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L. CArviTz (%)

Generalized Stirling and related numbers (**)

1. = Intreduction.

The Stirling numbers of the first and second kind can be defined by

(1.1) sw+1)...(z+n—1)= i 8yi(n, k)o*
and
(1.2) wn = Z Sn, K)alz—1) .. @—k + 1),

k=0

respectively. Since 8y(n, n — k) and S(n, » — k) are polynomials in » of de-
gree k, it follows readily that

1.3) Simn—1) = 3 800, (") > 0)
and
k-l n
S, n—%) =S 8k, j _ 5> 0) .
(1.4) (ny n—F) g{, (c?)(z,c_?) (> 0)

(*) Indirizzo: Dept. of Math., Duke University, Durham, North Carolina, U.S.A..
(**) The work -was supported in part by NSF grant G7-37924X. — Ricevuto:
15-X-1975. )
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The coefficients S;(k, i), 8'(k,§) were introduced by Jordan ([3], Ch. 4)
and Ward [9]; the notation used here is that of [1],. They are closely related
to the associated Stirling numbers of Riordan ([7], Ch. 4). Indeed

(1.5) 8,k 44, §) = A2k + 4, k) 8"k +17,7) = b(2k 4§, k) ,

where b(n, k) is the number of partitions of Z,= {1,2,...,n} into & blocks
each of cardinality > 1, while d(n, k) is the number of permutations of Z,
with % cycles each of length >1. Moreover

+%°‘ ib'n/,k)x‘—exp{ §—n}

ne=1 ! k=1 =

|1M8

z_‘ 3 n,7cw’~——exp{ zﬁ}

¢ E=1 nez !

The Stirling numbers and the associated Stirling numbers are related in
various ways[1],. In the first place

Sum, m—l) = (,Gjr’;)(“") SG+ 1)

(1.6)

8(ny n—k) = 20 (;ﬁ + 7) (k+ %) 87+ & ),
while

st 1= 3 1y (" T s
(1.7)

In addition

(1.8)



[3] GENERALIZED STIRLING AND RELATED NUMBERS 81

The first of (1.6) is due to Schlafli [8]; the second was proved by Gould [2].
Another triangular array of numbers is closely related to S;(n, k) and
S(n, k). Parallel to (1.3) and (1.4) we have [1];

(1.9) 8y (n, n—k) =]§1 By (%, ) (" +2;“1) (k> 0)
and

(1.10) S(n, n—F) =§1 B(k, j) (n +2;“1) (5> 0),
where

(1.11) Bi(k, j) =jBy(k—1, ) + 2k — j) By(k—1,§—1)

and

(1.12) Bk, j)=Fk—7+1)BE—1,j)+ (k+j—1)BE—1,j—1).

Moreover

(1.13) Bk, k—j+1)= Byk,j)=a,,,

the a;; were defined in [1];, [1], in connection with an asymptotic expansion.
The writer [1]; proved (1.6)—in a slightly different notation—by making

use of the formulas

Tt —mn "
wry s == ("B s = = (7] B,

where BY) is the Nérlund polynomial ([5], Ch. 6) defined by

m 2 s . w"
(1.15) (ex__1) =2 BP—,

where # is an arbitrary complex number. (The polynomial B is not to be
confused with the Bernoulli polynomial B,(z) defined by

xe e "

e—1 2 Ba2)

neo n!
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The writer also stated that if {f.(2)} denote an arbitrary sequence of poly-
nomials of degree k, such that f,(0) = 0 for k> 0, and we define

kE—
(1.16) Fuln, n—k) = ( I )]‘z (n), I(n, n — ( )]‘L( n -+ k),

then (1.6) admits the generalization (2.3) below.

In the present paper we prove (2.3) as well as the corresponding generaliza-
tions of (1.7), (1.8) and (1.13). See Theorems 1, 4 below. In proving these
results we make use of two functions Gy(k,j), G(k,j) that generalize B(%, j),
B(k, j). They are defined by

k L[4 —1
Fyn, n—k) = 2 Gk, j) ( +‘)?Ic ) R
g=1 ~
(1.17) (k>1)
& n4§—1
F(n, n—k) = zl (%, ) ( ok ) ,
and satisfy the relation
(1.18) Gk, §) = Gk, k—j-+ 1) (1<j<k).

