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B. FIsEER (%)

Theorems on fixed points (**)

The following theorem is the well-known contmvction mapping theorem.

Theorem 1. If T is a mapping of the complete metric space X into itself
satisfying the inequality o(Tz, Ty)<co(w, y), for all , y in X, where 0<ec < 1,
then T has a unique fized point.

In a paper by Kannan[3] he proved the following theorem

Theorem 2. If T is a mapping of the complete metric space X info itself
satisfying the inequality o(Tw, Tg/)<o{g(w, Tz) + o(y, Tg/)}, for all », y in X,
where 0 <c<§, then T has a unique fiwved point.

Later, see [2],, the following theorem was proved

Theorem 3. If T is a mapping of the complete metric space X into itself
satisfying the inequality o(Tw, 1’y)<c{g(w, Ty) + oly, Tm)}, for all =, y in X,
where 0 <e <<}, then T has a unique fived poind.

We will now prove the following theorem

Theorem 4. If T is a mapping of the complete metric space X into itself
satisfying the inequality

o(T2, Ty) <max {26,0(v, y), e.lo(@, Tz) + o(y, Ty)], e:lol@, Ty) + oly, To)]}

for all m,y in X, where 0<c,, ¢, ¢;<< %, then T has a unique fized point.

(*} Indirizzo: Dept. of Math., Univ. of Leicester, Leicester Le 1 - 7 RIT (England).
(**) Ricevuto: 17-V-1976.
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Proof. Let & be an arbitrary point in X. Then

o(Tx, Tr+a) <max {2¢,0(T" e, T"2), ¢[o(T" w, T )
+ o(I™w, T @)1, ¢;0(T" w, T+iw)}

<max {2co(T"a, T ), o[o(1"'w, T"x) + o(L", T"+1a;)}} ,

where ¢ = max{¢, ¢, ¢;}<<%. It follows that either

¢ o{T"1g, Try) .

o(Tme, T1g) < 209(T" ', Trz) or oIz, I™a)< i 0
—e

Since 0 <e< %, we have in either case o(I™w, I+ @) <bo(T 2z, T"z), where
b =max {20, c/(l——c)} <1. Thus o(T"z, T*x)<b o(®, Tx), for n =1, 2, ...,
and it follows that

Q(T"{U, T71+rm)<Q(an’ Tn—}-lw) + e + Q(Tn%—r—la;, T"+T£U)

n

b
<(b" + .+ bn—{»—r-—l) g(a}, T$)< T——:I—) Q(CE, Tﬂ.’/’) 9

for m,r=1,2,.... Since b<1, it follows that {T"a} is a Cauchy sequence
in X and so has a limit z in X, since X is complete.
We now have

o(z, Tz)<p(z, Tra) + o(T"x, T2)
< (7, T"x) -+ max {QCQ(T"—lm, z), e[o(I"1, Trx) 4 o(2, T2)],
ole(T*w, T2) + oz, T"2)]}
for n=1,2,.... On letting » tend to infinity we see that o(e, Tz) < co(#, T%).

Since ¢ < , it follows that (s, T%) = 0, so that z must be a fixed point.
Now suppose that 7 has a second fixed point 2. Then

o(z, 2") = o(T2, T2')
<max {2¢p(2, #'), elo(, T2) + 0¥, T2')], elo(z, T2') + o', T2)]} =
= 200(2, '),
and since ¢ < }, it follows that # = 2'. Henee the fixed point is unique. This

completes the proof of the theorem.
Many other similar theorems can be proved. For example, we have
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Theorem 5. If T is a mapping of the complete metric space X into itself
satisfying the inequality

[o(T#, Ty)]* <max {2019(3’17 e, Tz) + oy, Ty)],
26:0(@, y)le(@, 1Y) + ey, Tw)), alo(x, T) + oly, Ty)lle(e, Ty) + oly, Tx)1},

for all @,y in X, where 0<c¢y, ¢y, ¢,< %, then T has a unique fized point.

Proof. Let 2 be an arbitrary point in X. Then

[o(Trz, T"Hg)] <max {ZOIQ(T”_IQ}, Irz)[o(Tm 1w, Tma) + o(T 2, T™12)), 2¢,
o(I~ta, Tra) o[ T~ @, T"1a), o,[o( 12w, Tra) + o(T7m, T*1a)]o(T™—m, Tr+im)}
<max {20Q(T"—1w, I g)o(Trw, T®) + o(LT @, T*Ha)],

de(T"w, Trw) + o(T"x, T+ @)},

where ¢ = max{e,, ¢, ¢;}<<%. It follows that either
[Q(T”m, Tn+1m)]2<20Q(Tn—1m, an)[g(l’n—lw’ an) _l_ Q(T"a}', Tn—{-lw)] )
from which it follows that

o(T"a, T+12) <[ + (¢ + 20} o(T"—w, T"a),
or
1

o(Tr1z, Trg) .

Since 0 <c< %, we have in either case o(T"z, T+igy < bo(T"12, T*x), where
b = max {c -+ (¢ 2¢)4, (1 — c)—%} <1. Thus (T, T™a)<b oz, Tw), for
n=1,2,... and it again follows that {I"x} is a Cauchy sequence in X with
a limit z in X.

