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Paoro TERENZI (¥*)

Biorthogonal systems in Banach spaces (

1. - Introduction.

In this Note we examine the biorthogonal systems in Banach spaces, from
the point of view of the convergence of their block sequences; precisely we
point out, in §7, as the progressive loss of these properties of convergence,
accompanies the acquisition of better properties, from the general case till
to the bases.

In §3 we give a few constructions, in order to pass from a minimal and
not M-basic sequence to an M-basis, and viceversa; we also lightly improve
a remark of Singer. Moreover we examine the sequences which can be approxi-
mated as we want by minimal sequences.

§ 4 regards the sequences of elements with unitary norm and without con-
vergent subsequences, that we characterize by the existence of subsequences
which belong to bibounded biorthogonal systems. Again we examine the
sequences that can be approximated as we want by bibounded biorthogonal
systems; moreover we consider sequences with intermediate properties between
the general minimal sequence and a bibounded biorthogonal system. We raise
also two open problems.

In §5 we examine the structure of the sequences of elements with unitary
norm and without subsequences weakly convergent to elements s 0, con-
nected to the existence of basic subsequences.

§ 6 regards the sequences without block sequences convergent to elements
7= 0: we show that these sequences are union of two M-basic sequences. Then
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we compare a few characterizations of the IM-bases among the minimal se-
quences; precisely the sequences {,} such that, for every infinite complemen-
tary subsequences {#,} and {z,} of {#.}, [{%,}] N [{#,,}]= {0}; moreover the

sequences {#,} such that [ [{#.}isn] = {0}: we find that the sequences of
me==1

the first case, by removing a finite number of elements at the most, always
are M-bases: while the sequences of the 2-nd case are much more general.
We also examine the properties of the sequences sufficiently «near» to the
preceding sequences.

In §7 we give also a general scheme of all the sequences that we consider in
this Note, with all the interdependences.

We report, in § 3%, 4%, 5% 6* and 7*, the proofs of all theorems, remarks
and examples, stated in the preceding paragraphs 3, 4, 5, 6 and 7.

2. - Notations, definitions and recalls.

Theorems are enumerated with roman figures, lemmas with arabic figures
and theorems of recalls with starred roman figures. We shall use {n} for the
sequence of the natural numbers, Bt for the positive real semiaxis, ¥ for the
complex field, B for the general separable Banach space, B’ for the dual of B,
moreover Sy = {#€ B; |z =1}, V= «for every», I =it exists». Let P
and @ be subspaces of B, we shall say that P and @ are quasi complementary
subspaces of B, if PN Q = {0} and P 4 @ is dense in B. 'We shall use {x,}
for the sequence #, @, ... of B, lin{w,} for the linear manifold described
by {@.}. [{®,}] for the closure of lin{z,}, and we shall say that {w,} is complete
in B if [{#,}] = B.

Let {#,}c B, we shall say that {u,} is a block sequence of {x,} if I an
increasing sequence {f,} of natural numbers so that: u,elin {mk};"jin +1y Yo
Let {#,} c B, we shall say that {z,} is

(a) Hamel basis (H-basis) of lin{w,}, if every finite subsequence of {,}
is linearly independent;

() w-linearly independent if 3, o, =0, for {a,}C ¥, implies a, =0, Vn;
1
(¢) minimal if @, ¢ [{Tn}nrem], Y.
Let {2,} ¢ B and {f,} c B’, we shall say that (x,, f.) is a biorthogonal system,

and that {@,} belongs to a biorthogonal system, if f,(®,)= 0,,, Ym and n; more-
over, if it is also

2]l - Walgup < M < + 00, where |fulliggn = sup {|/a@)|/]|; 2 [{=]} , Vn,
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we shall say that (z,,f.) is a bibounded biorthogonal system. Let (z,,f.) be
a biorthogonal system, we shall say that {#,} is

() Markuschevich basis (M-basis) of B if {w,} is complete in B and {f,}
is total on [{w,}] (that is [{f}], N[{w.}]= {0}, where [{f.}],={z€ B;
f’ll(m) = 0, V”’})y

(e) basis with brackets of B if 3 an increasing sequence {g,} of natural

© In1
numbers, so that, setting ¢y =0, =Y, (> fu(®)2,), Yo e B;
0 T, +1

(f) basis of B if we have e) with ¢, =n — 1, Vn;

(8) M-basic (basic with brackets) (basic) sequence if {w,} is M-basis (basis
with brackets) (basis) of [{z,}].

Let {#,} ¢ B and let X be a subspace of [{z,}], we shall say that {x,} is

(h) X-non contractive if N ey s abusm] = X ;

(i) totally non contractive (t-non contractive) if we have h) with X = [{,}];

(1) totally contractive (i-contractive) if we have h) with X = {0};

(m) M-basoidic if, V infinite complementary subsequences {x,} and {#,,}

of {z,}, [{mn]_}] N [{mnz}] = {0}

711

Let {®z,}c B, with #,s£0, ¥n, following the terminology of [11], (p. 63
and p. 53), we shall call norm of {z,} the smallest number K > 0 so that

m m+p
”zn ‘xnwn“ <K“zn Oann“ ? V{“" :1:71’(:% ;
1 1
moreover we shall set
1) o= {wel{my_1; || =1}, PO =[{t}n), Yn.

Let us recall the following characterizations for minimal, M-basic and
basic sequences.
I* — Let {®,}C B, then

(@) ([9], see also [11],, . 54) {&,} minimal < {w,} belongs to a biorthogonal
"p

system <> if Hm Y, o,,2, =0, then limo,, =0, Yn < 0, }c R, with 1<C,<
Pp—>® 1 p—>00

< -+ oo, Y1, so that

mEp

IS ol < Ol S 0taal] ,  Viordi22C @ < dist (00, PW) >0, Vau.
1 1

ne=]l
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(b) {@,} M-basic < ([3],, see also[11],, p.171) {,} minimal and i-con-
tractive <= [1] {&,} minimal and M-basoidic.

(¢) {@,} basic <> ([4], see also [11],, p. B8) {x,} has @ norm K with 1 <K <
< -+ co<=>([3], see also [11],, p. 58) inf {dist (¢,, P™); L<n < co}=1/K > 0.

Let F c B', we recall that I is norming on B if 3K € R* so that K[| <
<sup {|/(@)|/|f]; f€ F}, Vo B. On the existence of basic subsequences we
have

II% — ([6], see also[10], . 128). Let {w,}C B, then: {w,} M-basic ({w,/||z.|}
without subsequences weakly convergent to elements 5= 0) (Lm f(w,/|z.]) = 0,
Vfe I c B, with I' norming on B) ={®,} has an infinite basic subsequence.

Let Pc B, then P+ ={feB’; f(x) = 0, Yo € P}. On the extension of M-
basic sequences we recall a few results of Singer.

IIT* — ([11];, p. 184-185). Let {x,} be an M-basic sequence of B, with (#,, f,)
biorthogonal system, then
(@) 3{h,tc B total on B with (@,, h,) biorthogonal system,
(B) .t [{z.t]h, with {f.3\U {g.} total on B.
Finally, about the properties of the «near» sequences, it is well known
that

IV# — ([8] and [9], see also [11]., p. 98 and [11];, p. 171). Let {®,} be a
minimal sequence of B, then Ie,}c R+ so that, Y{u,}c B, with |u, — x| < e,
Yn, {u,} is minimal; moreover {u,} is M-basic (basic) if {x,} ©s M-basic (basic).

3. - Minimal and M-basic sequences.

A minimal sequence {y,} is in general Y-non contractive; moreover, by (b)
of Theorem I*, {y,} is M-basic if and only if ¥ = {0}. Then, if ¥ == {0}, The-
orem I gives a construction of an M-basis of [{y,}], starting from {y,}; while (a)
of Theorem II allows the inverse passage.

I. Let (4., hy) be a biorthogonal system of B and let {y,} be Y-non contractive,
then = 3 an M-basis (.} of Y, with (§,, h,) biorthogonal system, so that setting
?/;Z: Yn— Ek ﬁla(yn)?jk’ \H {?/;}U {#a} is M-basis of [{¥at], with (f’/:n h) U (G, 7;,,)

< .

biorthogonal system.
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II. Lot (Yuy ha) be a biorthogonal system of B, and let (Y, ) be an infi-
nite subsystem of (¥, h,), then

(a) He.t complete n [{y.}] with (2., h,,) biorthogonal system,

(0) FHga} complete in [{h}] with (Ya,, g.) biorthogonal system.

Next corollary follows by precedent theorems; moreover, for ¥ = {0}, we
have Theorem III*.

Corollary 1. ILet (y,, h,) be a biorthogonal system of B and let {y.} be
Y-non contractive, then

(a) 3{f.}c B, total on a subspace of B quasi complementary to Y, with
(Yuy fa) biorthogonal system,

(b) Hgatc{yab1t s0 that {h,y U {g.} ts total on a subspace of B quasi com-
plementary to Y.

‘We shall now consider a few properties of the sequences sufﬁciehtly ¢near »
to minimal sequences. In a precedent note[12], we defined that a sequence
{z,} of B has property P if, Yo e[{z,}], 3 two infinite complementary subse-
quences {#, } and {z,,} of {,}, which depend on @, so that &€ [{z,}]+ [{#.,}]-
Morveover, in another note[12],, we defined that a sequence {z,} of B is
X-overfilling if every infinite subsequence of {z,} is X-non contractive, where
X is a subspace of [{#,}]. Then, for X = [{,}], we have the already known
([71p- 193, see also [10] p. 113) definition that {,} is overfilling, that is every
infinite subsequence of {x,} is complete in [{z,}]. In the same Note we exami-
ned the properties of the «near » sequences for the general X-non contractive
and X-overfilling sequences; then we consider now the same problem, with
the further condition that the sequence is minimal.

1X1.  Let {y,} be @ minimal sequence of B, then Ie,}c Rt so that, V{u,}c B,
with [, — 4] < €a, Y0, we have the following equivalences

(2) {y.} is Y-non contractive < {u,} is Y-non contractive,
(b) {y.} is Y-overfilling <> {u,} is Y -overfilling,
(€) {yn; has property P <= {u,} has property P.

Instead the general sequence with property P does not keep this property
for sufficiently «near» sequences, in fact:
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Example 1. Let {z,} be a {-non contractive sequence complete in a
Banach space B,. Let {x,} be a sequence of linearly independent vectors,
with @, ¢ B,, Yn. Setting

g2m=—1 g2m
Wy, = Zn Lp— 2un, Vm;
1

a.32m—14q

we define in lin {«,} the following norm

& = min {I(@, 0); v lin{u,}},

m mn
where, for @ = 3, 0,2, and v =3, 8,4, (z, and f, can be = 0),
1 1

I({U, 'v) -_—‘?n(’“n—“ﬂn‘(l_%)'*_ Ig::!) .

