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Construction of fixed points for densifying mappings (**)

Introduction.

The notion of measure of noncompactness was introduced by C. Kura-
towskii [6]. It was Darbo[2] who defined the concept of k-set contraction
using the notion of measure of noncompactness and proved the following fixed
point Theorem (see Theorem 1.1). Darbo’s theorem was extended by Furi
and Vignoli[3] for densifying mappings. Without being aware of Furi and
Vignoli’s result Sadovskii[10] also extended the theorem of Darbo [2], but
using different kind of measure of noncompactness (usually called ball measure
of noncompactness, see Definition 1.3). Although these two measure of non-
compactness share few properties in common (a counter example for the case
where they differ may be found in Nussbaum([7], p.127). Nussbaum [7]
using the measure of noncompactness that of C. Kuratowskii[6] developed
the degree theory for k-set contraction with k< 1, and later extended for
densifying mappings. Since the densifying mappings are so general that the
generalization of classical fixed point theorems for such kind of ma,ppmgs 1s
of continuing interest.

In the present paper we prove two fixed point theorems for densifying
mappings using the degree theory developed by Nussbaum [7]. Theorem 2.2
generalizes almost all theorems, available in literature about fixed points for
the sum of two mappings. Finally we have included an application of The-
orem 2.1 for densifying verctorfields (see Definition 1.6). The elegant work
of Petryshyn [8],, [8], contains the applications of densifying mappings. As a
corollary of Corollary 2.1 has been obtained a theorem due to Biepecki and
Tadcusi[1].

(*) Indirizzo: Dept. of Math.,, Texas A &M University, College Station,
Texas 77843, U.S.A. . '
(**) Ricevuto: 19-V-1975.
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Preliminary definitions and results.

Let X be Banach space. Let D be an open bounded subset of X. Let D
and 9D be respectively the closure and boundary of D.

Definition 1.1. (Kuratowskii). Let X be a real Banach space and D
be a bounded subset of X. The measure of noncompaciness of D, denoted by
y(D), is defined as follows:

y(D) =inf { > 0, such that D can be covered by a finite number

of subsets of diameter < £} .
(D) has the following properties

(a) 0<y(D)<d(D), where d(D) is the diameter of D,

() ¥(D)= 0 if and only if D is precompact (i.e. D is compact),

() CcD = y(C)<y(D),

(@) y(CU D) = max {(0), y(D)},

() y(C(D, )< y(D) -+ 2r, where O(D,r) = {win X/d(z, D) <1},

() »(C+ D)< y(C)+ (D), where O -+ D= {¢-+ dfcin ¢ and d in D}.

Definition 1.2. (Darbo). Let X be a Banach space. Let T: X —» X
be a continuous mapping. 7 is said to be a k-set contraction if given any
bounded subset D of X we have: y(T(D)) <ky(D) for some y>0.

In case y(T(D)) < y(D), for any bounded subset D of X such that y(D) > 0,
then 7' is called a densifying mapping [3].

Definition 1.3. (Sadovskit). Let X be a real Banach space. Let T':
X — X be a continuous mapping. T is said to be densifying (condensing) if
for any bounded subset D of X with x(D)>0 we have y(T(D)) < x(D),
where y(D) denotes the infimum of all real numbers ¢ > 0 such that D admits
a finite e-net.

Definition 1.4. Let X and Y be two Banach spaces. Let D be a
elosed and convex subset of X. A mapping 7:D— Y is said to be compact
if it is continuous and maps bounded sets into relatively compact sets.

A mapping T': D — Y is said to be completely continuous if it takes each
weakly convergent sequence into strongly convergent sequence.
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Remark 1.1. These two classes of mappings are not comparable. That
is neither one is contained in the other. The counter examples demonstrating
the difference may be found in Vainberg ([12], pp. 14-16). Infact Vainberg [12]
these two mappings heve been refered as completely continuous and strongly
continuous respectively.

Definition 1.5. (Granas, p. 30). Let X and ¥ be two Banach spaces.
A mapping T': X— Y is said to be completely continuous vectorfield on X, if
it can be represented as

1) T(@) =a—F@),

where ¥: X — 7, where Z is an arbitrary but fixed Banach space and F is
completely continuous mapping.

Remark 2.1. The sum of two f-set contractions is again a i-set con-
traction. Completely continuous mapping is zero-set contraction. Contrac-
tion mapping (a mapping of a closed, bounded and convex subset D of a
Banach into itself satisfying the condition |T(x)— T(y)| <k|z— y|, where
k <1 and contractive mappings i.e. |T(z) — T(y)| < |z — y]||) are respectively
examples of {-set contraction with ¢ < 1 and densifying mappings.

