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Another real inversion theorem

for a distributional .7,-transform (**)

1. - Introduction.

A generalization of the conventional Laplace transform
(1.1) F(a)= [ e f(y)dy
0

had been given by Erdelyi[2] in the form

]

j‘mwhﬁdﬁ+n%ua+ﬁ+n+l;—wmﬂmd%

0

o Dtaty
L2 IO = For prr D)

For a=pf=0 (1.2) reduces (1.1).

Two real inversion formulas for this transform were given by Joshi [Bli00-
Another real inversion formula was also given by him ([3],, chapter V). The
object of this paper is to extend this inversion formula for the two-sided
case to distributions and finally deduce the uniqueness theorem also for
the same transform.

The generalized Laplace transform (1.2) of a distribution f(¥) in 0 < ¥ < oo
can be defined in the distributional sense, as an application of f(y) to

I'B+n-+1)
Fle+p+n-+1)

@y BB +n+1; 04+ n+1; —ay)
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in the following way

I'+n+1)
e+ f+n+1)

(1.3) F(x) = <{f(y) (@y)f By (B-+n—+1;5 at-f+n+1; —ay))> .

We define F(x) as F-transform of fly) and the transformation is called
L-transformation. A number of inversion formulas in the conventional Laplace
transform theory [1],[7], has recently been extended to Schwartz’s distribu-
tions by Zemanian [8];.

The inversion formula proved in ([3],, chapter V) is the following

Theorem. If fly)eL in 0 <y< R for every positive R if fly) =0
in — oo <y <0 and is such that the integral (1.2) converges for some % (= x,)
say, then Lim @, [F(x)]= f(t) for all positive t in the Lebesgue set for f(y) where

n=—>oo

_ (=1)"
T In+14-B—a)

2Nt G- G—nyprtfintn @n[w—ﬁlﬂ(w)]x=nlt .

(1.4) @ dF(@)]

2. - Notations and terminology.

A function is said to be smooth if all its derivatives of all orders are con-
tinuous at all points of its domain. The space of testing functions denoted
by 2 consists of all complex-valued functions ¢(f) that are smooth and zero
outside some finite interval.

R, denotes the one-dimensional euclidean space consisting of all real values
for t. R,, is the two-dimensional euclidean space consisting of all real pairs
(@, ¥). D- is the space 2 of testing function which are defined over B, and
D, 1s the space Z of testing functions defined over R, ,,.

Let I denote an open interval (0, oo) on the real line. &£, is the space of
smooth functions on I having compact supports with respect to I. @', repre-
sents the dual space of 2;. The sequence of distributions {f,},2, is said to
converge in .@', if, for every ¢ e 9,, the sequence of numbers {fy, >}, 2,
converges in the ordinary sense of convergence of numbers.

Let A and B be two real numbers (A< 0< B) and ¢ be a real variable.
We define K, 5(t) to be the function given by

K, p(t) = et (0<t< o0, Ky p(t) = 6™ (— co<<t<<0).
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L, s is defined as the space of all complex-valued smooth functions p(t)
on — co<<t<{ co on which the functionals y, defined by

vi(p) = sup IKMt)D o(t)] (k=10,1,2,..)

—co<i<

assume finite values. We assign to L, the topology generated by {y.}:>,
thereby making it countably multinorm:d space. L, p is sequentially complete
and hence a Frechet space. 1}i » denotes the space of continuous linear func-
tionals on Lyp. The number that feL 4,5 a88igns to @ e L,y is denoted by
Frpo = <f), ot

Throughout thls paper it will be assumed that Re f>0, Ren > 0, Re (« +
+:8+77+1)¢07“1y—27 vy a=p+4+n+41, b=0<+/3+77+, 1 and P=
= I'(a)/I'(b). We observe that DcLys ([8), p. 51, [4]) and L,,c 92 (8],
p. 160, [4]).