Tn order to get a similar generalization of the orthogonality relations

(1.19) (— 1) %8, (n, k) S(k, §) z (—1)*?8(n, 70)31(70, §) = 0,5,

3 k=]

M

E

[

additional restrictions seem necessary. The generalized result is contained
in Theorem 6 below.

In the final section of the paper several generating functions are obtained
by applying the Lagrange expansion ([6], p. 125).

2, — Let {fk(z)} denote a sequence of polynomials in ¢ such that
(2.1) deg fk(z) =k, (0y=20 (k>0).
We define two functions F,(n, k), F(n, k) by means of
in,n—Fk) = (k ) fr(n),

(2.2) (k=0,1,2,...).
i, n—k) = (;:) fe(—n-k)
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Theorem 1. The functions Fy(n, k), F(n, k) satisfy

In,n—5k) = g’; (;z + 9) (k+ n) PG+ k79,

(2.3)

Pln, n— gu;ﬁxh“qrm+hw

Proof. It sufices to prove the identity

E(k— k
R e U L)

For 2 =k —n, (2.4) reduces to the first of (2.3); for z = n, (2.4) reduces
to the second of (2.3).

Each side of (2.4) is a polynomial in z of degree <2k. Hence it is only
necessary to show that (2.4) bholds for 2k -1 distinet wvalues of z. For
z2=10,1,..,k—1, it is evident that the LHS of (2.4) vanishes; since

k—z\(—7) _ .
(k—}—j)( T ) =0 O<e<k; 0<i<k),

it follows that (2.4) holds for these values of z. For 2z = k we have

E 0 2k
=) )

which is clearly correct. Finally, for 2 = —s, where s =1, 2, ..., k, we note
that the RHS of (2.4) reduces to the single term (j = s)

E4s\(k—s — 8
(7G+s)(k_3)( k )fk(8+75)—( k’);fk(s"!_k)?

so that (2.4) holds in this case also. This completes the proof of (2.3).
For brevity we may call (k=0,1,2,...)

g1,:(2) = iz, 2 —F) z‘(k ; z) fr(2) )
(2.5) R
Gu(e) = mz—M—(@m—z+m

a Stirling pair—relative to the polynomial f(z). Clearly g1,1(2) and g.(2) are
polynomials in z of degree 2k, such that, for k>1,

(2.6) ' 1.4(8) _—;gk(s) —0 o (0<s<k)
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. and

(2.7) g1,k —2) = gi(2) .

Conversely, if two polynomials g, .(2), g:(2) of degree 2k, k>1, satisty (2.6)
and (2.7), then there exists a polynomial f.(2) of degree & satisfying (2.5) and
such that f.(0)=0 (k>1).

This proves

Theorem 2. A pair of polynommls 91,:(2), 9x(2), each of degree 2k, is
a Stirling pair if and only if they satisfy (2.6) and (2.7).

Tor example, if fi(2) = Z , then

(2.8) st = a0 = (1) (57 -

This, except for a constant factor, is the only case in which the Stirling pair
consists of identical polynomials.

If g,.(2) is an arbitrary polynomial of degree 2k such that g,.(s)=0
(0<s<Ek), then clearly the Stirling pair g,:(2), g:(?) is uniquely determined.
A similar result holds for an arbitrary g(z) satisfying the same conditions.

3. - Tt follows from (2.5) that (k>1)

k—1 . . n
Fl('n” n— k) = Z Fl(k) :’) (27‘;_ :") 3

i=0

k=1 . N
F(n,n—Fk)y =Y F'(k, j) (270 . ?.) .

i=0

Thus If"l, F' have the same relationship to F,, F, respectively, that S;, i
have to 8y, S.
It follows from the first of (3.1) that

21’1 n, n—k)ar = Z T (k, )@= Z (n _2}—k2—]iy_ 7)

ne=l =0 ne=0

z ’ ? mzk-— (1 . w) —2k+i-1

1
x 2 ] =

142’ 142

and we geb

[N
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k=1 oo
S Fyk, j)z?=i= 3 Fi(n, n—k)z*(1-+ 2)=1.