Moreover we define in lin{»,} + lin{z,} the following norm, extension of the
preceding norms: |z -+ 2| = |#| + ||, Ve elin{x,} and zelin{z,}. Then, if
B, is the Banach space completion of lin{xz,} - lin{e,} in this norm, B, =
= [{#.}] + B,. Now, setting Yop—1 = By and 4, = 2,, Vn, {y.} has pro-
perty P; but, V{e,}c B+, 3{v,}c B, and without property P, with |v,— y.| <
<g,, Yn.

Finally we consider the sequences which can be approximated as we want
by minimal sequences of B.

IV. Let {y,}c B, with [{y.}] p-codimensional subspace of B, then

(8) p = 4 co = {y.} can be approwimated as we want by minimal se-
quences of B,

(b) p < co and {y.} can be approximated as we want by minimal se-
quences of B = {y,} = {yn,} U {¥n,}2e,, where 0 <g<p, moreover {Un, 18 minimal
and complete in [{y.}].

4. - Sequences of elements of unitary norm and without convergent subsequences.

In a precedent note[12], we called a sequence {y,} convergent of order p
to an H-basic sequence {#,}2_, of 8z, with 1<p <-4 oo, if

n=1

%

(2) Yn= D10 s + 7, , With g,=p if p<-+oo and Gn>n if p=-o00, Vn;
1
m=1

m=1
moreover lim (yn“‘ Zk ‘xnkgk)/”yn _ zk 051;1;?71:” = gm b fOT 1 <M< p + 1 N
1 1

n—rw
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In particular we called the sequence {y,} of (2) elementary convergent of order p
if {yn}”_1 was M-basic, with (7., k)2, biorthogonal system, if {y,} was basic,
or y. =0, Vn, and if oty = Ry(y,), Yk and n. We recall

V#,. Let {y,} C B, then
() [12],. Bvery infinite subsequence of {y.; has an infinite manimal sub-
sequence <> {y,} H-basic and without subsequences convergent of infinite order
and overfilling < VY -overfilling subsequence {y,,} of {y.}, Y is an infinite codi-
mensional subspace of [{y,}],
(b) [12],. {y,,} c 8, has a convergent subsequence =-{y.} has an elemen-
tary convergent subsequence.
Therefore a convergent sequence of S; can have an infinite minimal sub-
sequence. On the other hand, if {#,} is weakly convergent to Z, for a well
known theorem of Mazur % e(\>, [{@uusn]. Hence, by (b) of Theorem I¥

we have that Theorem II* affirms that

(3) {yn/ “ynll} is without subsequences weakly convergent to elements = 0 <
every infinite subsequence of {y.; has an infinite basic subsequence .

Consequently it remains to define the properties of the sequences of Sp
weakly convergent to elements =0, but without convergent subsequences;
we can expect that these sequences will have subsequences with intermediate
properties between the general minimal sequence and the basic sequence.
We answer this question by next theorem

V. Let {y,}C B, then
a) {yn/ ||3/,,H} without convergent subsequences < every infinite subsequence
of {y.} has an infinite subsequence which belongs to a bibounded biorthogonal
system,
b) {y.} without convergent subsequences of infinite order = every infunite
subsequence of {y,} has an infinite minimal subsequence with property P.
Preceding theorem involves that the minimal sequence with property P
has intermediate properties between the general minimal sequence and the
bibounded biorthogonal system (we observe that (see[12];) the sequence {m,}
of Example 1 is minimal, but without property P). Then we precise this par-
ticular by next theorem, on the sequences with property P.

VI. Let {y.}CB, then
a) {y.} belongs to a bibounded biorthogonal system (or {1 J,,} is basic with
bmckets) = every subsequence of {y,} has property P,
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(b) every subsequence of {y,} has property P < every minimal subsequence
of {y.} has property P.

In §3 we examined the properties of the «near» sequences for the mini-
mal sequences and for the sequences with property P; then we consider now
the same problem for the bibounded biorthogonal systems.

VIL. Let {y.;Cc 8z and let U {e,}CR*, with 3,6, =1 and 2 <1, then

1
(a) {y.} belongs to a biorthogonal system (4, h,) with Hh,,|[{yk)]<ﬂf <+ oo
Vn = Y{u,} C B, with |u,— ¥, < e., Ya, @ follows that {u,}= (e} U {30

with 0 <p <<+ oo, moreover {u, ) is complete in [{u,}] and belongs to a bibounded
biorthogonal system (. , g.); in particular, if

M (1
=yl < 2,/ M Vn, then p =0 and |g.]yn< ( ML+ 2) Vn .

1= (M —7)

(b) v,y c B with ||v, — y.| < £,, Yn, moreover {v,} belongs to a bibounded
biorthogonal system = {y,} = {Yn,} U {Yn Sney, with 0 <q<< 4 oo, moreover (U} s
complete in [{y.}] and belongs to a bibounded biorthogonal system.

We complete this paragraph with two equivalent open problems.

Problem 1. Let {y,} be a convergent sequence of infinite order of B,
has {y,} always an infinite subsequence with property P?

Problem 2. et {g,}cB, has {y,} always an infinite subsequence with
property P?

5. = Sequences of elements of unitary norm and without subsequences weakly
convergent to elements == 0.

Let {w,} c B, we call nucleus of {#,} the seb

(4) N{w,} = {weB so that V{z,}, C{w,}, v c[{z,}]} .

Moreover we say that {,} is denucleated if, V infinite subsequence {z, } of {,},
N{w, } = {0}. If {w,} is weakly convergent to T, %€ N{x,}; on the other hand
a t-contractive sequence is denucleated; therefore, by (3),

(3) {yal|ya|} without subsequences wealkly convergent to elements == 0 <> {y,}
denucleated
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The structure of the denucleated sequences is quite general, in fact

Remark 1. (a) 3 a denucleated and complete {x,} of B, that is not union
of & finite number of H-basic sequences.

(b) 3 a denudleated, H-basic and complete {y,} of B, that is not union of
a finite number of minimal sequences.

(e) 3 a denucleated, minimal and complete {z,} of B, that is not wnion of
o finite number of M-basic sequences.

By (c) of precedent remark and by (b) of Theorem I* it is plain that the
denucleated sequences are much more general than the #-contractive sequences.
In order to complete precedent remark, we have to consider the particular
denucleated and minimal sequences {»,}, union of two M-basic sequences {y,}
and {z,}: & problem stated by Singer[11], was if, with the further condition
of [{y.}] N [{z.}] = {0}, {w.} becomes M -basic. We recall[1] that Courage-Davis
answered this question, by means of a sequence {#,}, union of two basic se-
quences {y,; and {z.}, with [{#.}] " [{z.}] = {0}, moreover {z,} belongs to a
biorthogonal system («,, f,) with [{f.}], N [{#,}]5% {0}. Next remark strengthens
this solution.

Remark 2. I{w,}c B, complete and union of two basic sequences {y,} and
{&ay with [{y.}] N [{#z.}] = {0}, moreover {x,} belongs to a biorthogonal system (@,, fn)
with [{f,}], infinite dimensional subspace of [{x,}].

About the near sequences it is obvious, by (5), that if {#,} c 8, is denucleated,
every sequence {u,} of B with lim |u,— @,]| = 0 is also denucleated.

It is also obvious that, in a reflexive space B, (3) and (5) becomes (see
Theorem IT*).

{y.} denucleated <> {yﬂ/ HynH} weakly convergent to 0 < 3 an M-basis {x,}
of B, with (,, f,) biorthogonal system and [{f,}] norming on B, so that

Lim fo(ya/|ya]) =0, VE .

N> 00

6. - Sequences without block sequences convergent to elements £ 0.
The following equivalence is immediate.

(6) {yn} without block sequences convergent to elements £ 0 <> {y,} t-contractive.

We consider now particular {-contractive sequences.
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We say that a sequence {y,} C B is norming if 3 a not deecreasing sequence
{I,} of natural numbers, and K with 1<K <+ oo, so that

Iytm

(1) | Ez ] < K| Zk wit Srongil s Vb, U{meim, cF .

1+

In fact, by (7), sup {dist (y, [{#i}isa)); L <0<+ oo} > |y|[/K, Vye[{y.}]; there-
fore (see[10], p. 121-122 and Lemma I.11) if (y,, k) is & biorthogonal system
and if {y,} is complete in B, {y,} is norming <> [{k,}] is norming on B. We recall
([5], see also [10], p. 123) that

(8) {y.} minimal and norming = {y,} union of two basic with brackets se-
quences .

We consider also particular norming sequences.

Generalizing the terminology of[11], (p.63) we say that {y,} c B has a
norm with brackets K, with 1<K < - oo, if 3 an increasing sequence {g,} of
natural numbers, so that we have (7) with I, = ¢,+; for ¢, + 1 <n <@u4a, Ym;
that is, setting ¢,=0 )

In+1 ptm  Inti
® 13 Gl <KX (S|, el

About the structure of these sequences we have the following theorem, where
(b) is & light improvement of (8).

VIII. Let {y,} be an H-basic sequence of B, then

(a) {y,} t-contractive = {y,} is union of two M-basic sequences,
(b) {yn} norming = {y,} is union of two bastc with brackets sequences,

Y {yn} has a norm with brackets < {y,} is basic with brackets.

Following remark completes preceding theorem.

Remark 3. 3 an H-basic and norming sequence {y,} of B, union of two
M-bases of B.

That is the sequence {y,} of precedent remark, by removing afinite number
of elements, does never become minimal.

We consider now the t-contractive sequences under another point of view.
We say in this Note that {y,} c B is w-b-linearly independent (generalization of

o imtl
definition (b) of §2) if, V series with brackets ¥, ( . o.y.) convergent to 0,
o it

it follows that «,= 0, Vn.
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By (b) of Theorem I* we know that the t-contractive sequences, with the
M-basoidic sequences, characterize the M-basic among the minimal sequences.
Then next theorem affirms that the 3M-basoidic sequences not only are #-con-
tractive, but already are M-basic, except parbicular cases connected with the
lacking of property P; however in these cases, by removing a finite number
of elements, the sequence again becomes M-hasic.

IX. Let {y,} be an infinite sequence of B, then

(&) {yn} M-basoidic and not minimal <> {y,} = { Wagd Y {Ynytoey, with 1<p <
<+ oo, where {y,,} is an M-basis of [{y.}] without property P; precisely, Vy
€ lin {y,,}7_,, with y = 0, there are never two infinite complementary subsequences
{Ungy and {y,} of {y.} so that ye[{ya}] + [{ya}];

(b) Yntnrm has property P ¥m: {y,} M-basoidic < {y,} M-basic;

(€) {yn} M-basoidic = {y,} w-b-linearly independent.

