ob,
(3.3) .
0é = T: grad x — div (E° X H°) + div(h + © p) + or .

In order to put (3.3) in a more convenient form, let us observe that (2.2)
and (2.4) imply '

EXH =EX(H~xXD)=EXxH—EX(xxD)

~EXH-+ (E-%)D— (E-D)x .
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On the other hand, in view of (2.3), we have

eD

div(EXH)=H rotE—~ E-vot H = —E - — z—E-I.)—{—:i:'gradD-E(i‘) ,
7}

Adv[(E-x)D— (E-D)x] = D-grad E-x -+ D-gradz - E
=x-grad E-D—x-grad D-E~—E-Ddiva,
and so we can say that
(34) div(E'XH) = —E-D+[EQ®QD— (E-D)I]:grad &
LoD (erad E)*- & () ,

where (grad E)* is the skew-symmetric part of grad E. Moreover, by (2.3);
it results (grad E)),= E, ;= — dg,(rot E)})=0, so that we can give (3.4)
the following form

(3.5) —div(E'xHY) =E-D + [(E-D)I— E ®D]:grad x .

Taking into account this last relation, (3.2) can be written as follows

ox = divT + gb,
(3.6)
06 =[T - (E-D)I—E ®@D]:gradx -+ E-p + div (b + ©-p) + or.

These .equations, together with (2.3) represent the fundamental system of
quasi-static clectricity of moving bodies, when the electromagnetic fields are
decribed by the vectors {E, D, H, B}. However, to facilitate the comparison
between the theory here developed and the others already proposed, it will
be suitable express (3.6) in terms of either the fields {E, P, H, M} or {E, P, B, M}.
We shall begin with the first choice.

We have the identities

1 d, B
2

Q&(EO - )—};soEﬂljgr:LdZ\: 4 oE-p— (E-P)I.grad x,

(3.7)
—div[ie, B2 I— E @ D] = —¢,grad E-E + E divD + D-grad E = P-grad E .

{®) Here, x-grad D-E = Hi D, ;a’.
() E@D: grad & = I Dig, ;.
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If we use these relations and the following definitions

2

(3.8) E=0— o5, tET*}—%SOE?‘I—*E@D,

the previous equations of balance (3.6) assume the form

ox =dive + P-grad E + 0b ,
(3.9)
g¢ =tigrad & + oE-p +div(h + v p) + or.

In deriving (3.9), we have found the electric force P-grad E in (3.9); and
the energetic term E-p in (3.9), by adopting the fields {E, P, H, M} instead
of {E, D, H, B}, without assuming any model of interaction between matter
and eleetric field.

Besides the equations of balance (3.9), we shall adopt the principle of
entropy in the form of Clausiu-Duhem inequality

h' "¢ 1

(3.10) 007> div b — %—0 oo,

bewng n the specific entropy. Consequently, the reduced dissipation inequality,
obtained by eliminating div h + gr between (3.9), and (3.10), results in

(3.11)  — o[y -+ n6] + £:grad x + oE-p + div(t-p) + h'g%d%o )

where y=¢— 0y is the thermodynamical potential or the specific free energy.
In order to write (3.11) in the coordinate { X'£) of a reference configuration %,

we remember the identity (5) (0/0X%)(S(0X%/0x))) = 0 and the equation of

continuity g, = Fp, where p, is the mass density in %, £ is the deter-

minant of the gradient of deformation F =|02/0X*|. Employing the pre-

vious relations, (3.9), (3.10) can be written as

0 % = Divt, + o, Grad E(F)-p + 0. b,

(3.12) . . .

o€ =t F7 4 0, E-p 4 Div (hy 4 w4 -p) + 047,

N A Ftrry . N . h;u'G ¢d0
(818)  —oulj +70) + tu1FT 4 0uE-p + Div (v p) + ~E 50

(®) See, for instanee, [3],.
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being
(3.14)  t, = St(FY7, hy,=SIF'h, x,=JIF"'v (7§, =F(F"Yi7).

The operators Grad and Div express derivations with respect to coordinate (X*).