=0 nek

The right hand side is equal to

§ Fy{n, n—k)z" i (—1) (n - S) 28 = i zmmik(——l)s (7:’) Fy(m-—s,m—Fk—s).
m=k §=0

ne=k $=0 $

Hence

§=0

= 2k —j . .
Tyl ) = 3 (—1)° ( : 7)F1(2k——9—8, h—j—),
or equivalently

. . g (k4
5.2) Oy D AV () EXCERPY

In exactly the same way, we get

Lo (ki
3.3) k=) = 3 0 (3 F) P s

Parallel to (3.1) we define Gy(k,j§), G(%,j) by means of

i . ) j— |
Fy(n, n—1) = . Gi(k, ) (” ) ) :

(3.4)
an—m=ﬁmhﬂmﬁ§”)_

It follows from (3.4) that

ety b—i+1) = ¥ 1 (FF ) i = -0,
(3.5)

Gl k—j+1) = 3 (— 1)

§=0

(27“;“) Fl+j—s,j—s).

The proof is similar to the proof of (3.2).
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We shall now show that
(3.6) Gk, §) = Gk, k— 7 --1) A<ji<k).

By (2.2) and (3.4) we have

(’,2) fulli—n) = 3 G(k, ) (” *2779‘1) .

=1

Since

i—1 1
(” +27k ): G (H =) e L) (0 — L) () (28,

we get

Je=1

3 L [(nt+i—1 n—k (G—1)F—F+ )1E!
pe—m = S e (" TIT(,07) ) ,

so that

S - B k—jY[n—k)j!(k—7j)!k!
) Mk = e k—jn (" TEI)("TE) eI

Similarly, since

(n+j—1) = il (m+j—1) ... n (n—1) ... (n—Ek)-(n — k —1) ... (n+j—2k),

(3.8) (—=1)*fu(n) = i Gi(k, §) (,ﬂl ! ; —1) (

=1

n—T—1\ U —4) k!
T—j err
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Since (3.7) is a polynomial identity in n we may replace n by k—n
and get

3 2k —m—17 — it — k!
(3.9)  fun) = 2 Gk, 70*?’*’“( k-fj 7)( j%)u_@;?_

B Lk s n+j—1Y(n—k—1 y’!(k-—j)!k!
= (—1)* 3 Gk, k 9+1)( j )( h—j )—-—————»—(270)! .

j=1

Hence, comparing (3.9) with (3.8), it is clear that (3.6) is implied by the fol-
lowing lemmma which has some independent interest.

Lemma. Bvery polynomial @(2) of degree <k has o unique expansion of
the type

e e e

where the C; are independent of =.

Proof. It is convenient to treat the slightly more general expansion:

(3.11) (@) — :z'oaj (er;“l)(z"km?_l) (m>T).

If the C; in (3.11) are not unique there exist a set of coefficients 0;. not
all equal to 0 such that

(3.12) S (z+7:"1)(z_mfl)=o.

i=0 7

For z=0 this implies ¢, =0. Hence
1o, z—l—j——l)(z—m——l)
= 0O, . . =0
27 ( j—1 k—j ’

or

Lomt | o [+ (#g—m—1)
(3.'13) o zmom(u . )(70———-:}'——-1)—_0.

j=0 9
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We may assume that % in (3.12) is minimal. Then (3.13) furnishes a contra-
diction. ‘

z2—1
To find the coefficients in (3.11), multiply both sides by ( m ) and
we get

z2—1 k z2+j—1 (k+m)!
(3.14) ( m )gp(z)::]gsl),-( % -+ m )7 Dj=m0j.