The following characterization is immediate consequence of definition and
of (a) of Theorem I*,

{yn} M-basic <> Y convergent sequence {Z Ofmn?/n}m:u Lim Zn Ll =0 tf
and only if lime,, =0, Va. mereo 1

m—rx

We pass now to consider the «near » sequences.
The norming, the i-contractive and the M-basoidic sequences do not keep
their properties for « near » sequences, in fact:

Remark 3. Let {y.} be the sequence of Remark 3, and let {e,} C R* then:
= 3 a t-non contractive sequence {u,} complete in B, with |[u,— y.|| <e,, Vn.

Example 1'. Let {x,} and {u,} be the sequences of Example 1, we have
that limu, = %, moreover U {w,} is M-basoidic but not minimal. Then,

V{eap € B, .} c[{w,}], with [v,— ] <& and [Vnt1— ®ul| < €441, Vm, so that
{v,} is not M-basoidic.

About the sequences which can be approximated as we want by t¢-con-
tractive (3 -basic) sequences we have

X. Let {y.}Cc B, with [{y.}] p-codimensional subspace of B, then

(a) p<+ oo and, Y{e,}C R*, 3 a t-contractive sequence {u,} of B with
n— a| < €2y Y1 = {y,} is t-contractive,

(b) p< - oo and, V{e,} c B*, I an M-basic (norming and M-basic) (basic
with brackets) (basic) sequence {v,} of B with |[v,— y.| < &n, Y1 = {y.} = {Yn,} U
UA{Yuplners With 0 <q<p, moreover {y,} is M-basis (norming and M-basis) (basis
with brackets) (basis) of [{y.}]-
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Tollowing example completes a) of precedent theorem, where we cannot
replace «{-contractive» by « M-basic», in fact:

Example 2. Let {y,} be the sequence of Remark 3 and let B; be another
Banach space, with an BM-basis {z,}cSp, and B,N B = {0}. We define in
lin {y,} -+ lin {z,} the following norm (extension of the norms in lin {y,} and
lin {z,})

ly+#0 = lyl + lel,  Vyelinfy,) and selinfe).

Let B, be the Banach space completion of lin{y,} -~ lin{z,} in this norm
(hence By= B -~ B;). Then, Y{e,}C R¥, setting u, = ¢, + €.%,, {U.} is M-basic
and u,— y.) = e., V.

7. = General view and synthesis.

It is now opportune to give a comprehensive look at all the sequences con-
sidered in this Note, then

in Table 1, for an H-basic {y,} of B, a flow of strict implications (that is the
inverse implications do not hold) connects all the properties that we il now con-
sidered, with all the main interdependences.

In order to complete the flow of Table 1 we remark that the w-b line-
arly independent sequences are quite different from the w-linearly indepen-
dent sequences; in fact (¥) every infinite H-basic sequence (hence a i-non
contractive sequence) has an infinite w-linearly independent subsequence.
Our aim is also to point out as the property of a sequence, to approach a
basic sequence, is strietly connected with fthe properties of convergence of
the block sequences. Precisely the more the elements of the block sequences
are « distant» on S5, the more the sequence has better properties towards
the basic sequence.

In a precedent note[11]; we defined that {y,} is perturbation of order p of

{@,} by the elements u;,..., %, (L<p<< 4 o0), if Y= 0, @n + zpn Cpn Uy, With
Ot I {etmn}i, C €, Ym. Moreover, for the sake of convenience, :iln this para-
graph we say that

(a) {y.} is an almost-Cauchy sequence if, Vpe{n}, Iy, to, S{y.}, with
N ¥n,— Y, | < L/p, Vi and m;

() {y.} has a quasi norm M € R+ if, V{o,)nt? ¢ ¢ and V permutation {7,}

n=1
m wmtp
of {yn}y || 2 aflul| <mI| X0 crafln-
1 1

(*) Erdos-Strauss, On linear independence of sequences in a Banach space, Pacific
J. Math. 3 (1953), 689-694.
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The sequences with a qﬁasi norm (see Lemma 5 in § 7*) characterize the
bibounded biorthogonal systems. Then

Let {y.}C Sz, Table 2 describes as, for the block sequences of {y.}, the
decrease of the properties of convergence and of the spanned space, accompanies
the increase of the properties of «norm» and to approach a basic sequence.

basic Table 1
sequence

v Ny S
(n“.'é;,> ( ?:i’::)/ (dfn'?ﬁ;n@
@.::r:) () @,:3;7;3@
(

N.a.) (P‘t bqsoidic) ﬂ

“ A4
n(ro ctive t n{ ac’fiv¢> mmu'nal > (B B.S)

w.b.li. ¢nuclca1’sd
t contmchvc. (mmmu)
# n.C.5.

u > #
t b.s

Q%,C.,,t.d (m,n.m) (+)
(*f) <i>
é‘.c.s.o.) ml:’n,Cd w,,)

u. . ‘ ’.

general
H-basic
sequence

where (we are concerned with an H-basic sequence {y,} of B):

b.b.s. = basic with brackets sequence; M.b.s. = M-basic sequence; N.s. = nor-
ming sequence; B.B.S. == sequence that belongs to a bibounded biorthogonal system;
P.s. = sequence with property P; P.s.s. = every subsequence has property P;
o.b.Li. = w-b-linearly independent; .li. = o-linearly independent; n.c.s.— = {y./]y.1}
has not convergent subsequences; n.c.s. oow{ ¥x} has not convergent subsequences of
infinite order; n.o.s. = {y,} has not overfilling subsequences; n.t.n.c.s. = {y,} has not
t-non contractive subsequences. We point out that the inverse implications do not hold.

13
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Propertics Properties to approach Properties of the Subspoce
of convergence a basic sequence spanned by the subsequances
Wos)w very s.s. has a ) & rJVss {9n3 . N{4m} has
( thrg\al 8.5, - oo codlr:aan:uon inf{4n,}]

_('n,.c.s_w gvery .5 has a avery $.5 has a {-pert. every s.8. hag
§-part. wnha.bcxsxc 5.5. which has an 8.8, nucleus of {inite
with & norm dimension

H.c.b €=¢ every as. hd.s an VEry S. 8. has an ».s. QVQJ’ 5.5, has huC\Q—uS
< ﬁ ) s.5. 3h:ch is BBS. ) (wnh a gquasi norm ) ( of d.mq,n:sxon <1 >
(%Wcs>¢=} every s.s. has G——"P( every 55 has an =P denucleated

ﬁ a basic s.5. .5, wn‘h anerm
if minimal is also

(ﬂ.clbl.s, norming and M- bua:c) G| zva_r5 bl.s, has an ) Qz><t~ccntrqcﬁv¢ )

ﬁ 5.5, with a norm
if minimal is also
Ta,bls. norrmng and M- busu; 4=><norming 3 {en} S0 that
inf {dist (on, PEM}50
<{H basic isalso bb.g. <GP has a horm (dnsf (Ump(n))}n
Aﬁ with brackefs does not converge to o
<bas|c> 4===$(has < noerm ) 4::}(m!,’ {dusf(a,,,P{"))})o )

Properties of «norm»
of the block sequences

where (we are concerned with an {y,} of Sz):

.8, = infinite subsequence; bl.s. = infinite block sequence made of elements of Sp;
n.0.s. = {y,} has not overfilling s.s.; n.c.s.co== {y,} has not s.s. convergent of infinite
order; n.c.s. = {y,} has not convergent s.s.; n.w.c.s. = {¢,} has not s.s. weakly con-
vergent to elements 5% 0; n.c.bls. = {y,} has not convergent bls.; n.a.bls. = {y,}
has not almost-Cauchy bls.; f.pert. = perturbation of finite order; b.b.s. = basic
with brackets sequence; B.B.S. = sequence that belongs to a bibounded biorthogonal

system; nucleus of Wal= N{ynt= 0 {[{ynl}]3 {ynl};c;l c {yn}}; Op= {?/ € [{?/A}Z= 1l H?j” = 1};
P®= [{y:}snl-

About the «near» sequences we expound Theorem IV* again by means
of next corollary, which follows by Theorems III, IV, VII and X.

Corollary 2. For {y,}c B, e} c R+ so that, Y{u,}C[{y.}] with |u,—
— Yul| < €0y V1, {un} s minimal (is mindmal with property P) (belongs to o bi-
bounded biorthogonal system) (is M-basic) (is norming aend BM-basic) (is basic
with brackets) (is basic) if and only if {y,} has the same property.

3*, « Proofs of § 3.

Let (2,,f.) be a biorthogonal system of B and {y,}c B, moreover Vn let
gne{n} so that f, (y.) # 0 and fi(y,) = 0 for 1<k<g,; then we say that {y,}
is weakly ordered in {x,}, and we Write {Yu}, i pys I Gt > gny V0. We recall

VI¥ — [12],. (2) {w.} M-basis of B and {u,} H-basic sequence of B= I{y,},
permutation of a sequence {§,} with in{g.}; = lin{w.};_,, Vn, so that {y.}

.
w—inf{x,}?
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(b) (@, fn) biorthogonal system of B and {Yntominte,y = Yny Ia) is @ bior-
n—1
thogonal system, with h, == (fqn—— Sl fqn(y,;)) [fe,(¥a), Y, moreover {y,} is M-basic
1
tf {xa} ts M-basis of B.

Moreover for the M-bases we recall

VII* — Let P and Q be two quasi complemeniary subspaces of B, then:

() [11]s Let {@.} be an M-basis of P with (x,, f,) biorthogonal system and
Qc [{f”}] =13 an M-basis {y,} of Q, with {®,} U {y,} M-basis of B;

b) ([10], p. 121) Let {z,} be an M-basis of P= Fw,}cQ, with {z,} U {w,}
M-baszs of B;

) ((13], see also[11];, corollary 4) 3 an M-basis {4.} of P and an
M-basis {v,} of Q so that {u,} U {v,} is M-basis of B.