A distribution f is said to be ,F,-transformable if there exist two real num-
bers A, B (A< 0< B) such that feLi,,,,. o, 18 defined as the infimum of
all 4 for which fe L;’ 2

3. — Theorem 3.1. Let f be a Fy-transformable distribution whose sup-
port is contained in I. Let the integro-differential operator (1.4) be written as

(=1
I'g+n+1—a

Pou(D)F = BT D= GongEt Bt G (GBI (@) ]y

where F(z) is given by (1.3). Then, in the sense of comvergence in .@',

f(t) = lim P, (D) [F(@)]senss »

n—>0c0
that is, for every ¢ e 9,

lim (P, (D) [F(@)]omnse , (t)> = <f(2), @(0))

.00
provided Re f + n -+ 1> Re a.

Proof. Let the support of ¢(f) be contained in ¢, <t<e¢, where 0 < ¢, <
< ¢, << co. Here F(w) is a smooth function ([4], theorem 4.1). This fact was
proved there by using Cauchy’s integral formula. Hence P, (D)F(z) is also a
smooth function so that <P, .(D)F, > is an integral. For any ¢ € &, by re-



66 : G. L. N. RAO [4]
peated integrations by parts and a change of variable (t = n/) we have
(3.1) (P dD)[F(@)], p(8)) = {Puo D) [F(2)], p(njz)>

(3.2) = (F(@), Py ol— D) p(nfz)(— nja?)y =

(8:3) = Puul—D)p(n/z) (—nlz?), {f(¥), Pley)’Fr(a; b; —ay))> .

We will now justify the above steps. (3.1) equals (3.2) by the usual defi-
nitions for the shifting of operator and differentiation of distributions. Since
9 €Dy — (02 P, o(— D)p(n/z) also Les in &, with its support in nje, <<
<mnfe, and F(z) is a smooth function in o,<<#< co. Hence (3.2) equals (3.3).
Since f(y)eL:,,B and L;’BC.@', fly) € 2, and the testing function in (1.3)
belongs to 2,,. Hence — (n/a?) P, (— D)p(n/z) in (3.3) belongs to 2'. So
([8];, Theorem 5.3-2) we can change the order of inner product in (3.3) and
write (3.3) as »

W), <Pal— Dp (?;) (— ;"}) , Ploy) 1 Fi(a; b —ay)y> =

T

= ), — = ¢(;) , PaelD) {P(oy) i Fila; b; —ay)pp

(3.4) = <f(y), Q(y; 'n')>7

where

oy, ) = (— = pnfa), PoulD) {Play) TFa(a; b5 —ay)}> -

(8.4) has a sense since f(y) eL;)B and o(y, n) € Ly imply that f(y) e@; and
oy, n) € D, respectively. .

To complete the proof, we have to prove that as n — oo, o(y, n) converges
t0 @(y) in L, for every A and B (4< 0< B).

1
oy, n)= T Fitp—

po f <p(n/m)r(—-n/w2) -t gng—e Gngrtbinin gol -8 '(x)] da,
0

which by ([3], p. 73) is equal to

‘3'5) '+ 20y '(n + 1+ f—a)

0

Ia + 2n)(—n) fqo(n[m)mﬂﬂ—l ybte Fi(a-+2n; b -+ 20; —aoy) de.
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We can write (3.5), after charging the variables # = u, n=Fk; y = a,

e+ 2k)—k) [
olw, k) = I’(b+2(7?)j:'(k—:—)j(l+ﬂ)-—~ “)fcp(k/u)uﬁ“‘"lxﬁ"‘lel(a—}—Zk; b-+2k; —ux)du.

[

Now putting % = ky/», o(», k) becomes

f P(2/y)yP+==2 1 Fy(a + 2k; b + 2k; — ky)dy .