It follows from (3.14) that

°§°: (” —1) (n)ar = kz Djatm—i+1(] — g)—k-m—1
4 = j - !

nemetl m Fe=0

S ftm— i B+ s (r—1
z _D]_w +meitl — (] f— m) m+1 z m (P(n) xn .

F=0 n=m+l
This gives
_ k+m—j+1 . k ._+_ m + 1 Py —
J—, f— E+mtntditl p
ga 2= F gy (LR ot

k=1 i k
— zo(_l)k-ﬂ ( ;G‘f:f:z:{:?l) (n ;}—nm) ol +m 4 1).

We may state

Theorem 3. The coefficients Gy(k,§), G(k,]) occurring in

k L (rnti—1
Fin, n—k) = ¥ Gi(k, j) ( +2:;0 ) ’
i=1
(3.16) k> 1)
L L (n+i—1
Fo,n—1) = 5 o) ("7
i=1 v
satisfy the relation
(3.17) Gi(k, j) = G(ky k—j+1) .

4. — By making use of (3.16) we are able to prove various relations., In the
first place we can obtain another proof of Theorem 1. We shall not take the
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space to give this proof, but rather prove some new results. To begin with,
by (3.2) and the first of (3.16),

, . J ] . .
Fl(k,k—y):go(—l)S( "SH) (kA —s,§—5)

4 LR AR k+j—s+t—1
=S (") Sedn (FHIT Y

_% Sy (A (Eti—s 1
_glgl(k,z)gohl)( s )( 2k )

By Vandermonde’s theorem the inner sum reduces to (;5” 1), so that
. . L t—1 .
(4.1) Fik,§) = Y .| Guk, 2) (O<j<ky.
=541 7
Similarly
o Eo(t—1 .
(4.2) )= 3 ) G, 1) (O<j<k).
te=j 41 :’
The inverse formulas are
k=1 1
(4.3) Gully 1) = 3 (—1)-#1 ( ! )F;(k, j) (1<t<l)
jte-1 t—1
and
k=1 1
(4.4) Gy 1) = 3 (—1)i-t (t 71) T'(k, §) (1<t<k).
je=g=~1 -

In the next place, by (3.6) and (4.4)

Polnyn—%) = S @k, t)( o

n+t~—1)

z —1) & k—
=S G k—t+1) (”’ +2tk ) = &k, t) (”’ +27‘G t)
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Eofqop- f—1) R i1 i T
( 2k ) Z(_“l) + (t—l)r(k,?)

jet—1

G it i ) n+k—t
— 1Y)i-t+1
Z () 2, (1) (t——l, ( ok )

The inner sum is equal to

l
M

=0

([t k—j—1
:H)( 2k — j )

Hence
k-1 : ; —_—

(4.5) Fynyn—k) = S (—1) ( " +97;G ’? 1) (%, §)
7=0 6=

and similarly

ot A+ k—5—1
(4.6) T, n—k) =S (—1) ( +,)7 ] ) Pk, §)
i=0 Lk —1

Again, by (4.1) and (4.4),

j=k+1

rmn = 3 (17 emn—itn=3 "7 ) G, )

J=1

n—r it t 1
=S (") 2 e (L) e

j=1 fe=g—1

n—1 t+1 t 0 — 7
= > I'(n — 1) .
tgo ’ )=zl ( (7 _-1) ( k )

The inner sum is equal to

4 i [t n—4j—1 e [t —1
S ()7 = e (),

: i (Y (vt E—t—1) , 97,-}—]5-—3+t_._1
S ()T R ()T
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4.7

Similarly

(4.8)
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= E—t

Fi(n, k) =‘zk (—1)¢ (n —t _1) F(n, t).

—_f—

By k) = 3 (—1)¢ (” o

1) Fin,t).

To invert (4.5) and (4.6) we use (3.2) and (3.3). It follows from (4.7) and

(3.3) that

Thus

(4.9)

and

(4.10)

where

(4.11)

_ Iio(——-l)t (n ;_t_—t‘l) ”—t(__l)n—z-j (272-—— t) I(n+1,79)

~ e w4 j

n i —1t—1 2n —1
= — 1) F(n -1, ] )

]_co( ) ( +],?)t=o( 1 )(n+?