Proof of Theorem I. Let {#,} be an M-basis of ¥, with %y Fon) bi-
orthogonal system, and let us set

(10) Yn=Dulr(yn) T + y¥ Vn .
. 1

Firstly we affirm that {y,}is i-contractive. In fact let y* €N [{Wteonl, Ym;
FyiM elin {y;}s, = lin {y, — E; Py G} wsm With g™ — y*| < 1/(2m), hence

Y = i Ly with af,”)ehn{y,,},,m and yMelin{f,}C ¥, that is Iyie
€ln {Yn}uom, With [y{™ — 5| < 1/(2m); consequently, setting o™ 4 J(’")—-

= ¥ e lin {¥a}nom, |¥*— y'™| < 1/m, whence y*c¥. On the other hand,
by (10), Ym and Vye[{ Jn}n>7,l] it follows that %.(y) = 0 for 1<k<m, there-
fore h,(y*) = 0, Yn, hence y* = 0 because (R} is total on ¥. Now we afirm
that h.(y)) = 6., Y2 and m. In fact Yy €[{Uutnom] it 18 Ryly) = 0 for 1 <k<m,
hence Y7 e Y, h,(§) = 0, V¥n, therefore ha(fe) = 0, Vn and k; that is, by (10),

by )= hu(y.), Y0 and m. Consequently by (b) of Theorem I* it follows that

(11) {y,} is M-basic, with (y:, h,) biorthogonal system .

Now we affirm that [{y,}]N Y = {0}. In fact, Vye [y 1N Y, ha(y) =0,
Yn because y €Y, hence y = 0 because- y €[{y.}] and {h,} is total on v
by (11). Therefore, by (11) and by (a) of Theorem VII*, 3{4,} M-basis of ¥V
with {y.} U {#,} M-basis of ¥ = [{y.}] and with (3, ) U (§a, h) biorthogonal
system. Consequently, by (a) of Theorem VI¥, 37, c ¥ with lin {FYe=
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= lin {§,.}\,, Vn and so that 3 a permutation {y}} of (7.} with {y;},. -5,y Dence
W Uh = o}, v vl 95, ) is weakly ordered in {y}U{#.}; that is, by

(b) of Theorem VI¥, {y’}U{7,} is an B -basis of ¥ with Yy Bn) U (T Bon)
biorthogonal system. Finally

(12) lin {gk ;:=1 = lin {?/k k=1 zk ] lk('f/n yl zl Cnk ?/k ’ Vi .

By (10) and (12) we have for 1<m<n
L = Zm(zk n 277») = 7—im(zk ﬁk(yn) 7.77;) = Tz’m('yn_ y;) = Em(?/'n) ’ Yn .
1 1

This completes the proof of Theorem I.
Proof of Theorem II. Let (y,,,ks) be the subsystem of (¥., hy)
complementary to (¥, hs,) (we suppose (Ynys hay) infinite, if is finite the proof

is little different).

(2) We can suppose {y.}C S, then let us set

(13) &y = Zk 107 -n(e=1) Y,y + Yy s Vo .
1

By (13) Vm it follows that

m=1 LG
LI 3 _p(fe—
By — zk 107" k=1 g " zk 1Q7°—n(k~1) Yra + Yanx
lim L = lim -2 —

n—»co lzn 27 10"5"“0"_1) y’ ” n—@ ”Z 1011 —n{k—1) :l/ho + J"l”

Yoms + zk (yk2/10n(k—m)) + ynlllon’—n(m—-l)
—1 ]im m:l = ymz .

O Y+ B 1076 - 1, 100

Therefore, by (2), {2,} is convergent of infinite order to {y.}, hence {y,}cC
c[{#.}], that is {#,} is complete in [{y,}]. Moreover, by hypothesis and by (13),
by (#m) = Opms Vn and m.

(b) Lebt us call 7(y) the element of B” (the dual of B’) so that T(y)(h) =
= h(y), VheB’ for ye B. Then (h,, T(y.)) is a biorthogonal system of B’,
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therefore by (a) 3{g,} complete in [{h,}] with (g, T(y,) (that is (¥, , g.)) bi-
orthogonal system. This completes the proof of Theorem II.

Proof of Corollary 1. (a) By hypothesis and by Theorem I 3 {7}
so that

(14) {73 =7, moreover {7,} U {7} is M-basis of [{y,}],

n
where 7, = ¥,— Xi oturTr s V1.
1

Moreover by (b) of Theorem VII* I{z,}c B so that

(15) {Fa3 O {Fay U {z,} is M-basis of B,
With (§, £) U (i, Ba) U (2n, §a) biorthogonal system .

Let us set

(16) fo= b+ 35 10" F 115 /5] 5 V.

By (16) proceeding as for (13), we find that {f,} is complete in [{A,} U {g.}];
therefore by (15) {f,} is total on a subspace of B quasi complementary to Y.
Moreover by (15) and (16) f.(#a) = 0mn and f,(#.) = 0, Ym and », conse-

quent'ly bY (14) fm(yn) = fm(:l?n + zk ‘xnkgk) = fm(?jn) i 6mn7 Vm a’nd .
1

(b) Following [11]; (p.184) it is sufficient to set g,= hy— f., Yn. This
completes the proof of Corollary 1.

Proof of Theorem III. If (y,, h,) is a biorthogonal system let us set
(amn &n = 1/(1072|h,]}) , V.

n=m

V{u.yc B, with |u, — ya|| < &,, V2 and VY{e,}"*?c ¥, by (17) we have

mtp

m+p m+p mtp mtp
I” zn CGnYan ”_ I %n GnUn “ l < ” zn % (Y= thn) ” = | zl:n (Yn—un) (hn( zk O‘I:?/k)) “ <

m

mtp o mtp mtp m+n
<2 |Yn—wa] (JBa] - ” 2rousl) < 2w oyl (2 [hallen) =

m+p 1r;+7) 1 mtp 1
= ” gl: 06;:?/1;” %n Tomm < || %n oYl Ton
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Consequently

. mtp
as) V3o (1= 555 <1 ool = 1+ 435 ) ISl Vemzew.

(a) Suppose that 7e( o, [{#u}nsm)- Then IH&,,;m 'mc ¥ so that

mtry,
(19) HJ Zn CLn Yn " < :Eg’!’!‘ y Vm

By (19) and by proof of (18) it follows that

Mt

IS =yl < | 2 Gl 535 (171 +

m

o il
+ ly— Z mn./"]D 10m ~10m 1 T1om )

Consequently, by (19)

173 Gt < 17— S Gnntal + STt~ n<”§,‘,‘,( + 10,,,) Vin.

That is 7€) ey {%ntn>ml, hence (o, [{Hatnsm] €Ny [{%n}nsm]. The proof of
viceversa is the same.

(b) Let {y,} be Y-overfilling, then Mt {¥n}rsm] = Y, V infinite subse-
quence {y, } of {y,}, therefore M _; [{#s }n>m]= Y by (a) V infinite subsequence
{wn,} of {u,}, that is {u,} is Y-overfilling. The proof of viceversa is the same.

() We recall (see §9-10 of Chapter I of [11],) that, setting

m

T(Z" [2 2 yn) = zn & Uy, V{‘xﬂ}wﬂ
1

1

by (18) T’ is an isomorphism (= linear homeomorphism) of [{y,}] onto [{u,}].
Then suppose that {y.} has property P and let u e[{u,}]. If y = T-Y(u), by
hypothesis 3 two infinite complementary subsequences {y.} and {y,,} of {y,}
s0 that ¥ = Yo -+ Yo With yo1 € [{¥n,}] and Yo € [{y,,}]. On the other hand, if
o1 = T'(Yor) And U, = T(yop), by definition of T' up € [{u,}] and wug, € [{4n,}].
Therefore % = T(y) = T(Yo1 -+ Yos) = %o1 -+ o2, that is {u,} has property P.
The proof of viceversa is obvious. This completes the proof of Theorem IIT.
About the «near» sequences we recall
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VIIT* - (a) (Gurarij, see[10], p.163). Let {@,} C B, then Heapc B so that,
Viu,} c [{wn}] with |u,— 2,] < &0, Y, [{,)] = [{2.}].

(0) [12),. Let {y.}c B and suppose that A a subspace ¥ of {yu] ond @
subspace P of B so that

{closure of (Y + P)} =N, {closure of ([{Yutwsm] + P)t: = e} RF
8o that, V{u.}c B with |u,— y,| < e,, ¥n,

{elosure of (¥ + P)} cN =, {elosure of ([{ta}usm] + P)}.

Proof of Example 1. By hypothesis and by [12], (see example) we
have that

(20) {#.} is M-basic and without property P; precisely lim u, = & and,

if {w, } and {@,,} are two infinite complementary subsequences of {@.}, Ym if
Toim €in{w, } and @y, € lin{#,,} so that |T— (v, -+ Toam) | << L/m, it follows
that [ @] > m and ||[@y.] > m .

Tt is obvious that {y,} has property P, because [{y.}1= [{#ens}] + [{Hant],
by the definition of norm. On the other hand {e,} is ¢-non contractive, hence
by (b) of Theorem VIII* I{n,}c B+ so that

(21) Y{w,} c B, with “wn - '.I/znu <”,, Vn, [{#2n}] = B.C ﬂ::=1 H{watnom] -
Then let us set
(22) Von—1 = Yon—1 = Tap—1, Von = Yan ‘I“ mzfn'min {827;, 7771} s VYn .

By (21), (22) and by hypothesis it follows that {vn} is complete in B,, hence
Ze[{v,}]. Let now {v,} and {v,,} be two infinite complementary subsequences
of {v,} and suppose that

1

(23) Jvpin€lin{,} and ve, €lin {v,} so that |&F— (Ve -+ Voam) | <=, Ym .
m

By (22) and (23) it follows that
Vo1m == yolm ‘I“ Do1m Wlth mol'm € 1111 {mn]_} a'nd- yolm € hn {yzn}

(24)
Vosm = Yoam ~+ Fgap With @, € lin {(Dnz} and gy, € lin {Yam} -
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On the other hand, by the definition of norm in B,, by (23) and (24) it fol-
lows that

Hﬁ - (molm J[“ woem)n < Ni; - (mOIm "]L a"02m>“ + ”yOIm—]_ yO‘ZmH =
= “:’E—" (molm + momn) - (yﬂlm + :1/02771)H = Hf—l;: - (v()lm + ,002771)” < 1/7n ? V?n .

Therefore by (20) [|@on] > m and |@gem]| > m, consequently by (24) [vp] =
= Hwolm + :l/mm“ = mem” + ”?/om” > Hml)lm II >m and H’vog,n” > m, Vm. That is
T ¢ [{va,}] + [{va,1], hence {v,} has not property P. This completes the proof
of Example 1.

Proof of Theorem IV. (a) By hypothesis and by Theorem VII* 3
a biorthogonal system (z,,¢,) of B with {z,}cS; and {y.}c[{g.jl.. Then,
Y{e,}c R*, it is sufficient to set

(25) Uy = Yy, ~+ En2y and Bw = Gnl€n s Yn .

By (25) |t4a — Y| = &w, Vn, moreover h.,(u,) = (gufen)Yn + €atn) =
= (n/en) " Gu(Zn) = Opn, Ym and «, hence {u,} is minimal.