]

I'(a + 2k) P+r+r
T IO 2k (kF1+f—a)

We are to prove that go(w, k) >¢(@) in L,z as k—oco. In other words
we have to prove that, for each nonnegative integer », K, (#).D, [o(@, k) — ¢(x)]
converges uniformly to zero on 0 << < oo as k—oco. By ([5], p-48) we can
write

KA,B(‘”)D;[Q(“"; k) — (P(w)] =

Ay ianae!
Ta 4 2R Kanl® ([ aes o+ 265 b+ 2k; — y)-

TTO 2RI Btk +1—a)

(e 2k)

. (p(v)(a;/y)y—-(v+1) dy— m JoBrrt1 K, 5(x)-
[ r K
oot ot o4 ot ) PO AN yay =7, 4 1,
0
But since K, z(@)¢" (@) < C,
’ 1-8

I'(a+ 2%) (ot + 5 + &) G, Tb+++1

Ll < Fe eI s T DTm TP UW‘F‘(“““ b 2ki —ky)dy +
+ lfj f:]=1;+1;+12 (0<s<1),

I(a+-2k) N o+n k) kit 1_("]cy)b+2k—-1 1
I’(b+2lc)]’(ﬁ+k+1)1"(n +-k) Jot+ek gt

1]

I;—-_—-Cl

e #, Pilo; b-+2k; ky)kdy,

by using Kummer’s formula ([5], p. 6).
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Puttmg 7cy__ t and noting that Sup( )<M for O<y<<1—0 we have

ot-n+k
L(1—6)

P20+ n+k) sl J forai—t o=t T (o3 b -+ 2F; 8) dt

L MO am I + b+ )10 £ B)

MO o+ 28)(a+n -+ k) TpHid [{75(1 — §)Jpren
< F(b + 975)F i + k+1)I'n+ k) (b + 2k)exa=0

w P+ 15 b+ 2%+ 1; k(l—a)] ,

by using a result ([5], p. 42 (3.2.5)). Again by using the results ([5], (4.3.7),
p. 66; [6], p. 253) the right hand side of the above inequality is asymptotic to

MO K [(L— 0t (0)- [ (a4 1)(x +2) (1—5)e
(b + 2k) [ P T 2k F] ] :

This proves that I, —0 as k—> co. Similarly I, can also be shown to tend
to 0 as k— co. Coming back to I;

1-9 136 5]

L= [ + [ + [ =L+IL+I;.
o H1T-§ . 144
Here
1—-3

]1(“ + 270)]Gﬁ+k+1 (]Gy)b-i-zk—-l yﬁ+k
Li< O, F(b T+ h+1—o) ) I g

e (a5 b -+ 2%; ky) dy,

since K A’B(w)qo(”)(w/y)< 0, in 0<®< co. Putting ky=1 and noting that
1 o
SHP(WB)<M1 for 0<y<1—-5,

x(1—38)

o) f+1-b—
M, 0.1(a + 28) f rraEct gt Py(ar; b+ 205 1) d .

L T+ oI+ FF1—a)
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By the use of a result ([5], p. 42) the right hand side of the above inequality
reduces to ; ; : i f

1(1—9)

M, C, (¢ + 2k) kf+r-v-% [e—* o2k

b TSI T o et b 2k 1 t]

(3.6) 7

0

By considering the asymptotic properties of gamma function ([6], p. 253) and
7, function ([5], p. 66) for large values of %, we find that (3.6) is asymptotic to

I 3, C, [(1 — O)pHk (9)-+n {1 _ et 1)+ 2) (1 — 6)” ’

e =9 (p I 2F) ok P)

which obviously tends to zero as koo in 0 <<y<1-9d. In a similar way
we can prove that I; -»0 uniformly as £ — co. It now remains to prove that
I,4+1,—0 as k—oco. We have

I'(a+ 2k) - K, 5() )
I'(b + 2k) IB+k+1—a)

