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FRANCO PIAZZESE (%)

Clifford formulation of classical field equations (**)

1. - Introduction.

It often happens that, because of historical reasons or real convenience,
different mathematical instruments are employed in different physical theo-
ries. This natural state of affairs, however, hides the possible analogies, that
could make easier the study of more complicated, or less known theories.
Clifford algebra, for instance, is employed in the theory of elementary par-
ticles. However, in classical physics, its use seems to be confined to the
electromagnetic field theory in vacnum or in a homogeneous and isotropic
medium. In this case Clifford algebra allows to synthetize Maxwell’s equa-
tions into a single Lorventz-invariant equation ([7], p.179), ([4], p.29), the
electromagnetic field being described by an appropriate Clifford number [7].
The economy in writing in this form is considerable, while no gain in physical
content is added.

Two are the purposes of this paper: i) showing that the basic equations
of many classical field theories with linear and isotropic constitutive equations
can be put into a form analogous to that of Maxwell’s equations in vacuum;
ii) formulating some extensions, valid also when the constitutive equations
.are general.

The use of Clifford algebra automatically assures the invariance with respect
to rotations of the reference system, and, in particular, the relativistic inva-
riance in the four-dimensional case [6].

(*) Indirizzo: Via Guido Reni 219/1, 10137 Torino, Italia.
(**) Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.). — Ricevuto: 27-X-1977.
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2. ~ Mathematical preliminaries.

To every a-dimensional vector space ¥» with a scalar product corresponds
a unique Clifford algebra of dimension 27 ([4], p. 7) (%), whose elements, « Clif-
ford numbers », are aggregates generally formed by a secalar, a vector, a bi-
vector, ..., an fa-vector.

Clifford product of two vectors a, b € V* decomposes into a commutative
part (sealar) and an anticommutative part (bivector), as follows

(1) ab=a"b-aAb.

In the following we shall mainly employ two Clifford algebras: the real
Clifford algebra of the Euclidean three-dimensional space E?* with the usual
scalar product, and the real Clifford algebra of the Minkowski space-time M*
with psendoeunclidean metric of signature -+ ———. These algebras are known
also as « Pauli algebra » and « Dirac algebra », respectively, and their elements
as p-numbers and d-numbers, respectively ([4], p. 20 and 24).

Let us consider Pauli algebra. The unit basis vectors e, e B® (k =1, 2, 3)
satisfy the same multiplication rules as the Pauli matrices

(2) €;* e, = ‘},"(eiek —{_ ekei) = 5:‘]; .

By taking all the 23 = 8 products of the e;, one obtains a tensor basis for
Paudi algebra.
The unit three-vector (or pseudoscalar)

(3) e =e;e e,

is such that ¢?=—1, and commutes with every p-number. Formally it be-
haves as the imaginary unit and it is sometimes denoted by ¢ ([4], p. 20).
If one introduces the differential operator (2)

(4) V =e,0

(1) A concise exposition of Clifford algebras particulary direet to physical appli-
cations is contined in [4].

(?) Here and in the following the usual notations of tensor caleulus, as the sum-
mation convention over repeated indices, are adopted.
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that formally behaves as a vector, from (1) it follows
Vu=V-u+4VAu=divu+ erotu
(3)
uV=Vu—VAu=diva —erotu,
where u is a general vector € E* ([7], p. 36).

In an analogous way, in Dirac algebra, the unit basis vectors Nu € Mt
(0 =0,1,2,3) satisfy the same multiplication rules as the Dirac matrices

(6) NNy =5 (qutly =+ 1) = G
and, by taking all the 24 = 16 produtcts of the 7., one obtains a tensor basis

for Dirac algebra.
The unit four-vector (or pseudoscalar)

(7N - N = NeN1M273

is such that 7= —1, but it anticommutes with any . Some caution is
necessary in replacing it with the imaginary unit 4 (141, p. 26).

If the four-dimensional differential operator

(8) O=nroy,

is introduced, the following generalizations of (5) are derived.
If a is a vector of M4, i.e.

(9) & = akny,
(10) Oa =004+ OAa, ad =0-a—0OAa.