(b) Suppose by absurd that

(26) Wt =W Y ¥ngney  with {0, C[{y2}] and g¢>p.

By hypothesis J{w,}’.,c B so that

n=1

27) {w.y2_, is H-basic and {y,}U {w,}._, is complete in B,
By (26) and (27) {y.,} U {w,};_, also is complete in B; therefore, by hypothesis
and by (a) of Theorem VIIT*, Ie,}c B+ and {v,} C B so that

(28) {0} = {Ua} U {0,,}0, is minimal, [o,—¥.[|<e., Vn,

moreover B = [{v,}] -+ lin {w,};_, .

By (28) it follows that
(29) Vny == Vo1n = Won y  With o1, € [{05 3], wen€linfew,}y ,, 1<n<g.

By (28) and (29) {w,.};, is H-basic, otherwise, if w; € lin {w.}5.m-,, ib would

n=1
be v;,€[{v,}] + lin{v,}2 7, While {v,} is minimal. On the other hand, by
(26), it is impossible that {w,,}.., is H-basic, because {wy,}5., C lin {w,}2., and

g > p. This completes the proof of Theorem IV.
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4*, « Proofs of § 4.

Firstly we recall

X#* —[12],. Let {w,}Cc Sz and without convergent subsequences, then =- 3
an infinite subsequence {y,} of {x,} which is basic, otherwise

(30) Yn = Gu + ¥ with o < |y.|| < 4, Vn, {a, A}c R+ and 7~ 0; more-
over {&,}C € with lim &, = 1, while {y.} is basic and weakly convergent to 0 .

>0

X#* — Let {w,} c Sp and {f,} ¢ B', we have the following equivalences: (2, f,)
biorthogonal system with sup |1, ey = M <+ oo < ([3];, see also[11];, p. 165)

(@ny fa) biorthogonal system and lim f,(#) = 0, Vo e [{z,} ]<> ([3]s, see also[11]y,

n—>rw

p- 165) dist (z,, [{m,}, n])>]/M Vn < ([11]y, p. 165) ”Z @] >max {|o,| /M ;
1<n<m}, Yo }m, C

n=1

1. (Yn, Iy) biorthogonal system of B and § € [{y,}], then = I an increasing
sequence {1,} of natural numbers and {&,}c € so that

Tl

(31) ” - (Z hn(y Ya + Z oann) l< - V'm .

Il

Proof. By hypothesis we have that

(32) 7 = lim (2 Cnnln)  With LM, = k. (F) , Yn.

mer o m—>

Suppose to have defined {f,}7, and {o‘cn}‘_gl, by (32) 3{ /J’,,m}t"’+1 Cc ¥, with t,,,+1 > T,

n=1

1
n (hn(g) - ﬂm") y"“ < é}ﬁ :

!

e _ 1
” ;n ﬂmng/n_ (l/” < % and ”
Therefore, setting f,..= &, for f,-+ 1<n<%,,, the thesis is proved.

2. (Yny n) bibounded biorthogonal sysiem of B = every subsequence of {y,}
has property P.

Proof. Suppose that 7e[{y,}] and let {7,} and {&,} be the sequences
of (31). By Theorem X* lim h,(%)y,= 0, hence 3 an increasing sequence {n,}

2—>C0
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of natural numbers so that

(33) (n+1);>n,-+1, moreover, setting fn, =, [hpo(F)Yn,| < 1 Vo .

‘)117

By (83) the series >, h,,()y., converges to an element #,, of {ya,}]- By (31)
1
and (33) it follows that

m=1  (n+1)e—1 Imy+1 . Imyt1

(2 (2% B@ye) + 20 Gnltn)— U —T00)| = | (Z T Yn + Dn Gn Yn) —
1 fiz2+1 ma-t+l matl
P my+1 ~ _ © _

— (7 Zn g @ Yo) | = || ( En WD) Yn + Dn Enlin— )+ 2 henn(F) Yo
m+1 T, 1 mE1
-—+HZh &y ”< -{—Z =£+i VYm
na ne r)n m om? .

On the other hand, if {y,} is the infinite subsequence of{y,}complementary
t0 {ya,}, by (33) {y.}mui C{¥n,}, Ym, therefore precedent inequality says that

n=mg+1

T — Jo2E[{Yny}], that is ¥ €[{yn,}] + [{¥n,}]- This completes the proof of Lemma 2.

Proof of Theorem V. (a) The proof of implication < is obvious, by
2-nd equivalence of Theorem X*. Let us prove the implication =: by The-
orem IX* it is sufficient to prove the thesis when {y,} has an infinite sub-
sequence, which we call {y,} again, as the sequence of (30). By (b) of Theorem I*

Moes {¥atnsm) ={0}; hence Ime{n} so that ¢ [{y.}mml; therefore, without
losing of generality, we can suppose

(34) ¥ ¢yl

Suppose by absurd that 3 an infinite subsequence {n,} of {n} so that
(35) [¥a; — You]| < 1/ with Yon € lin {Yristn, Vo .

BY (30) Y, = &n, @ + s, 304 You=PuF + ¥y With ;€ [{yi}ern ], that is
(36) Yny = Yon = PO, = Bo) + W = 00), V.

On the other hand {y;} is basic, then (see [11],, p.20) by Theorem X*
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dist (y,/ s [{¥ihken]) > C € BY, Yn; that is

*
Ya

C>al Dby (30), Vu;,

— Yol 9211} > 119m,

= w1 (l9n/19n,

H-?/:h - y;n
therefore, by (35) and (36),
Jupa— £ Ed £ * 1
“?/(“M_lgn) =] (Yny=—Yon) — (Yn, — You) H > [Yny— Yon “ ~ | Yn1— You [ > ao“"ﬁ: Yn;

consequently
G (E—bul > (a0 =3 )11, o

By (35), (36) and (37) it follows that

# #
Yn,— Yon

&nl___ﬁn _ Hfl/ru_y!)n” 1/” "27” Va .

= Jan—Fal ~(@C—1fm)lg] ~ naC—1’

¥+

That is 7 e[{y,}], in contradiction with (34); hence (35) is not possible; that
is, by Theorem X*, the thesis is proved.

(b) It {y./|ly.||} is without convergent subsequences the proof follows
by (a) and by Lemma 2. Hence, by (b) of Theorem V*#, it is sufficient to prove
the thesis when {y,} has an infinite subsequence, which we call {y,} again, as
the sequence of (2), with g,= p<-oco V¥n, {y.} basic and [{# N[{F.}2_]={0}.
Therefore

(38) Y] = [{y;l}] 4+ lin{g.}o_, Y infinite subsequence {y,} of {y.}.
Let y€[{y}], by (88) y = y* -+ § with y* €[{y}}] and Felin{Z,)2.,. On the

other hand {y.} has property P by Lemma 2, hence 3 two infinite comple-
mentary subsequences {y,} and {y,} of {y,} so that

(39) Y* =Yoo+ Yoo With Yoo € [{9,,}] and yose [{y,}] -

By (38) {95} C[{¥n}]s )} C[{Ua}] and § €[{yn,}], therefore by (38) and (39) it
follows that

Yy=9 4+ 7= ot ¥ + Yos with Yoz + T € [{Yn,}] a0d Yos € [{Yn}] -

This corapletes the proof of Theorem V.
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Proof of Theorem VI. (a) By Lemma 2 it is sufficient to prove the
thesis when {y,} is basic with brackets. Then let ye[{y.}], by hypothesis
Heen} € € and an increasing sequence {g(n)} of natural numbers, so that, setting
q(0) = 0,

q(m+1)

(40) Y=2m( 2n %) -

a(m)+1
By (40) 3 an infinite subsequence {n,} of {n} so that

a{my-+1) 1

(41) [ 2 oadal < o and (m +1),>m,+1, Vo .

a(my )+ <~

© a(my-+1)

Therefore, setting {y,,} = U, {32000, 1, by (41) 3. (3. aa¥.) converges to
1 a{my)-+1
an element yo, of [{y,,}]; hence, if {y,} is the subsequence of {y,} complemen-

tary 0 {yn,}, by (40) y — Yoo € [{#s,}]- On the other hand, by (41), {Yny} is infi-
nite, consequently y €[{yn,}] 4 [{¥n,}]-

(b) We have only to prove the implication <=, Let us consider an infi-
nite subsequence of {y,}, which we call {y,} again, and let us set y, = 9, if
V1€ [{Yn}ns1], otherwise y; =y, . So proceeding we have that

(42) ot =Wy Viyn}t  with v, €[{¥aluom] a0 Yo & [{Ynbuomg) » Y.

By (42) {y,} is minimal: in fact yn_ ¢ [{¥n}n>m], hence Ig,, € B, with In(Ymy) =1
m—1

and g,(y) = 0 for y € [{yu}nsm], Ym. Therefore, setbing k= g,, — >. In(Yug) om,

1
Vm, (Yn;, ha) is & biorthogonal system. TIf {y, } is finite, by (42) [{y.}]= a5
moreover, by hypothesis, {y,.} has property P; consequently {y,} has pro-
perty P.
Suppose now that {y,,} is infinite; then by (42), (¥} oy [{Ha} Y U From]-
Therefore J an increasing sequence {r,} of natural numbers, moreover VYm
et Ym € € and {Yyu), Clin{y,}, so that

ety 1) Bl

Tm41

1
(43) 90— ( er,l CnYieg + Youm) | < oo for T<n<m, Ym.

Then, setting {(§u} = Upoy ¥adumly,, if {ya,} is the subsequence of {y,} com-
plementary t0 {ya}, by (43) {Yag} C[{n]; therefore [{yu}] = [{ya}]=[{¥a5}] +
+ [{¥n,}], that is {y,} has property P. This completes the proof of Theorem VI.
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Proof of Theorem VII. (a) We recall that M> 1; firstly suppose
(44) [#n— yal < Aen/ I, Yn .

Proceeding as for (17) and (18) we find

(45) HZ o (1—2) <] En oatln| < (1 4-2) IIZ wdfall Vel c €

By hypothesis {y.}c S5, moreover by (44) |u,— y.|| < A/ M, V¥n, therefore
[l < Jta— gl + gl <14+ 3L, Vm,
(46)
[l = [ Netn— 9 = gl | =1— [ all >1—2/30,  Vn.
By hypothesis and by Theorem X*, V{x,}™ c %, we have that

| > ctayin]| >max {[ocn]/M; l<n<m};
1

therefore, by (45) and (46),

HE o (tnf ) | > (1 — ) HZn (o |ual) 9l >

1—2
> (1—2) -max {|o, | /(Jwa | M) 5 1<n<fm}>m ‘max {Jo,|; T<n<m};
consequently, by Theorem X%, a{g,,}CB’ 50 that (wn/|w.|, gnHun]]) is biortho-
gonal system, with

M+ 2
foeal - “gn“[{u;}}\ 17" Y ;

her;ce, by (46), (., g,) is biorthogonal system, with

alhon < bl AT+ 1)
Gl < T D] S A= —7)

Vn .