I+ 1,=

2 I C o —
: fyﬁﬂ. ol - 2% b+27“"ky){qpyg/y)‘“nf’(_,;ﬁc—il)“)'

1+4

Datn+h }
e W) (2) > dy .
oy 7 (@) r dy
We shall prove that I, -+ I, -0 uniformly as k— oo in any a,<#<b,, pro-
vided f 4+ k—» 41> 0.
Let

4

— v k—v——1___r(ﬂ+k+1_“) % .
M, ) —f {qv‘ wfy) yPt B A7 yP*

1+4
. . ALetnt k), }d
| Tt 7Y

«/d
= gBtE-v — W) (7) gAY ED L gD,

a/1+0

. F(ﬂ'+‘k+1"“)r(0‘+"7+’70) = BHE2) () ]d
TEFhFOIG g e dz,

after-replacing #/y by .. Since p(r)e 2(I) and 7" (r < 0) is continuous in
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1+ d< 7< oo, it is clear that A(d, #) has an upper bound M? in the region
14 0< ¥ < oo, a; << b, with the condition § 4 k—» -+ 1>0. Consider

o

| My, )4, [ Fa(a -+ 2%; b - 2%; — ky)] =
0]

1+

o

=[My, #),Fy (6-+2k; b+2k; — ky) 1535 — J;xl"x (@ + 2k; b+ 2k; — ky) dA(y, ) dy .
14

But by ([5], p. 60, (4.1.8))

I'(b -+ 2Fk)

Fi(a+ 2k; b+ 2k; —ky)~ 7o)

(ky) etz -0 as y - o0

and by the definition of A(¥, #), we have

I;+I:= —K .g Ay, @) &, [ I (e + 2F; b+ 2k; — ky)],
1+
where

e+ 2k) P K, 5(x)
T Ire42K B+ k+1—a)”

K

Moreover, we note that the function ,#,(a + 2k; b -}- 2k; — ky) is a decreasing
function of ¥ in (1 4 4, o). For

(e -+ 2k; b+ 2k; —k(y + h) —  Fy (@ +2Fk; b+ 2k; —ky) (B> 0)

is asymptotic to

1 ya+2k_ (:I/ + h)a+2k <0
Jpat2k {/y(y + h)}d‘i‘zk *

We also note that K, x(x) has an upper bound B, in a,<x<b;. Hence

e e e+ 2k EPTR B, M* . R PR T
I+1,< TG+ 28) TEIh+1—a) [Fy(a + 2k; b+ 2F; — ky)lise
As y—oco
. Tlaf2k) B, M .
61 Lt L<Fran Y rETr i

" [Fa(a + 2k; b+ 2k; — k(14 8))] .
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From a result ([5], p. 6) and asymptotic properties ([5], p. 66 [6], p. 253) the
right hand side quanmty of (3.7) is asymptotic to

or(1+0) 2L —d

EE(— 0)—* [l oc{oe - 1) (1—|—5)2]
R R [ L. e B
which —0 as k— co. This proves the theorem.

4. - The uniqueness theorem.
Let | and g be two F-transformable distributions defined by

I'(a)

@) = ) 7,

(xy)P i (a; b; —ay))

6(0) = <9l9), ) (W uTa(as b5 —aw)y

If F(w) = G{x) for all & in 0<<w<C oo, then [ =g in the sense of equality in 9',.

Proof. Let P, (D) F(»)],.,. be the inversion operator as specified in
Theorem 3.1. Then, in the sense of convergence in 2,, we have from The-
orem 3.1.

() = lim P, (D) [F(@)]a=nsz g(t)=lim P, ,(D)[G(#)] sen/e=9,

n—roo N> 0D

so that
f@) = Hm P, o(D)[F(®)]senss = Hm P, o(D)[G(&)]pmnse = g,

n—>roco

whence it follows that f=g¢ in the sense of equality in .@',.
The author is indebted to Prof. K. M. Saksena for his kind and valuable
help in preparing this paper.
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