4. - Constitutive equations and their restrictions derived by the dissipation
principle

(2.7)1, (3.12) represent a system of ten differential equations whose unknown
functions are given by the fields

(4.1) & tin B, h;’ %, Py 0
and by the equations of motion
(4.2) # = oi(X,1).

System (4.2), (2.7);, (3.12) will lead to the determination of the fields p, 0,
x(X, t) when the constitutive equations are given expressing the fields ¢., E,
h., 7. as funetions of p, 0, F and their derivatives.

If ¢ denotes any of the quantities y, 7, tx, E, Iy, T+, I assume the following
constitutive equations

(4.3) ¢ ={(F, 0, p, Grad p, Grad ),

which trivially verify the principles of determinism, local action and equi-
presence.
By employing these hypotheses, we can write (3.13) in the form

(4.4) — 04l + 0] + £ T + 04E + div Ty]-p + 74 Grad p

h. - Gradf
>

On the other hand, we have

8P, 0P
(4.5) = al'f’,l~,+ w9+aplp+ +60 0,
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so that (4.4) can be written as

o s 8
— gy — O —= 1 s = O i1
0 3, O 0 10 g1 0 e — 0 5 1 15
(4.6)
b a¢ 1 A () A 8'} Yy 71,1}'
+oBi— 2 (k) Al [k~ n;j—%]p + 70,30,

This inequality must be identically satisfied in every process satisfying equa-
tions (2.7), and (3.12). Owing to the possibility of selecting arbitrarily the
external sources b, r it is immediately seen that (2.7); and (3.12) are satisfied
in every process. Then (4.6) is equivalent to the following relations

. i o1
p = 9(F, §, p, Grad p) , 77:———%, Ui == 0x EJ*I’J"’
¥
(4.7)
P oy 1
T*f:Q:az a]ﬂ][y RIS 8;;02_@\ 7;1,13 71’*0.L>0

We can say that u, which depends only on F, 0, p, Grad p, is a thermo-
dynamical potential for #, ¢, T, and E. Moreover, there is no heat con-
duction when Gradf = 0.

In concluding this section, we observe that (4.7) can be written in the
following eulerian form

~ A oy . oy
Y o= ’IP(F, 0, P Gl‘a:dp) 3 n = —’é‘a B tj = QI{’L@,
(4.8) 3 ' N
. Loy . 8?/3 1 oy oy 1
L.,»Fj: ] :fj B, =L . —— = _1 _rh
Ty L 9 a])f] T i a])’ Q (g apf‘h),h ap, 0 7"z.h

5. - Restrictions on constitutive equations derived by the balance of angular
momentum

In the previous discussion, we employed only the principles of balance of
momentum and energy (3.12), Maxwell’s equations (2.7), and the principle
of entropy. Giving constitutive equations compatible with (4.7), system (3.12),
(2.7) permits us to determine the fundamental fields (X, 1), 0(X,t), p(X, ?).

We have now to consider the balance of angular momentum beside (3.1),
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i.e. the equations
- d e R : 1A
(5.1) — foali @AY = [(aliT 4 AMyn, do + [oal’d1AF ,
dt¢ % ¢
where A it = — AJit = extra-flux of angular momentum. On account of (3.3),,
(5.1) can be written in the following local form
(5.2) TUd 4 Ak, =0

which, when we use {E, P, H, M} to describe the electromagnetic field, becomes
(see (3.8))

(5.3) {7 4 gBlpd - AU, =0,

This last equation is now regarded as a further restriction on the constitutive
equations, already subjected to the restrictions (4.7), because we do not need
it to determine the motion of the system 7.

In order to derive the implications of such a restriction, we recall that
the objectivity of u» implies

. op ., 0 o 0P
n.4 a L i] L pil —
(v).l) aFBFL I a])[lp + ap[] oL 0 ?

which, by (4.8)3!4,5, can be written as
t 1+ 0By p - (e, p M) = 0.
By comparing this last equation with (5.3), we obtain the conditions
(dib—gliZpdy, =0

which in material coordinates assume the form (see (4.8))

(5.5) (A — 2" pT) =0,
with
(5.6) AGE = F(F)E 4,

Next, let us consider the constitutive equation for A, such as (4.3). If
we use, for the sake of simplicity, the notation fiir = A%* — % p" (5.5) can
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assume the form

. afu(r X fuL afm, I Ofu(L
(5.7) aF’;,) @’ l\l+ 5])" P’,L+ ap" " P, m—O

which are valid in every process. So (5.7) is equivalent to the following restrie-
tion on the constitutive equation

ofiite gftite afiie afiix
5.8 = =0 0, -+ h=0.
(5:5) OB, Oply ’ o0 T opt P

It is well known that (5.8), determines the dependence of f¢ on ¥} and p*
and the objectivity principle implies f/# is a funection only of 0, p, Grad p
(see [4]).