We now have g(z, T2) < o(2, T"®) + o(T"z, T%), and
[o{T"®, T2)]*<max {20@(1’"“100, Ale(T 1w, T*x) + o(z, T2)], 2c0(T" 2, 2)

[o(T"=22, Te)+-o(e, T"a)], elo(T"a, T"0) + oo Te)ll(T* ", Ta)+o(z, Tra)]},
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for n=1,2,.... On letting » tend to infinity it follows that g(z, I'z)<ct
o (2, T#). Since ¢ < }, it follows that g(s, T%) = 0 so that z must be a fixed
point.

Now suppose that T has a second fixed point z'. Then

0(2,2") = o(T2, T#') <2¢%0(%, #') ,

and since ¢ < %, it follows that 2z ==2'. Hence the fixed point is unique.
This completes the proof of the theorem.

We will now consider similar theorems on compact metric spaces. The fol-
lowing theorems were given in [1], [2], and [2], respectively.

Theorem 6. If T is a mapping of the compact metric space X imto tself
satisfying the inequality o(Tw, Ty) << o(w, ), for all distinet @, y in X, then
T has a unique fized point.

Theorem 7. It T is a continuous mapping of the compact metric space X
into itself satisfying the inequality o(Tw, Ty) < t{olw, Tw) + oly, Ty)}, for all
distinet x, y in X, then T has a unique fized point.

Theorem 8. If T is a continuous mapping of the compact metric space X
into dtself satisfying the inequality o(Tw, Ty) < %_,—{g(zv, Ty) + oly, Tw)}, for all
distinet x, vy in X, then T has a unique fived point.

We will now prove the following theorem

Theorem 9. If T is a continuous mapping of the compact metric space X
imto dtself satisfying the inequality

o(T'», Ty) < max {Q(wy Y); ¥ Loz, T2) + oy, Ty)], 3 lo(@, Ty) + oly, Tw)]} ’

for all distinet @, y in X, then T has « unique fized point.

Proof. Define a real-valued function f on X by f(») = e(x, Tx), for all »
in X. Since p and T are continuous functions it follows that f is a continuons
funetion on X. Since X is compact there exists a point 2 in X such that
f(z) = inf {f(m): meX}. Assuming that 7'z £ 2, we have
f(Tz) = (T2, T*2) <max {Q(% Tz), § [o(?, T#) + o(T%, T°2)], L o(2, Tzz)}

< max {o(z, T%), $ [0z T2) + (T2 T*)]} = max {f(2), §[f(#) + f(T2)]} .

It follows that either f(T'2) < f(z), which gives a contradiction, or f(Tz) <
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< §[f(») 4 f(T'2)], which also gives a contradiction. Tt follows that our assump-
tion was false and so we must have T2 =1 Thus z is a fixed point.
Now suppose that 7' has a second distinct fixed point z/. Then
0z, 2') = o(T2, T%')
< max {Q(% ), +lo( T2) + o(2', T2')], } lo(z, T2') + o(2', Tz)]} = o(% 2"),

giving a contradiction. It follows that our assumption was false and so the fixed
point must be unique. This completes the proof of the theorem.

We finally prove the following theorem

Theorem 10. If T is a continuous mapping of the compact metric space X
wnto tself satisfying the inequality
[o(Tw, Ty)I < 4 max {o(w, y)lo(z, To) + oly, T)], o(e, V)la(e, Ty) + oy, Ta)],
%[Q(m: Ta) + oly, TZ/)][Q(W, Ty) + oy, Tx)} ’

for all distinct @, y in X, then T has a unique fived point.

Proof. Define a real-valued function f on X by f(x) = p(z, Tz) for all
in X. Since p and 7' are continuous functions it follows that f is a continnous
function on X. Since X is compact, there exists a point 2z in X such that
f(2) = inf {f(z): € X}. Assuming that T2z, we have

[/(T2)]2 = [o(T%, T?2)]*

< imax {g(z, Tz)[o(z, Tz) -+ (T2, T22)], o(z, T%) p(=, T*2),

$lo(z, T2) 4 o(Tz, I*2)]o(z, Tzz)}
<} max {o(z, T)lo(z, T2) + o(Tz T?2)], }[o(2, T2) + o(T, T22))} =
= ymax {f(2)[{(z) + f(T2)], 1 [(z) + H(T2)]2} .

It follows that either

(T2 <3 f(&)[f(=) 4 1(T2)] or (T2) < }[f(2) + {(T2)] .
Both of these inequalities imply that f(7'2) < f(2), giving a contradiction.

It follows that our assumption was false and so we must have 7% = z. Thus
z is a fixed point.
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Now suppose that 7 has a second distinet fixed point 2’. Then

[o(z, 2')]* = [o(T2, T2)]*< }o(2, #")o(% #') + o(&', 2)] = [o(?, &)

giving a contradiction. It follows that assumption was false and so the fixed
point must be unique. This completes the proof of the theorem,

Again, many other similar theorems can be proved for compact metric
spaces.
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