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OLUSOLA AKINYELE (%)

Asymptotic stability

for the non-linear absiract Cauchy problem (**)

1. - Introduction.

We shall consider the non-linear Cauchy problem

(1) =A@ ), ult) = we D(AG)

where fe O(R*X ¥, Y) and Y is a Banach space. The proofs of many results
in the theory of stability and boundedness rests on dividing the neighbourhood
of some types of invariant sets into suitable subsets and then proving that
solutions cannot leave such sets (in the case of stability) or to estimate the
escape time (in the case of asymptotic stability). In[1] we obtained some
global results which give a set of sufficient conditions for preventing the solu-
tions of (1) which start in a given subset of Y from passing through any given
part of its boundary. The main results were also employed to deal with various
problems of stability and boundedness criteria for the abstract Cauchy prob-
lem (1). The main results are however inadequate for obtaining asymptotic
stability results.

In this paper, by means of several Lyapunov functions and the theory
of differential inequalities we shall discuss some global resuits of general
character, which give a set of sufficient conditions for the solutions of (1)
which start in a given subset of Y, to reach another given subset of ¥ in a

(*) Indirizzo: Dept. of Math., Univ. Ibadan, Nigeria.
(**) Ricevuto: 15-II-1977. :
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finite time and remain there for all future time. We then give as applications,
some results on the asymptotic stability of solutions of the abstract Cauchy
problem (1).

2. « Main results.

We assume that for each teR"; A(f) is a linear operator on Y with
D(A(t)) depending on #. As in [1] a solution of (1) is a strongly differentiable
function «(t) € D(A(t)) which satisfies (1) for all ¢>%,. We shall assume in
this paper the existence of solutions u(t, f,, #,) of the Cauchy problem (1) for
all i>1,.

The theorem that follow offers a set of general conditions for the type of
behaviour described in the introduction.

Theorem 2.1. .Assume that
(i) V: R™X ¥,— R" is continuous and, for (4, ), (¢, u.) € RTXY,,
LVt wa) — V(Ey w.) | < L) |00y — 10,
where L(t)=>0 and continuous on R and Y,c Y is open;

(ii) g € O(RTXR", R*), ¢(t, 7) 48 quasi-monotone mon-decreasing in r for
each te R and, for (t, w)eR™XY,, DTV(t, w)<g(t, V(, u));

(iii) there ewist sets A, B such that Ac ¥, BcR* and we A implies
w=V(, u) € B;

(iv) there exists a set Fc Y, such that PN A% ¢ and wy€ F N A im-
plies u(t, ty, ) € Xo for t>1y;

. (v) the set H C Y, is such that Hc ¥, and, for (¢, u) € R* X (¥Y,~ H),
S Vit u)>at), where « € C[RY, R];
i=1
(vi) for each teRY, and all h>0 (h sufficiently small) the operaior
R[h; A(t)] = [I —hA@)] ewists as a bounded operator defined on Y and, for
each ueY,
lim Rh; A@)]u = u ;

h=>0
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(vii) for each (&, 7o) € RTXR", the maximum solution, r(t, t,, ;) of the
auxiliary differential system :

g
(2) ”d‘t[ =g ¥), Y(to) = Yo

exists for t =1, and for any solution y(t, &, ¥o) of (2) there ewists T = 1(fy, y,) >0
such that, if y,eBc R,

S it toy 90) < ) (t>t+1).

i=1

Then there exists a 1 = T(ty, ug) >0 such that u(t, ty, u) € H for t>4,-+4+ T
whenever uoe ' M A. '

Proof. Let w,e F N4 so that by (iv) wu(i, iy, w,) e Y,, for all i>1,.
Moreover, setting 4, = V(t, #,) we have by (iii), y,€ B. Define - m(t) =
V (¢, w(t, ty, u,)), then m(f) = y, and for sufficiently small s >0
m(t -+ h) — m(t) = V({t + b, u(t + k) — V (£, u(t))

= V(t + hy u(t -+ k) — V(¢ + Iy R[h; A@)]u) + i, ©)) +

+ V(t + h, R[h; A@)]u(t) + ki, w)) — Vt, u) .
By (i)

m(t + h) —m(t) _ L(t -+ &)
3 - h

fu(t -+ h) — (R[h; A@#)]u(t) + hf@E, w) | +

+ % [V + hy R[h; A@)]w + Rf(, u)) — V(E, )] .