Suppose now that |u,— y.|| < e., ¥n. By hypothesis Z,, &, =1, hence 37 c{n}
so that z,, ex<A/M; then, setting 5, = Me,/A, Vn, we hfwe that:

ntl
«©

ltn— u| < Anuf L, Vn>n with _2,, Na<l.

ntl
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Therefore, proceeding as for (44), we find that {u,},.; belongs to a bibounded
biorthogonal system. On the other hand {u"};?:l = {Un, e I {2, 31, 80 that,
setting {w, } = {%n}rey U {(Wntusmy {%,,} is minimal and complete in [{u.}]. It is

n=1

easy now to verify that {w,} belongs to a bibounded biorthogonal system.

(b) The proof follows by (a), if we veplace {y,} by {v,} and {u.} by {y.}.
This completes the proof of Theorem VII.

5*%. - Proofs of § 5.
Firstly we recall

XT* — [12],. 3 a t-non contractive sequence {@,} = {y,} U {2.} complete in B,
with {y.} and {2,} basie, moreover [{y,}] N [{2n}] = {0}.

Proof of Remark 1. Let {u,} be an M-basis of B with {u,}c S;, let
moreover {u,} and {u,} be two infinite complementary subsequences of {u,}
with {%,} basic. Then let us set

(47) V= (D /1075 D) [ ¥y 20, /10D Yn .
1 1

By (47) {v,} is H-basic, moreover, proceeding as for (13) it follows that

(48) V infinite subsequence {v,} of {v,} and VY{w,}c B with |w,—v,|| <
< 1/10%") ¥n, {w,} is overfilling and complete in B .

By Theorem IV* In,}c B+ so that
(49) Y{w,}c B with l20n— tn || <9, Yn, {w,} is basic.

Finally let us set

3n

(50) Do = 10™ + m and Emn = 1/107m" Ym and n .

(@) It is sufficient to set {w.} = Uj_ {untney, With @,,=u, for
1<n<m, Ym.

(b) We set

(51) {yn} - U:ml {ynm};n.=1? with Ymn = Iu’ml + Um amn'upmn ) for 1<n<m y Ym.
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By (47), (50) and (51) {y.} is H-basic, moreover by (49) and (51) {ya} 1s
denucleated. It is now sufficient to prove that

(52) Wa} = Uiy Un ey With 1<g< + co = 37, with 1<F<g,

so that {y,-},, is ¢-non contractive and complete in B.

In fact, in hypothesis of (52), 37, with 1<7<gq, so that LS
sequence {f} = {Ymuw), nwrtiey Y {Uma, nrtswinmy s With s(k)>1, V. 3

We observe that, by (50), Do nte > D u, NENCE &, pisfEmn < 10 ™ V¥ natural
numbers m, n and s; therefore, setting Gv=(Ymuw a2 — Yot nter+s09)/ (77m(z.) Em, 1)) 3
Yk, by (51) it follows that

has a sub-

o Emir), n(E)+sr)
” U vpm(k), n(k) ” - ” (vpm(k), (k) m vl’m(k),n(k)+s(k)) - 'v”m(k), (k) ”
_ Sm(k),n(k)-}—s(k) < 1/10 (k),n(k) Vk .
Emird, n(x)

Consequently, by (48), {#,} is overfilling and complete in B; therefore {7} is
t-non contractive and complete in B, hence (52) is proved.

(¢) By (51) we have that V{w,} = Us. {Wuulie, € B, With [Wnn— Yol <
< N mny ¥m and n, {w,} has the property of (52). Consequently, if {@,} is a
sequence of [{u,}] with the same properties of {y,} of (51) for B, by (a) of The-
orem IV 1 a sequence {Z,} of B so that

(53) {2} = Ui {8, o, with 1<g¢<+ oo = 37 with 1<7<gq so that Zum
is @-non contractive with [{n,}] € Q; moreover {Z,} is minimal.

n=l

By (b) of Theorem VII* 3 a denucleated sequence {£,} of B so that {Za U {E.}
is minimal and complete in B; hence, by (53), it is sufficient to set {#a} =
={Z,} U {£,}. This completes the proof of Remark 1.

Proof of Remark 2. Let P be a subspace of B, of infinite dimension
and of infinite codimension. By Theorem XI* I{u,}c B so that

(54) {Un} = {02} U {1} is t-non contractive and complete in P; moreover
{wn} and {u.,} are basic with [{u,}] N [{u,}] = {0}.

By (c¢) and (b) of Theorem VII* I{w,}c B and {9} C B' s0 that

(55) {ou}= {Va} U {00} U {0, } U {0, } is M-basis of B, with (v,, g,) biortho-
gonal system; moreover {v,} is M-basis of [{u,}] and {v, o 18 M-basis of [{u,,}] .
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On the other hand, by Theorem IV* and by (b) of Theorem VIII*, Ie,}c R*
so that

(56) V{wn} = {10,,} U {w,,} ¢ B with |w, — w,| <e., ¥n, {w,}is @-non con-
tractive with P CQ; moreover {w,} and {w,,} are basic .

Therefore let us set
(BT) {#n} = (Un} U {2a} With 9=, &, 0[] Vn, | and 2,= %n,+ €x, Vg i Vg | ,¥n.

By (55) and (57) (n, Ju,|0ngll/En,) U (Bny gl Vngll/€n,) = (@a, f2) is a Diorthogonal
system; moreover by (56) and (57) {y.} and {z,} are basic and {,} is @-non
contractive with P C@Q; consequently by (54), (33) and (57) {&.} is complete
in B and PC[{f,}],. Finally, by (57) and (35), {ya}C[{un,} U {0u}]= [{vsn,} U
U {vn5}] and {2.}C [{ung} Y {'Uns}] = [{'vng} Y {”nﬁ}]’ hence [{y.}] N [{z.}]={0t. This
completes the proof of Remark 2.

6*. = Proofs of § 6.

3. {y.} H-basic sequence of S, with the property of (9): = {y.} is basic with
brackets.

Proof. {y,} is minimal: in fact Vm, if 7, e{n} so that ¢, ,<m<g, ,
by (9) it follows that dist (¥, [{Fatnrn]) = AiSt (Fu, 10 {Fa}i% ) [K>0 because
{y.} is H-basic. Therefore 3{h,}c B’ with (y,, h,) biorthogonal system. Let
now 7 €[{y,}] and let us set, Vn, :

_ n+1 - n+1
(58) H, =20l ys,  Awn= DrGmy: 50 that, setting
a,+1 a1
(m) . 1
Fn= D n Aun Wheret(m--1) > t(m) it follows that |F—7.[ < pont Ym .
0

It is sufficient to verify that

2, = 1
(59) Ym, 3s, so that |[7— . H.| < — Yp > s, .
1

Now hy(f) = h,(lim7,) = lim &, Yk; consequently Vm Ji(m)e{n} so that

m—> m—ro

; om) _ 1 tm) _
(60) | >0 Asmn—Ful < p” where §, = >,H, and Il(m)>m, Ym.
V]

. 0
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We observe that, by (58) and (60), t(l(p)) > i(p), Vp; therefore, Ym and Vp >
> 2m(K 4 1), by (9), (b8) and (60) it follows that
. o 3 . o _ t{p) _
17— 3 < 17— 7l + 1G— Tl <17 —Toll + [T5— 20 Aiomn]l +
0

2

9
<}-) + K Fo— Fuml <§) +E|g—7| +

tHp) _. . 2 - n) _
+ ” %ﬂAl(m,n""yﬂ ” < i‘) + ”?/ﬂ_ZnAl(n),n
0

_ 2 1
+K]f3/_?/zw)”<}‘) (L~ K)<ﬁ .

Consequently, Vm ds(m)>m so that |j— 7,| < 1/(m + 2Km) for p > s(m).
Hence Vm, setting s, = t(s(m)), Vp >s, (then p > s(m)), by (58) and (60)
it follows that

B P B . 1 D _ . Hy) _
I¥?/—Zlanl|\<lly——ys(m>H + | Z+;Hnll< 17— Foem +K$I3.Z;?Hnll =
=7 — Feml + Ko — Foom| < 1T —Fson | + E§p—F| + KT —Feom| < 1/m,
that is (9) is proved. This completes the proof of Lemma 3.

Proof of Theorem VIII. (a) By hypothesis (o, [{¥#s}s>m] = {0}; hence
Y dr(m) € {n} so that

(61) lin {?/n :;1 N [{yn}n>r(m)] - {0} .

Let us set

(62) $(0)=0, s)=1, s(n-41)=r(s(n) for n>1;
Wn 1} = U:,;o {yn}:g;@ln))ﬂ ’ {fl/ 712} = ::=1 {f’/n}:(j;gm—l)ﬂ .

It is sufficient to prove that {y,} is M-basic, indeed that {y,} is minimal,
because {y,} is i-contractive by hypothesis. Then Ym 3 two natural num-
bers p,, and d,, so that

(63) Y, € U:z’f—fo e i(j:(:igﬂ = {?/nl}z’gl .

By (63) (@)1 = 8(2p. + 1); moreover by (62) (d, + 1), =s2pn+ 2) + 1 =
= (s(2p,, + 1)) + 1; consequently by (61) it follows that

(64) {ynl 321 c {?/n}:.(f-;_’mﬂ) ’ {(I/nl}n>dm c {yn}n>r<s(27,m+1» moreover lin {fl/ﬂ}:(jfm-*_l) N

N [{?/"}’ﬂ>r(s(2pm+l))] = {0} .

14
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Suppose by absurd that y,., € [{Yutnenl, Y (63) Iyom so that

(65) Yoms € L Y 1oos iy with Yy + Yom1 € [{Untnsa,] -

But {y,} is H-basic by hypothesis, hence ¥,, + Yom7 0; therefore by (65)
U0 Yo }om O [{Yadnsa,] 2 Yy + Yom = 0

absurd by (64); consequently ¥, ¢ [{Yn }neml, Y.
(b) By hypothesis {y,} has the property of (7). Then let us set

—
[=x3
<D

~
g

—~
<

~

I
<
g
—~
E
I

1, tn 4 1) = I(t(n)) for n>1;

o]
{yna} = U:==o {yn};(j?z:13+17 {yn4} = U{yn}::(intl%zm—l)ﬂ .

me=1

It is sufficient to prove thmt {Yng} 18 basic with brackets. By (7) and (66),
setting {y.}0mes, . = {yaJomil,,, Vm, we have that

n=t(2m)+1
» Imt1 ? t(2m+1) p+r  t(am+1)
1Zn G o) | = [ Zm (Zn wnyn) | < E| 2o (Zn “y) |
0 et 0 t(am)+1 tem)+1
tr L+l
_ -Kn Zm ( %n ‘xngyna) ” 3 Uz)=° {“"}:z(::?;?ig+1 c % ‘
Ot

Therefore, by Lemma 3, {y,} is basic with brackets.
(¢) The proof follows by Lemma 3. This completes the proof of Teo-
rem VIII.