P, k) = 3 (—1)=5F(n + 4, §) Culk, )

=0

n

F'(ny k) = 3 (— 1)~ Fs(n + 3§, §) Culk, §)

i=0

i —t— 1\ (90—t
s =3 50N ()

It does not seem possible to simplify C,(%, j).
To sum up we state



92 L. CARLITZ [14]

Theorem 4. The functions Fi(n, k), F(n, k), F;(n, k), F'(n, k) satisfy the
following relations

I’(n,ﬂ——k=}kj 1)“(”_*_70) 1+ 4y 7)

=0

Py k) = 3 (—1)- (’“L )I’(ner,y),

=0

FJ‘.('”: k) = i (_1)j ( L _2_71) ('n” 7) ’

=0

P, k) = 3 (— 1) (” ;1;1) Fyn, §)

o=t =3 v (LTI ),
B, n—1y ='S (1) (”’”_j )F;Uc,a‘),

Fi('n/, k) = Z ("“l)n"i Gn(757 7) F('n’ -+ j} :’) ’

F(n, k) =3 (— 1) Ol ) Fa(n + j, 9)

=0

min(e,n-3) (gt —1\ (20 — 1
C.(k, j) = N
i) = 2 ( k—t )(n—H)

5. — For the results obtained above it sufficed to assume that the {fk(z)}
were a sequence of polynomials in z satisfying

where

(5.1) dog fuld) = & ; £.(0) =0 C ks1).

In order to obtain orthogonality relations we require more.
Let

(5.2) Cp@) =1+ S eaanfn!

n=1
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denote a function that is analytic in the neighborhood of # = 0 and such
that @(0) =1. Put

(5.3) (p@): = 2 fx(2)

k=0

It is easily verified that the {f(z)} are polynomials in #z that satisty (5.1). The
Bernoulli polynomials B are evidently given by p(@) = o/(ev — 1).
It follows at once from (5.3) that

k

(5.4) z()fuﬁkz»—nj+@ (h=0,1,2,..).

j=0

We shall show that (5.4) characterizes polynomial sequences defined by (5.2)
and (5.3).

Theorem 5. A sequence of polymomials {f.(¢)}r, 4s defined by (5.2) and
(5.3) for some @(z) if and only if they satisfy (5.4).

Proof. The necessity is clear. To prove the sufficiency let {jk(z)} denote
a sequence of polynomials that satisfy (5.4) and put

(5.5) )= S F, Go)r=3he .

Then

(5.8) g( )f, VFemi(?) = Fuly + 2) (k=0,1,2,...).
We show that

(5.7) fu(n) = fu(n) (n=1,2,3,..).

This clearly holds for » = 1. Assume that it holds up to and including the
value n. Then, by (5.6),

k

fn +1) = fo 1) fis(1) = > £:(0) fues(1) = fuln 4+ 1) .

j=0 i=0

This proves (5.6). Since f.(2), f.(2) are polynomials, it follows from (5.7) that
they are equal. ‘
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It follows from (5.3) that

,n(p7l-—1 (w)(p’(m) = i fk+1(?L) (vk/k ! y

k=0

(m - n)pntlz)p' (@) = szﬁ(m -+ n)ot[l! .

Since
, m-+n ,
(m + n)gmtn-i(z)g' (@) = 1_ (@) np =t (@)p' () ,
we get
m-n E(k
(5.8) froa(m + n) = ;7{/- Z (?)fk—-:(m) Fra(m) .
F=0
‘We now congider the sum
(6.9) - H(n, j) = LE (— 1)+ Fy(n, k) F(F, j),

where, by (1.16),

—k
20 B = (, 7 fetn, mo = (") e
Then

n — i k

Hin, f) = 3 (— 1) (%_ z) fas() (70 - 7.) frsA— 1)
Since
—k fr—1) ap B (1
(n—-70) = =1 (lc——l) = =0l (70) ’

we geb

. n 7 R n —n
1,9 =3 5 (3)(5) tsttioimin =3 () 2 (2 27) st i)