Theorem 1.1. (Darbo). Let C be a closed, bounded and convex subset
of a Banach space X. Let T: C— C be a k-set contraction with k< 1. Then T
has a fized point.

Theorem 1.2. (Sadovskii[10], Furi and Vignoli[3]). Let C be nonempty
closed, bounded and convexs subset of a Banach space X. Let T:C—C be
densifying (condensing). Then T has a fized point.

Definition 1.6. Let X and Y be two Banach spaces. Let T: X > Y
be densifying. T is said to densifying vectorfield on X, provided if 7 can be
expressed in the form 7T(x) =& — F(2), where F: X — Y is densifying.

The set of all densifying vectorfields will be denoted by L(Y%).

Definition 1.7. Two densifying vectorfields A and B in L(¥YZ*) are
said to be homotopic, provided there exists a homotopy Mz, 1): A xI->Y
between A and B which can be represented by h(w, f) = z — H(x, {), where
the mapping H(x,?): X XI— Y is densifying.
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Theorem 2.1. Let X be a Banach space. Let D be an open bounded
subset of X. Let A and B:D — X be two densifying mappings such that
|A(z)— B(z)| < |A(@) — «|| for all @ in 9D. If Deg (I — B, D. 0) is defined
so is Deg(I— A, D, 0). Moreover Deg (I — A, D, 0)=Deg(I — B, D, 0). Fur-
thermore, if Deg(I— B, D, 0)5=0, then A has a fized point.

Proof. It is enough to show that Deg (I — 4, D, 0) 0. To do so we
define the homotopy H(w, ): DxI—X as follows H(x, t)= tB(z) -+ (1 — 1) A(m),
# in D, t in I, where I =[0,1]. Then H(z, t) is densifying. Clearly H(z, 1)
being convex combination of two continuous mappings is continuous. Let ¢
be any bounded but not precompact subset of D, then by definition H(z, ?)
we have H(C, 1) =1tB(C)+ (1 —t)A(C). Hence

y(H(C, 1)) = p(tB(C) + (1 — 1) A(C0)) < ty(C) -+ (1 — t)p(C) = p(0) .

Moreover, H(z,?) is uniformly continuous in ¢ for ¢ in I. Indeed, let
[t—s|<0/(R+ 8), we need to show that |H(w,1)— H(z, s)|| < ¢ for all »in D.
Now by definition of H(x, t) we have

|E (e, 1) — Hz, 9)] = | (¢ — 9)B@) + (1 — ) A@) — (1 — 5) A@) ]| =

= [[(t— ) B(w) — (t— s)A(@)| <|(t—8)|(|B@)| + A@)]) <|t—s|(B+ 8) =4,

R>|B(@)| and 8> |A(#)|. Letting ¢ =0 we have |H(w, t) — H(z, s)| <e, as
was claimed.

To complete the proof of Theorem 2.1 it suffices to show that a—H (z, £)740.
Without loss of generality we may assume that @ — H(», 1) 0, otherwise
we get a contradiction to the hypothesis that Deg (I — B, D, 0)= 0 (i.e. B has
a fixed point). Furthermore, let us assume that A(x)=£ #, otherwise we are
done.

Now let us suppose that # — H{w, ) = 0 for some # in 0D and ¢ in I, then
we have the following three cases.

Case 1. If ¢=0, then 2 — H(z, 0) = 0 implies that »— A(x) = 0, which
in turns implies A(x) = #, a contradiction to our assumption.

Case 2. Ift{=1, then #— H(w,1) == 0 implies that w—‘B(m) = 0, which
in turns implies that B(w) = », a contradiction to our assumption.
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Case 3. If 0 <t<1, then
#—H(x,t) =0 =>2—1tB@)— (1—1t)4d(x)=0,
s—1B@)— Alw) +tA@) =0 = 22— A@)=1t(B@)— A=) .

Hence

[4(@) — @] =t|B(x) — A(=)| or |B@)— A@)|> 4@ —2] O<iti<l),
a contradiction to the hypothesis. Thus H(w,?) is well defined homotopy.
Therefore by homotopy theorem [7] Deg (I— H(-,t) is constant in ¢ for ¢

in I. Hence

Deg (I—H(', 0), D, 0) = Deg (I*H('71)7D7 0)
or

Deg(I— 4,D,0)=Deg(I—-B,D,0)5%0.

Hence there exists a @ in D such that (I — A)(») =0 or equivalently
A(z) = ®». Thus the Theorem.

Corollary 2.1. Let X be a Banach space. Lot f and g be two densifying
vectorfields on X. Let us asswme that the following inequality

(2) I7@) — g(@)]| < | f(@)]
holds for all @ in X. Then the densifying vectorfields f and g are homotopic.