Proof of Remark 3. Let {w,} be an M-basis of B with the property
of (7) (where we put x, for y, V¥n) and with {#,}c§,. By Theorem IV*
e, c BT so that

(67) Y{u,} ¢ B with |4, — @, < &., Vn, {u,} is M-basis of B.

TLet us set

(68) Yon—q = Ty and Youn = Tn _l_ gnngk 1071k ’ V% M

By (68) {y,} is H-basic; moreover |¢,,— #.| < ., Vn, hence by (67) {y.} is
union of two M-bases of B. On the other hand [{¢1}isen] = [{@}rsn], Y2, con-
sequently
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sup dist (¥, [{Yihi>al) = sup dist (¥, [{z}isa]) > Y I/K, VyeB ;

that is {y,} is norming. This completes the Proof of Remark 3.
Proof of Theorem IX. Proceeding as for (42) we find that

{y‘ﬂ-} = {?/711} U {yng ch b \Vith {yﬂl} mlnlma’l a‘nd ymz € [{y”}n>mz]’ Vm .

Now, if {y,} is M-basoidic p < -+ oo, otherwise, by the proof of (b) of Theo-
rem VI, 3 two infinite complementary subsequences {y,} and {y.} of {y.}

with [{y.}] = [{¥x}], that 18 [{g.}] O [{¥nd]=[{yn}], absurd because {y,} is
M-basoidic. Therefore, by (b) of Theorem I*, we have that

(69) W} = Wap Y Wnyhney s With {y,} M-basis of [{y,}] and p< + oo.

In this proof we denote by {y,} and {y,} two infinite complementary sub-
sequences of {y,}. It is obvious that {y,}, M-basoidic, is also H-basie.

(b) It is sufficient to prove that

(70) p>1 in (69) = Vm, with 1<m<p, {ynfn.em, has not property P;
precisely it is never possible that ¥, € in {4,375 cmyey + [ngt] + [{Yn,}]-

In fact, otherwise, ¥., = %oz -+ Yos + Yoa, Where Yoo € Iin {4,372 ymrs Vo3 € [{¥n,}]
and Yo, € [{y,,}]. We can suppose yo; 7= 0, because {y,} is H-basic; consequently
it would be [{¥x J]1 N [{¥n,} Y {¥ay}nas]2 Yos7= 0, absurd because {y,} is 2 -basoidic.

(a) By (69) and (70) it is sufficient to prove the implication < : Suppose
by absurd that 370 and two complementary subsequences {y,} and {y,}
of {Yn,tneys 80 Bhab T= o3 + Yo5 = Yoa -+ Yos, With Yo € [¥nt]s Yos€ [{Wngt)s Yos €
€lin {yﬂs} and g € lin {?/ns}- Now gy = %os, Otherwise [{?/n:,}] + [{%14}] 2 Yos —
— s = 0, absurd by hypothesis; moreover ¥, = ¥z = Yo = Yoz = 0, Decause
{¥n,toy is H-basic; therefore [{y,}]N [{y.}]>F 0, absurd because {y,} is
M-basic by (69).

(¢) Suﬁpose that 3{f,}c¥ and an increasing sequence {¢,} of natural
numbers so that, setting to = 0,

® Imt1 ?
(71) Zm ( z'n ﬁnlynl) + zn ﬂnz yn2 =0,
) ttl 1
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By (71) 9 an infinite subsequence {i,,} of {,} so that

tmg¥1 1
(72) | 20 Bnitml < 57y Ym.
tmq+l

Let us set {y,} = Ug., {#ahiZre®* , then, if {y,,} is the subsequence of {y,}

”=’(2m)q+1 ’

P
complementary to {y,}, by (71) and (72) it follows that >, BugYny € [{Yn 1]+

1
~+ [{¥,}]; hence f§,, =0 for 1<n<p by (a); consequently, by (71), f,,= 0, Vn,
because {y,} is minimal. This completes the proof of Theorem IX.

Proof of Remark 3’. Let {y,} be the sequence of (68). Let {v,} be
a {-non contractive sequence complete in B, with {v,}c S, and let us set

(73) Uan—1 = Yan—1 Usn == You ~+ EnVn V.

By (68) and (73) uyn— == @n, Y1, hence {¥antuom C[{Usn1}nsm); that is {v,}pom C
C{%n}usom], cOnsequently B = [{#,}usem]; VM. Therefore {u,} is t-non contrac-
tive, moreover |#,— ¥,| <e,, Vn. This completes the Proof of Remark 3'.

Proof of Example 1'. By (20) and by implication <= of (a) of The-
orem IX it is sufficient to set

Vpi =By,  wEln{m, so that [lo,— || <.

Therefore {v,}* is not H-basic, consequently by (c) of Theorem IX {v,} cannot

n=1

be M-basoidic. This completes the Proof of Example 1'.

Proof of Theorem X. (a) The proof follows by (b) of Theorem VIII*.

(b) The proof follows by (b) of Theorem IV, by (a) of Theorem III, by
(7) and (9) and by (17) and (18).

Proof of Example 2. Setting %, =y, and x,, = 2,, Vn, we have
that {z,} is t-contractive; in fact [{z.}] = B, = [{y.}] + [{2.}], hence if Te
€Nt {®ntnom)y T =&y + %, with Z, e[{y.}] and %, e[{z,}]; but Z, = 0 other-
wise, if #;5% 0, 30 so that T, ¢[{ya}wz], hence T¢[{wa}usan] = [{Uatusz] 4 [{Zatnsrl;
for the same reason &, =0, that is &= 0. On the other hand {#,}mn.C
clin{®,}rsem, VYm, therefore {u,} is #-non contractive. Finally by definition
of norm Ig,} c B, with (2., g.) biorthogonal system and [{y,}]S[{g.}],; then
(%n, gu/en) is @ biorthogonal system; that is {u,} is M-basic. This completes
the Proof of Example 2.
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7*. - Proofs of § 7.

It is known that ({y,} basic) ¢ ({y.} basic with brackets and belongs to
a bibounded biorthogonal system) < ({y,} basic with brackets) ¢ ({y,} nor-
ming and belongs to a bibounded biorthogonal system), however let us point
out this with a few easy examples.

Example 3. Let {y,} be an infinite H-basic sequence of a linear space.
We define in lin {y,} the following two norms, V{e,}ir, c % (if p,, €{n} so that
107n71 << m <107m, we set o, = 0 for m 4 1<n <10 if m < 107m):

(74) IIEnWJnIIr— NZ %Yl = [0 +Zn I Zk oY ]x

10714

]ocll—i—z { max { |o, |5 10"—1_}_1/75/10"}—{——51 ZL oc,]}

2 ey

(75) lzgzanynilz:loclw,”i"n{ S, lal, ( —~)! s, oc,]}

1 107141 07141

‘We call B, the completion of lin {y,} in the norm of (74) and B; the com-
pletion in the norm of (75). It is obvious that {y,} is basic with brackets for
both B; and B;. Moreover, by last equivalence of Theorem X*, {y,} belongs to
2 bibounded biorthogonal system in B;, while this does not oceur in By,
because

2
%107 11— Y107 42 e = m 5 Vn .

Finally, by (¢) of Theorem I*, {y,} is not basis for B;, because

10”47 10%4n 10%+-2n

II zz 7/L!1— = (n 1) | zkyr Z’ Jl 15 Yn .

10741 10%+n+

Example 4. Let {#,} be the natural basis of ¢, with (@,,f,) biortho-
gonal system. Then let us set y, = x,, for 1< n< 10°, moreover, for m> 1:

Lop— Lygm—1_1 for 107 +1<n<2-10m,
Loy + Brgm_g for 2:10m +1<n<3-10™,
(76) Yp = Don for 3:10m +1<n<8 107,
Loy ~+ Bygmiq for 810" +1<n<9-10m,

DLop— Lrom+lyyg for 9-10m } 1<<n10mt |
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By (76) (Y, f.n) 1s biorthogonal system, hence {y,} belongs to a bibounded
biorthogonal system. Moreover by (76) it follows that

10m+1 : g-10m+1
{yn}n=1o’"+1 clin {mﬂ n=10m—1-1 ) {./n}n>1om¢3+1 clin {Ivn}n>1om+~-—1 ’ Vm’ .

Therefore, setting 1, = 10"* for 1071 <n <10+, Ym, {y,} is norming, con-
sequently is 3 -basic. On the other hand {y,} is not basic with brackets: in
fact suppose by absurd that {,} has the property of (9), let us fix m and let
PnE{n} so that

(17) 107n - 1 < g,, <107,
q

I£3-10"m< g, by (76) it follows

3+10"™ 3-10"™ 3+ 10'"'T1+10 m
| 20 9all = || 20 @en + 1070 8,g7m_, | = 107m = 107m| En o+ D lon]| =
2-10"m1 2-107M41 2+107™41 107l
s-10"m  1o”m i Pm
- 107)’"! Zn Yu + zn yn” 3
2e10”myy 10Pm Ty

but this is absurd by (9), beecause by (77) 3:10"m< q,,<< 10°»™ L 1. On the
other hand if ¢, <3-10" by (76) it follows

107m 107m
I Zn Yal = | 2o @ — 1077 g0, | = 1077
0-107m Ty 9-10”m iy
1077 geyePmagetm Tt 107m  goypPmyge"m Tt
U DTS I RTINS A S
9-10"m h1 g-10"Min 010" 11 gr20”may

but this is absurd by (9), because by (77) 10°»< ¢,,< 8§ -10"». This completes
Example 4. It is also known that, if {y,} belongs to a bibounded biorthogonal
system of B, then ({y.} norming) < ({y.} M-basic) <t ({y.} denucleated); we
point out this again by following two examples.