‘We can conclude, supposing

(5.9) AYE = 7l p]

Le. fif =0, that the balance of angular momentum is trivially satisfied.

6. - Comparison with the results of other authors

In order to compare the obtained results with the ones proposed by other
authors, we observe the balance of energy (3.9), assumes the form

. 1. . . .
(6.1) oé=t.gradx - o [E -+ Z) divt]-p + t.gradp -+ divh 4- o7 .
On the other hand, by introducing the local clectric field
1

(6.2) '—LEEE—!—B(HVT,
equations (3.9) of balance can be written as

=divt + P-grad E - b,
(6.3)

¢ =t.gradx— o, E-p+ v.gradp + divh -+ or,

~ where, in view of (4.7) and (6.2), it results

(6.4) t; = \(_)Ipi "a”yi 7l = 0 01/) LE,' = aw .
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(6.3) and (6.4) constitute the equations obtained in [7],,, [6] adopting
structural models or variational principles whereas they have been obtained
simply by adopting the variable {E, P, H, M} to describe the electromagnetic
fields. Moreover (6.2), written in the form

(6.5) E—}—,,E-}—%div'r:(),

coincides with the local equilibrium condition (11.15) in [4] or (4£.8) in [6].
Finally, the balance of angular momentum, in view of (5.3), (6.2), results

(6'6) t[il'] =0 LE[J'pi] . T[M])i],n .

It is obvious from (6.4) that if y does not depend on grad p, it follows v = 0
and (6.3), (6.4), (6.5), (6.6) coincide with the result of [15],, [13],,{3],. We
observe explicitly that the equations (11.14) in [11]; are not compatible with
the dependence of y on grad p because it is assumed v = 0 and in the same
time v depending on grad p.

In order to derive the results of [15]; from the developed theory, we
observe that (3.6), can be written as

(6.7) 0é = [T + &, E-EI— ¢;E Q E):grad x -+ (E-PI— E @ P):grad &
+eEE+E-P4divih+®) 4 or.

On the other hand, it results

d g E*

SOE'E:QCTt-( 29

)—éeDE‘ZI:gmdk,

~

* P . . 1P . .
P :%t— + adivP | rot (PX x) = cﬁ? ~+ Pdiva — P-grad x,
so that (6.7) assumes the form

*®
(6.8) 0é' =t grad x + E-P + div(h + ®) + o,

where &' = ¢ — (g,572)/20,
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(6.9) t' =T+ LePI—,EQE,

while (3.6); becomes

(6.10) ‘ ox = divt' — (divP)E + ob .

In the approximations of quasi-static electricity and when © =0, (6.8) and
(6.10) coincide with the equations proposed by R. Toupin [15],. In fact, they
differ only by a term P* xB which is present in the balance of momentum
proposed in [15], but non in (6.10). The term P*xB is of the 2-th order in

2/¢? compared with — (div P)E in the quasi-static electricity, as it is displayed
by the following adimensional analysis (see, sect. 2)

(divP)E ~PE/L,

PU PE_U:H  PH U
(PXB)  ~=p poll ~ = i~

~

Therefore, (6.10) coincides with (5.2) in [15],.
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Sunto

In questo lavoro, senza adollare alcun modello di interazione ira materia e campo
elettromagnetico ed impiegando una forma generale per le equazions del bilancio, deduco
le restrizioni termodinamiche per le equazioni costitulive che conseguono dal principio
di dissipazione e dal bilancio del momento angolare. In tal modo pervengo ad una teo-
ria det dieletlrici deformabili che include come casi particolari 4 risultali gia noti.
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