Using (vi), and, for each weD(A(t)), R[h; A@)][L—hA()]u=mu, and
Rih; A(t)]w 4 Rf(t, w)= u -+ B[A@) % 4 f(¢, w)] + h[R[h; AR]ABu—A@) u] .

Proceding in the same way as in the proof of theorem 2.2 of [1], and using
condition (ii) we have

3) Drm(t)<g(t, m(s)) .

Hence hypothesis (i), (vii) and inequality (3) imply by corollary 1.7.1 of [2],
that

4) m(t) <r(Z, to5 Yo)
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as far as wu(t, 1,, 14,) exists to the right of #,, where 7(¢, t,, 9,) is the maximum
solution of equation (2).

Define Ty, %) = T(to, V(f, %)) and let {t,} be a sequence such that >
t,+ T and £, — oo as k — oo. Suppose that u(f, t, u,) € Yo~ H, then by (v)

(5) i Viltes by o) > (t) -

=1
Moreover by (4) and (vii)

n n
z Vi(tlu Uty Ty ’“o)) < Z"’i(tm toy Yo) < oxl(ti)

=1 =1

which is a contradiction, hence the theorem is proved.

The following is a special case of Theorem 2.1 which is sufficient for many
applications in obtaining asymptotic stability theorems of the Cauchy prob-
lem (1).

Theorem 2.2. Assume that
(i) Ve C(R*X Xy, R) and V (5, u) is locally Lipschitzian in w;
(ii) g€ CO(BR*X R, R) and, for (t,u)eRTX Xy, DTV (¢, uy<g(t, V¢, w);

(iii) there exists a set I'c X, such that uw,e€l implies wu(t, ,, 1) € Y,
(t=t);

(iv) the set Hc Y, is such that Hc Y, and, for (t, w)e R*X(¥Y,~ H),
V¢, u)>at), where x € C(RY, R);

(v) for each teR*, all h>0, the operator R[h; A®)] = [I —RA@)]
exists as a bounded operator defined on Y and, for each ue Y

m Bh; A(t)]u =u ;

=0
(vi) there exists a T = t(ty, 1) > 0 such that for any solution y(i, iy, Yo)
of the scalar differential equation
dg
(6) =gy, Y(t) = 5o,

the relation Y@, o, Yo) < a(f), t>% + 7, holds. Then there exists a
T = T(ty, ) > 0 such that wyc I’ implies u(t, ty, u,) € H for t>1,- 1.
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3. - Applications of main results.

We give in this gsection some applications of our results to asymptotic
stability criteria for the abstract Cauchy problem (1).

A subset M c Y is said to be self-invariant with respect fo the system (1)
if u, e M implies u(f) e M for t>1,>0. Suppose M is a compact subsetof ¥
and suppose that it is self-invariant with respect to the abstract Cauchy
problem (1) and for p > 0, define

S(M, o) = {ue ¥; d(u, M) < g},

where d(u, M) =inf |u—y|y.
veM

We now state a theorem which gives sufficient conditions for the asymp-
totic stability of a self-invariant set M with respect to the Cauchy problem (1).

Theorem 3.1. Assume that

(i) Ve CRYXS(M, o)~ M, R), V(t, u) is locally Lipschitzian in w and
V (¢, ) ——oco, when d(uw, M)~>0 for each teR™,

(i) be O(R*x (0, 0), R) and for (i, u)eR*XS(M, p)~ M,
V(t, w)>b(, d(u, M));

(i) ge C(R.XR, R) and for (,u)eR*XS8(M, o)~ M, D"V, u)<
9@ Ve, w));

(iv) for each t€ R and all h> 0 (h small) the operator R[h; A(t)] ewists
as a bounded operator defined on Y and, for each ue ¥,

Iim R(h; A(t)]Ju =

>0t
(v) every solution y(t, %, 9,) of the scalar differential equation (6) satisfies

Y&, Ty Yo) < b, 1), =1, for every re(0, o) provided wu,<<b(t, r);

(vi) b(t, w) is mon decreasing in w for each t€RT and there exists a
T = T(ly, Yo) >0 such that every solution y(t, Ty, Yo) of (6) satisfies the relation
Yty oy Yo) < b(t, 1), 2>+ 7 for all r€(0, ).

Then the self-invariant set M is asymptotically stable.
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Proof. By theorem 3.5 of [1], the set M is stable, hence for ¢ = 0,
there exists d, = (t, o) such that wu, € S(M, J,) implies u(t, t,, u,) € S(M, 0),
t>t,. Now set I’ = 8(M, d,), then the condition (iii) of Theorem 2.2 is sat-
isfied.