Example 5. Let {y,} be an H-basic sequence of a linear space, setting
My = 2m"12n—1) Vn and m (hence {y,} = U, ¥m Jrz)), We define in lin {y,}
the following norm
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T,

(18) | S Crtmon) | = 3ol T

1
> (1 1 : 1 1} =
= ;m 'é max {l‘xmn ] H 1 <n<7.m} + ?Fi zln Idmn l + é 1 —“é’; l gn ALy l )

V{{otmy by tea €€ . Therefore

am 1 4-2m 1 - 2m om om¥ly g,
”Z].n ?/mn ” - 2 = 3 ” Zn ymn_Zn ymn “ ’ V7n a’nd ]7 ’
1 2™ +p+i

that is, by (7) and (78), two complementary subsequences of {y,} are never
both norming. Moreover, by last equivalence of Theorem X* and by (78),
{¢} belongs to a bibounded biorthogonal system. Finally, if B, is the com-
pletion of lin{y,} in the norm of (78), it is easy to see that {y,} is an M -basis
of B,.

Example 6. Let {z,} be the natural basis of ¢,, with (., f,) biortho-
gonal system; we set

(79) Yp == By 4 Bo/M for 107 4 1 <n<10mtt | VYm .

Then (¥, far:) is a bibounded biorthogonal system; moreover {z,.,} is denu-
cleated and lim |y, — @,+] = 0, hence (see § 5) {¥,} is denucleated. Finally

1 10™4m? 1 |} 107 4m? 1
&, — — Yol == DBpagl] = — Ym
m 10"'%; Yn m| iy m’ ’

consequently @, () mei [{¥afn>ml), that is {y.} is not M-basic. Next example is
continuation of Example 5 and regards (b) of Theorem VIII.

Example 7. Let {y.} and B, be the sequence and the Banach space
of Bxample 5; let {y,} and {,,} be two infinite complementary subsequences
of {y,}, with {y,} basic; moreover let {e,}c B* so that, V{u,} of B, with
[%n— 4 || <&w, Vnm, {w,} is basic (see Theorem IV*). Then we set

(80) Zop—1 == ynl and oy = ynl + €En yn2 ) V’l’b .

By (80) {z.} is union of two basic sequences. Moreover, if (y,, k,) is Dbior-
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thogonal system, setting gu, = hy /e, and gop= By — Gony Y1y (2, g.) becomes
a biorthogonal system with lin {2,} = lin {y,} and lin{g,} = lin {A,}; hence {z,}
is M-basis of B, because {g,} is total on B,. On the other hand by hypothesis
{1 Jno} is not norming, moreover {y, }ri? clin{z,};=** by (80), Ym and p, hence
by (7) {#.} is not norming.

We report now a few lemmas.

4. (a) (See also [7] p. 193 and [10] p. 113) 3 an H-basic and overfilling
sequence {y,; complete in B; (b) I a minimal sequence {z,} complete in B and
convergent of infinite order.

Proof. Let {w,} be an M-basis of B, with {#,}c 8, and (#,, f,) biortho-
gonal system, then we set

< Ly L2n~1
(81) Zk 10n0~ = and zk Toes T 797 Yo .

Proceeding as in the proof of (a) of Theorem II, it is possible to verify that
{y,} is overfilling and {z,} is convergent of infinite order to {m,,}, moreover {y,}
and {z,} are complete in B. On the other hand by (81) {y,} is H-basic and
(24, 107 f,,—;) is a biorthogonal system. This completes the Proof of Lemma 4.

5. Let {y,} C8,, then: {y,} belongs to a bibounded biorthogonal system <
< {y.} has a quasi norm.

Proof. Suppose that (y,, h,) is a biorthogonal system with ||h,| tugn < M,
Vn, then V permutation {§,} of {y.} and Y{e,}"*?c¥ it follows that

n=1

m m+p
| 2 cen @l \Z |ota] = Zn lﬁn(Zn %) | < Zn AT ZL oafell <mIM| Zoonfal -
1 1

Suppose now that {y,} has a quasi norm M, then

»
1= ”ym” < M”Z/m + Z’n(sém) “n?/n” ? V{an}£(¢m)=1 c¥ 3
1

therefore ||h,[|qy = 1/aist (¥, WY ntnem)) <M, Ym. This completes the proof
of Lemma b.

For the sake of convenience we repeat Tables 1 and 2, where we denote
by P,, 1<n<34, the properties of Table 1, and by ¢,, 1<n <29, the pro-
perties of Table 2.
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Ry w0 Qo Q3
| |
Pz
P ~ \P
f f QY e VG et G ez QA7
/ | / 6
EZ/PIB /pg\ / 10 Qg < Q9 e ROt §11
‘111 FI?. P13 ‘
Pra pfs R12 et QYR et R4 e Q15
Pl]ﬁ’/PW Pfa Pig
pfo pf* Q= @17 = Qg < Q19
Pfa Paz T
IR
pf‘* '125 Pae Q20 +—> A +—s R2<+—s W3
Pf7 F’lza ]
Pfg/p“ i Qo4 < Q25— R
\
ps\ //P33 | I
’ P34 Qo7 v— Qg v—= R2o
Table 1. Table 2.

Proof of Table 1. p; —p; and p,, —p,; are (a) of Theorem VI;
P1s —> Pas 18 D) of Theorem VIII; p;;— pi, follows by Theorem IX; Poy — Pos
is (a) of Theorem VIII; p,s — py, because, if {#,} is a ?-non contractive se-
quence of B and if Te[{x,}], then (see Theorem VII of[12],) 3 an increa-

=) im+1
sing sequence {t,} of natural numbers and {a,}c ¥ so that T= 3, (>, s 3
1ttt

the other implications are obvious.

Let us now verify that the inverse implications in Table 1 do not hold:
P1F Po<t pg (hence Pyt Ps, Dot Do, Prott Prp ANA Pay - Py) Tfollow by Ex-
ample 3; p, <+ p, (hence p; <+ p;) follow by Example 4; p, <+ p, (hence p; <+ Py
and pg«+ py.) follow by Example 5; p, <+ pg (hence py <+ Pro, Pret Piyy Pisct Pis
and pg <+ Ppy) follow by [12], (the sequence {z,} of example of [12], is M-basic



202 P. TERENZI [38]

and without property P, moreover (see proof of (b) of §5 of [12],) is norming);
Do+ P (hence py«+ pyy and p, <+ pyg) follow by Example 6.

Let us prove that p;; <+ pir, Ps <+ 7 (hence pg <t Puy, Dig <+ Pag, Doy <F Pary
Dos ¢+ Dog aNA Doy <+ poo) and that (N.s., w.b.li)« (N.s., w.1i.) < (N.s.) (hence
Pu<t Puy Dart Pogy Pas ¢t Pag ANA Pog <+ Py <+ poy): let {u,} be N.s., M.b.s.
and P.s.s., but not b.b.s., let moreover {v,} be b.b.s. but not basie, then let
% € [{,,y] S0 that it is impossible to represent % by a series with brackets
in terms of {w,}, moreover v e[{v,}] so that it is impossible to represent v
by a series in terms of {v,}. Hence, setting

Wy =7, Y =7, 7 —i Un
1 )Jl b 1 1”2"“7)””’

Wipr ==y  ANA Y =Fpuy =D, , Vu ,
it follows that {w,}is N.s., ®.b.1i. and P.s.s., but not minimal and not M-baso-
idie; {y.} is N.g., w.Li. but not ©.b.1.i.; finally {z,} is N.s. but not «.Li.

Moreover p,,<+ pi, (hence pig«+ Py and P,y <+ Ps;) by a) of Theorem V
(if we consider a sequence of S, without convergent subsequences but weakly
convergent to an element % 0); p,,«+ py; by Example 1'; ¢+ pyg by Ex-
ample T; py;«+ Py by Example 5 and by (7) and (9); pay <+ Py by Remark 2;
Doz ¢t Pos DY Remark 1; pgg <+ py; (hence p,o ¢+ pg,) by (b) of Lemma 4;
Das ¢+ Psg by Example 1 (the sequence {w,} U {2,} is P.s., but not P.s.s. by (20));
D3z ¢+ Pga bY 2) of Lemma 4; p,, <+ Py, (hence py; <+ pyy) by (a) of Theorem V*;
Do <+ Pge by Theorem XT*. This completes the Proof of Table 1.

Proof of Table 2. Tirstly by (4) we observe that

(82) {ya} Y-overfilling = N(y, ) = ¥, ViU Yoo C ()} -

01 Q. —Q; follows by a) of Theorem V*; Q,«>Q; follows by [12], (The-
orem X); Q5 <> Qg, Q13> Qrs and Qyy <> Qog <> Qs follow by (¢) of Theorem I*;
Qs — @, because, if N{y,} has infinite dimension, repeating the proof of the-
orem V of [12], we find that {y,} has a subsequence convergent of infinite
order; @,< @, by (2) and (82); Qs+>Q, by (a) of Theorem V; @, <«>Q,, by
Lemma 5; Qg«>Qu1 by (4); Q12 > Q13> @y follow by (3) and (5); Qi6>Qio
by (6); @17 <> @15 by (b) of Theorem I*; Q4 «> @y, follows by @, <> @y, and by
the equivalence: {y,} without convergent bls.<{y,} without bls. weakly
convergent to element = 0. Moreover Q<> Qs <> Qs «>Qys follow by (7);
Q24 <> Qo; by () of Theorem VIII and Qs <> @y by (9); the other implications
are obvious. This completes the Proof of Table 2. ‘
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Sommario

In questa Nota sono studiati in generale i sistemi biortogonali negli spaz di¢ Banach,
sopratiutto dal punto di vista delle proprietd di convergenza delle lovo bloceo successiond,
mettendo in risalto come la progressiva perdita di tali proprietd accompagni il migliora-
mento della successione, fino ad arrivare alle bast.
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Si inizia con alcune costruzioni per ricavare una base di Markuscevich (M-base) da
una successione minimale non M -basica, e viceversa; inolire & specificato quando una sue-
cessione pud essere approssimata a piacere da una successione minimale.

Sono poi considerate le successiont di elemenii con norma unitaria e senza sottosuc-
cessiont convergenti, mellendo in evidenza il loro siretto legame con ¢ sistemi biortogonali
bilimitati; ancora ¢ specificato quando una successione pud essere approssimata a piacere
da un sistema biortogonale bilimitato.

Quindi viene esaminata la struttura delle successioni di elementi con norma unitaria
e senza sollosuccessioni debolmente convergenti ad elementi non nulli, collegate all’esistenza
di softosuccessioni basiche.

Infine sono considerate le successioni senza blocco successiont convergenti ad elementi
non nulli, che caratterizzano le M-basi, studiandone la strultura nel caso generale ed in
cast speciali; st fa inoltre un esame comparativo delle principali caratterizzazioni delle
M -basi. ‘

I1 lavoro termina con uno schema generale, in cui compaiono fuite le successioni consi-
derate, assieme alle loro interdipendenze.