If 7 is a bivector of M4, i.e.
1
(11) =g nay
(12) OF =0-F 4+ 0OAF, PO=—0-F 4 OAF,

where O-a, OAa, O-F, OATF are the four-dimensional generalizations for a
vector and a bivector fields of the usual divergence and. rotor of a vector field
of ¢, i.e.
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1 .
(13) O-a = guat (scalar), OAa =75 X e“Bv99, as ne N (bivector) ,

1 .
(14) O-F = ouFwyy (vector), OAF =5 e®r 93 Fys na (threevector),

where 7 denotes the Ricei tensor of M4

3. - Basic equations.

a) Let us start from the electromagnetic field theory. Its basic equa-
tions are, of course, Maxwell’s equations. To stress the geometrical character
of the involved entities, let us write them as follows

. 1
(15) Oy Gir = ji , 51 eBve 9pllys = k% ,

where, of course, k* is usually zero. The electromagnetic field is described
by two skew-symmetrical tensors F,;, G*" linked by a set of generally non-
linear constitutive equations

(16) G = Guw(F,4) .

Equations (15) furnish the four-dimensional « divergence » of G#” and the four-
dimensional «rotor» of I, respectively.

b) In an analogous way we consider as basic equations of many sta-
tionary eclassical field theories the following (see table)

a7 dive =g, otu=w.

The field is described now by two vectors u and v, linked by a set of generally
nonlinear constitutive equations

(18) v =v(u),
Field Basic equations Const. link References
1
gravitational divh =—p rotg =0 h = o (111, p- 155), ([9], p. 142)
7T
electrostatic divD =g¢ rot E=0 D=DE) [8],([9],p.154)
magnetostatic divB =0 rot H=J H=H®B) [8],([9] p.156)

electric (stationary) divJ =0 06 E=0 J =J®E) ({51 p.92), ([9], p. 160)
thermic (stationary) divg =o¢ rotp =0 ¢q =1kp ([51, p- 119), ([9], p. 151)
perfect fluid (irro- divji =0 rotv =0 j = v ([8]y, p- 2 and 18),
tational statio- (191, p. 144)
nary motion)
geometric optics divl =0 robp =0 I =da’p (121, p. 118), ([9], p. 163)
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¢) Finally we consider linear acoustics. Its basic equations are conti-
nuity and Euler equations, plus the irrotationality condition [5], (191, p. 146).
In three-dimensional form they are

do’ . v Vp' _
19) N + div (gv)= 0, 7 + 00 0, rotv = 0.
By introducing the four-dimensional vectors
J ! p’
b= (0" ¢, 0ov) , ah = 5;‘67 v

the equations (19) can be put into the fonr-dimensional form
(20) bt =m , £%BY00, a5 = Nb

where m, n*®, denoting a scalar and a skew symmetric tensor, respectively,
are usually, zero. Constitutive equations

(21) bt = br(w)

reduce to br= p°qx.

The Klein-Gordon field can be described by the same equations (20). In
this case the constitutive link reduces to the identity of b« and ax.

In the next section the equations (17) are unified by means of Clifford
algebra, independently from the nature of constitutive link. The same is done
for the equations (20) and (15).

If the constitutive links are linear and isotropie, some simplifications can
be made. This case is considered in sect. 5.

4, « Clifford formulation.

In order to unify the equations (17), it is enough to add them formally.
The result may be interpreted in terms of Clifford algebra, as follows

(22) diveo +rotu =9+ w.

Both members of the preceding equation may be thinked as p-numbers formed
by a scalar and a vector. Since, from eq. (5)

(23) " diveo.={ (Vo + »V), rotu=—*%te(Vu—uV),
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putting

(24) w=v-+eu, w=v—eu, p=o+w,

eq. (22) yields the Clifford formulation:

(25) 1(Vw +wV) =p.

So the basic equations of every field theory of the table can be converted into
the synthetic form (25), independently of the nature of the constitutive equa-
tions. The field is now described by a single entity, i.e. the p-number w formed
of a vector and a bivector (or formally complex vector), and its complex
conjugate w. The constitutive link is contained in it as an inner coupling.