("?) 3 (Z:;) b s )+

1) iw=;

3 |~
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. n—j (%) i (n—?':i) fan(8) frms(— )

e i) &= \k—7
_(n—1 , . n—1)y = (n—gj—1 .
= (? _1) fa—s(n—13) + ( j ) kgﬂ ( —j ) Fretma () frmja(— §)
_ [n—1 . j n—1 .
= (j——l) f"""(n—?)-n——j ( j ) Fnes(m — ) .

Therefore, H(n, j) = 0 (#n>j). For » =4, it is obvious that H(n, n) = 1.
We may state
Theorem 6. Let {fu(n)}e, denote a sequence of polynomials defined by
(5.3), for some @(n) and define F,(n, k), F(n, k) by (5.10). Then we have

(B.11) 3 (—1)EFy(n, B F(k §) = 3 (— 1) F(n, k) Fyn, k) = 0., .

Je=j ke=j

6. — Generating functions for the special F,(n, k) defined by (5.3) and (5.10)
are implied by the Lagrange expansion ([6], p.125).
Let ¢(») and f(») be analytic about & = 0, ¢(0) =1. Put

(6.1) % = z/p(®) .

Then

6.2) fio) = 100) + 3.3 | o (@) |
and

(6.3) T = S [;1‘-1; (f(z><p"(2))]z=0 :

To begin with, we take f(z) =2 in (6.2). Since

it follows that

0 - fn—l(%) ?

[;;: (9)"(2))]
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so that (6.2) reduces to

(6.4) T = 2]‘”_ (n) u

ne=l

Taking k¥ =1 in the first of (5.10) we get
Ty(n, 1) = (n_l) fama() = (—1)*fama(m)

Hence (6.4) becomes

un

(6.5) z = z (—1)*1 Fy(n,1) — i

n=1

More generally, if we take f(z) = am, m>1, in (6.2), we get

(6.6) o= m!S (—1)vnB(n, m) ::—, (m=0).

n=m

Next, for f(o) = ¢m(x), we find that

(6.7) (@) = i mn folm + n) ~—1-; (m>1).
This gives

oo 1
(6.8) @) = 3 (—1) (—”;:”—_—W Fy(m - n, m)us (m>0).

This result is equivalent to (6.6).
The method also applies to the case of negative m. For convenience we
replace m by — m. In place of (6.7) we now get

©o n

gz} = “om—n (n— m) nl?
nFEm
o0 R um
(6.9) P0) = 3 T fuln—m) 1 —mB



[19] GENERALIZED STIRLING AND RELATED NUMBERS 97

where
N dm—-l (p’(z) . dm
L, = [a’z“,;:l {(p(z) }]Fo = [dz’" {log 90(2)}] o
Thus
(o) zm
(6.10) >R, = log () .

me=1

Those terms in the right member of (6.9) with # < m are expressible in
terms of F(n, k); however those with # > m are apparently not expressible
in terms of either F(n, k) or Fy(n, k). Thus

m=l (m — n—1)!
(6.11) e™(x) =ﬂ§0 (—=1)" Tm—1)1 Fm, m —n)ur—
um =<3 —m n
—mR, po + n=%+1 P Tl — m) oy (m>0).

As a partial check of (6.6) we take w=¢*—1 and F,(n, k) = S, (n, k).
Then, denoting the right hand side of (6.6) by U,,, so that

©o 1
U, = go(—l)"m——}lm—)—! Si(m + n, m)ur,

we have

o0 zm <o un n
_ m o —_— _ n o Iﬂ m)zm
,,Z::o( 1) m! Un ,,;,( 1) n! “, 1y M)

2-4+n—1
"

=§FW(

) U= (14 u)~" = ¢,
n=0
which is correct.