Let ,e B and 0 <e < g and set H = S(M, ¢), ¥, = S(M, ¢) ~ M, then
for (i, u) € Yo~ H and the monotonicity of b(t, r), V(t, w)>b(t, &). Choosing
a(t) = b(i, ¢), then condition (iv) of Theorem 2.2 is satisfied. Conditions (i),
(ii), (v) and (vi) of Theorem 2.2 are already part of the hypothesis, hence
by the conclusions of that theorem, there exists a 7' = T(t,, 4,) > 0 such that
1o € I' implies u(t, ty, u,) € H for ¢>1,-+ T, which is the asymptotic stability
of M.

The following theorem gives sufficient conditions for the conditional asymp-
totic stability of the set M with respect to (1). For the definition of condi-
tional stability of a sel-invariant set M with respect to the abstract Cauchy
problem (1), see [1].

Theorem 3.2. Assume that
() VeCO(R"XS8(M, o), R*) and V(t, w) is locally Lipschitzian in u;

(ii) g € C(R*X R, R*), g(t, %) is quasi-monotone non-decreasing in  for
each t€ R* and for (¢, u)e R X S(M, o)~ M, DYV (t, u)<g(t, V(t, w));

(iii) there exist sets By, I, such that M c B,c Y, {0}c E,c R* and u e H,
wmplies w = V(t, u) € B,;

(iv) be C(RX(0, ), RB) and for (t, u)e R*XS(M, o)~ M, > Vi, u)>
b, d(u, M)); =1

(v) whenever we M, for (¢, 7)€ RTX(0, o), > V.t, u) < b(t, #);

=1
(vi) every solution y(t, %o, Yo) of the differential equaiion (2) satisfies

n n
2 Y:lt, toy Yo) <D, 1), t>1,, for all v€ (0, @), provided y,€ By and 3 y; < blte, );
i=1

i=]

(vil) for each te R™ and h >0 Rih; A(t)] exists as a bounded operator
defined on Y and for ue Y

lim R[h; A{)]w =u ;

0"

(vill) b(¢, y) 4s mom-decreasing in y for each teR™ and there ewists a
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T = T(l, %) >0 such that for any solution y(, t,, 4,) of (2) the relation

2 (o, Uo) < b, 7), 1>t T, holds for every re€(0,p0). Then the self-in-
f=1

variant set M is conditionally asymptotically stable.

Proof. We check that all conditions of Theorem 2.1 are satisfied. By
theorem 3.3 of [1] the set 3 is conditionally stable, hence for & — 0y, 30y =
= 0(t, 0) and a subset N c M such that u, e S(¥ , 00) implies w(t, 4y, u,) €
S(M, @), t>1,. Now set F = S(N,d,) then again condition (ii) of The-
orem 2.2 is satisfied.

Let {,e R* and 0 <e<<o. Set H = S(M,¢), ¥, = S(M, o)~ M, then

by (viii) and (iv), for (¢, u)e Y,~H, > V{1, u)>b(t, ¢). Setting «(t) =b(t,e)
i=1

then all conditions of Theorem 2.1 are now satisfied and so the conclusion
of that theorem implies the conditional asymptotic stability of the self-inva-
riant set M.

- We state a theorem of asymptotic stability of a conditionally-invariant
set whose proof can be reduced to Theorem 2.2. Let M and N be two subsets
of ¥ such that M c N. For the definition of a conditionally invariant set N
on M and its stability see [1].

Theorem 3.3. Assume that
(i) Ve C(R*"XS(N, o), B) and V(t, w) is locally Lipschitzian in w;

(ii) g€ C(R*X R, R) and for (t, u)e R*XS(N, o)~ M,
DV, wy<g(t, V(E, u);

(iii) b e C(R* (0, ), B), b(¢, #) is non-decreasing in , for each te R+
and, for (t, u) € B*XS8(N, o) ~ M, V(t, v)>b(t, d(u, N));

(iv) there exists @ v = T(ty, o) > 0 such that any solution y(t, t,, o) of (6)
satisfies the imequality y(¢, &y, Yo) < b(t, 7), 1>, T for every re(0, 0);

(v) for each te R* and h >0, R[h; A(f)] ewists as a bounded operator
defined on Y and for ue Y

lim B{h; A@) ] w =u .

h=>0

Then the stability of the conditionally invariant set N on M implies the asymp-
totic stability of N on M. :
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Sunto

Si ottengono aleuni risultati sw I'asintotice stabilita delle soluzioni del problema astratlo
di Cauchy.