Proof. Since f and g are densifying vectorfields on X, therefore by Defi-
nition 1.5 we can write f(x) and g(z) as follows

f@) =s— Ax), (@) =»— B(x),

where 4, B: X —X are densifying. Now A(x) — B(z) = g(z) — f(x). Hence
(by [2])

| 4@) —B(@)| = |g(2) — f@)]| = [{(@)— g(@)]| <[ {(@) = | 4(z) — ] .

Thus the conditions of Theorem 2.1 are satisfied and the homotopy of
Theorem 2.1 serves the desired purpose.
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As a corollary of Corollary 2.1 we have the following theorem due to
Biepecki and Tadeusi[1].

Corollary 2.2. Let X be a Banach space. Let 8 = {& in X /|| = R}
be a sphere in X. Let hix): 8§ — X be a completely continuous mapping. Let
g(@w) = @ — h(w) be a completely continuous vectorfield. Let f(x) = x — r(x) be
another completely continuous vectorfield on S. Furthermore suppose

() — h(@)]| < || — P(w)] .

Then Deg (g, S, 0) =Deg (f, S, 0). Moreover if Deg(g, 8, 0)s0 for|z| =R,
then the equation ® = r(x) has at least one solution y in S.

Theorem 2.2. Let X be a Banach space. Let D be an open, bounded
subset of X. Let A, B: D —X be respectively p-set contraction and g-set con-
traction such that p -+ qg<1. Let A, B satisfy the following inequality

[|A(2) — B(@) — || > | 4(@)] .

Furthermore suppose that Deg (I — B, D, 0)+ 0. Then there exists a » in D
such that A(x) 4+ B(x) = .

Proof. It is enough to show that Deg (I — (4 + B), D, 0)5£ 0. Let
us define the homotopy H(w, t): DxI —X as follows H(z, t) = (1 —1) A(z)+
4- B(®), for all # in D and ¢t in I. Then H(z, ) is densifying. Clearly H(z, 1)
being convex combination of continuous mappings is continuous. Let C be
any bounded but not precompact subset of D, then by definition of H(w, 1)
we have

H(C,t) = (1—1)A(C)+ B(0),
yH(C, 1) = [(1— 1) A(0) 4 B(0)] < (1 — 1)y A(C) 4 yB(0) < (1 — 1) py(C) + gy(0)
< (P + q¢— pt)y(0) = ry(C)< y(C), when [r=p 4 v— bt <1].

Finally to show that H(w,t) is well defined homotopy it remains to show
that H(w, f) is uniformly continuous in ¢ for ¢ in I. Indeed, let |{— s|<m/M,
then by definition of H(,t) we have (M > |A(=)])

|H(z, 1) — H(w, 5)]| = (s — D) A@@)]| = |(s — &) || 4 ()]
<|(E—=s)| M <(m/M)(M)=m.
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Taking & = m, we have |H(X,t)— H(w,s)]|<e. Thus H(z,t) is well defined
homotopy.

Now we claim that # — H(x,1) 5= 0, for all # in 0D and ¢ in I. Without
loss of generality we may assume that os= A(®) + B(#), otherwise we are
done. Furthermore let us assume that #— H(w, 1) % 0, otherwise we have
a contradiction to the assumption that Deg (I — B, D, 0)+ 0. Let us sup-
pose that o — H(x, £} = 0 for some # in 8D and ¢ in I. Now we have the fol-
lowing three cases.

Case 1. If ¢=0, then #— H(, 0) = 0 implies that — (4(») + B(®)) =0
which in turns implies that # = A(z) + B(w), a contradiction to our assump-
tion.

Case 2. If =1, then #— H(», 1) = 0 implies that #— B(x) = 0 which
in turns implies that & == B(w), a contradiction to our assumption.

Case 3. If 0<t<1, then #— H{®,t) =0 implies that z— (1 — t)A(x)—
— B(w) = 0. Thus we have

x— A(x) +tA(@)— B(@w) =0 or tA(x) = A(@) + Blz) — = .
Hence
t|A(@)| = |A@) + B@)— | or |4(z)]>|4(@)+ B@)— 2| 0<t<1l),

a contradiction to the hypothesis. Thus by homotopy Theorem Deg (I —
H(-,%), D, 0) is constant in ¢ for ¢ in I. Hence

Deg (I— H(-,0), D, 0) =Deg (I— H(-,1), D, 0)
or

Deg (I— (A + B), D, 0) =Deg(I— B, D, 0)s£0 .

Therefore there exists a 4 in D such that (I— (4 + B))(z) = 0, i.e. A(w)+
-+ B{@) = 2. Thus Theorem 2.2.
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Summary

See Introduction.
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