As an application of (6.3), we take f(») = o™, m > 0. The result, using
(5.10), is

(pm(w) . =) . (m.._l)! . "
(6.12) m ——go(——l) —-»——————(m_*_n_l)!l’l(m—{—n, m)u (’m> 0).
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Let @ = A(w) denote the inverse of # = u(w), A(u) analytic about w = 0,
A(0) = 0. Since u == x/p(s), we get

w = u(A(u)) = 99?252’2)) )

so that

(6.13) p(A(u)) =vl(—u) .

Substituting from (6.13) in (6.8), we get

1 (2] 'M/"
(6.14) po Amu) = > (—1)=mF(n, m) p (m>0).

n=m
Since

@' (Aw)) X' (u) = Zlqiu) . Z(zf) ’

w=

, . 1 Alw) o Aw)
A=) =1—u {u——\uzﬁ'(u)} T ud(w)’

substitution from (6.13) in (6.12) gives

pwi ) = $ 1 DL B, e
= —1)!
:ngm(—l)"—’" ——-—————EZL__ 1; i Iy(n, m)ur—t.

This is evidently implied by differentiation of (6.14).
- For w=e—1, Au)=1og (1 + u), (6.14) reduces to

2 ogt wyn = 3 1y Bum, m) (m>0).

!
n=m .

Finally we note that the generalized version of the familiar formula

[l an 1
Sstm 5 =g =0
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is given by

- ©0 R Pmn ‘1 @ m
(6.10) ngnlﬂ(’n, ’7n) ;‘[,—! == "7;’/'"! (M) (m> 0) .

The results of this section may be compared with the similar ones in
[4] (Ch. 6) and [5] (Ch. 6).

References

11 L. Canrirz, [¢]; The coefficients in an asymplotic expansion, Proc. Amer. Math.
Soc. 16 (1965), 248-252; [+], The coefficients in an asymplotic expansion and
some related nwmbers, Duke Math. J. 35 (1968), 83-90; [+], Note on Nor-
lund’s polynomial B), Proe. Amer. Math. Soc. 11 (1960), 452-455; [+], Note
on the number of Jordan and Ward, Duke Math. J. 38 (1971), 783-790; [ «],
Some numbers related lo the Stirling numbers of the first and second hind,
Publ. FPac. Electrotechn. Univ. Belgrade, Sér. Math. Phys. (1977), 49-55.

[2] H. W. Gourp, Stirling number representation problems, Proc. Amer. Math. Soc.
11 (1960), 447-451.

[3] C. Jompax, Caleulus of finite differences, Chelsea, New York 1947.
[4] L. M. Minxe-TromsoN, The Calewlus of finite differences, MacMillan, Lon-

don 1951.

[5] N. E. NOrrunDp, Vorlesungen iiber differenzenrechnung, Springer-Verlag, Ber-
lin 1924,

[6] G. PoLY4 and G. SzEeO, Aufgaben und lehrsdtze aus der analysis, (1), Springer-
Verlag, Berlin 19283.

[7] J. RiompaxN, An introduction to combinatorial analysis, Wiley, New York 1958.

[8] L. ScHLAFLI, Brgdnzung der abhandlung iiber die entwickelung des produkts ...,
Journal fiir die reine und angewandte Mathematik 67 (1867), 179-182.

[91 M. Warp, The representation of Stirling's numbers and Stirling’s polynomials

as sums of factorials, Amer. J. Math. 56 (1934), 87-95.
Summary

Let {f.(z)} denote an arbitrary sequence of polynomials, deg f,(2) = k, f.{0) = 0 (k> 0).
Generalized Stirling numbers of the first and second Tind are defined by

k—mn

) fk(/n) 2 F(‘n, w— k) = (In}) fh('_ n -+ k) s
k %

(%) Fi(n,n—Fk) = (

respectively. Tor the ordinary Stirling numbers, f(2) is the Norlund polynomial B de-

o0
fined by (w/(e*—1))* = B ak[k!.

k=0
By means of () many of the properties of the ordinary Stirling numbers are shown to
hold for the generalized numbers. However, in order to oblain orthogonality relations, ad-

ditional restrictions are introduced.