An analogous process can be applied to equations (20). From them by
formal addition, we get

1 1
(26) , 0u bk + 5i e*BY00yaonatp = m + o1 n*namng .

The members on both sides of preceding equation can be interpreted as
d-numbers formed of a scalar and a bivector. Since from (10) and (13)

(27) Oubt =3 (0b +000),  Fe*0asmans=—3n({a—all),
putting

1 &
(28) c=b-+na, g=m + 55 nnurs

one obtains from (26) the Clifford formulation (?)
(29) 1(@ec+4c0O)=gq.

The field is described by the d-number ¢ formed of a vector and a threevector
(or formally complex vector). As before, the constitutive link is an inner
coupling.

(®) If the identification e, = 7,1, is made, Pauli algebra can be considered as a
subalgebra of Dirac algebra ([4], p. 25). Eq. (25) can, then, assume the same form (29).
In this case only the formally complex field vector is needed, not its complex conjugate.
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Finally, let us consider Maxwell’s equations (15). Since both are vector
equations, it is not possible to add them without loosing their identity. We will
proceed as follows: putting
(30) G =10y, , P=§iFwqumy,
from (12) and (14) we get

(31) uGwy, =% (06G —60), 5787870 3 o = Y (OF +FO).

Then (15) assume the form

(32) 306G —60) = —J, n+(0OF 4 PO) = — K,
where
(33) J = jun,, K = k*na.

By multiplying on the left the second of the preceding equations (32) by —7,
both members become three-vectors. We perform now the addition of the
result just obtained with the first equation of (32) and obtain the following
Clifford form for Maxwell’'s equations

(34) IO@F+ @+ (F—6) O] =—J +nK .

Obviously, the bivectors F, G must have the same physical dimensions. The
field is described by the two bivectors # 4 @ and F —G.

Another possibility involves the complex Clifford algebra of Minkowski
space-time. We multiply the second of (32) by the imaginary unit ¢ and,
then, add the result to the first equation. Putting ‘

(35) H=0G—ilF, h=—(J -+ iK),
we get
(36) $(OH — HO) = h.

Since both G and nI" are bivectors, the field is a true complex entity: a com-
plex bivector. Likewise a complex entity is h also, the second member of (36):
a complex vector.
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5. = Linear and isotropic constitutive links.
Equations (26), (31), (34) have a validity also when the constitutive links

are linear and isotropic, i.e. when (18), (16), (21) reduce to simple proportionality
between the quantities involved. In particular, (34) may be written

(37) COF =—J.

This is the Riesz formulation of Maxwell's equations in a homogeneous and
isotropic medinm.

Equations (17) and (20) may get a simpler form in this case. Because of
the proportionality between u and v, (17) can be expressed as follows

(38) divue =p, rotu = w.

Then, from the first of (5) we have

(39) Vu=r,
where
(40) r=p-+ ew

is a p-number constituted of a scalar and a bivector.

Analogously (20) may be rewritten

(41) Opak =1, E*BY0 Qo tts = NP .

By virtue of the first of (10)

(42) Og = s,
where
1
(43) s=1+7 (2—, %"‘ﬁﬁfxm)

is a d-number consisting of a scalar and a bivector.
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6. -~ Conclusive remarks.

The leading inspiration in developing the preceeding sections has been
the desire of arriving at a unitarian formulation of as many physical theories
as possible. We have shown few fundamental equations of classical field theo-
ries expressed by means of Clifford formulation. Apparently their synthetic
pattern contains something more than a formal simplicity. It represents a
possibility of binding together the intimate logical processes on which the
different theories are based.

A further step, which looks promising, is the extension of our analysis
to quantum mechanies. In this case, since Clifford algebra may be represented
with a matrix algebra, and spinors are vectors in a spin space on which the
matrices operate ([6], p.38), the use of Clifford algebra seems particularly
well fit. Hopefully, in this way, unclear aspects of quantum mechanics, such
as observables which are operators, or in general the correspondence principle,
might receive some illuminating insight.
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Riassunto

Attraverso UValgebra di Olifford le equazioni fondameniali di molte teorie classiche di
campo vengono riformulate in maniera sintetica, indipendentemente dalla natura del le-
game costitutivo.
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