S. N. MAHESHWARI and R. PRASAD (*)

On pairwise s-regular spaces (**)

Introduction.

A subset A of a topological space X is semi open [4] if for some open set 0, $0 \in A \subset cl 0$, where cl 0 denotes the closure of 0 in X. Every open set is semi open while the converse may be false [4]. A set N is said to be a semi neighbourhood [1] of a point $x \in X$ if there is a semi open set M such that $x \in M \subset N$. Complement of a semi open set is called *semi closed*. A point x of X is a semi limit point of $A \subset X$, if any semi open set containing x contains a point of A distinct from x. The union of the set A and the set of all the semi limit points of A is called the semi closure of A[2]. We denote it by sel A. It is the smallest semi closed set containing A. Infact [2], $A \subset B$ implies $\operatorname{scl} A \subset \operatorname{scl} B$; $\operatorname{scl} (\operatorname{scl} A) = \operatorname{scl} A$ and A is semi closed iff $A = \operatorname{scl} A$. In a bitopological space (X, P_1, P_2) by P_i -semi open set (resp. P_i -sel A) we mean a semi open set in X (respectively the semi closure of A) with respect to the topology P_i , i=1,2. A bitopological space (X, P_1, P_2) is pairwise semi $T_2[5]_2$ if for any two distinct points x, y of X there exist disjoint P_i semi open set U and P_i -semi open set V such that $x \in U$ and $y \in V$, $i \neq j$, i, j = 1, 2. A bitopological space (X, P_1, P_2) is pairwise $T_0[6]$, if for each pair of distinct points of X there is a set which is either P_1 -open or P_2 -open containing one of the points but not the other. The axioms of pairwise semi T_2 and pairwise T_0 are independent $[5]_2$. Also, a bitopological space (X, P_1, P_2) is said to be pairwise regular [3] if for every P_i -closed set F and a point $x \notin F$ there exist a P_i -open set V and a P_i -open set U such that $U \cap V = \emptyset$, $F \subset V$, $x \in U, i, j = 1, 2, i \neq j.$

In this paper we introduce and study pairwise s-regularity which is strictly weaker than pairwise regularity. Throughout the paper $X \sim B$ denotes the complement of B in X.

^(*) Indirizzo: Dept. of Math., University of Sagar, Sagar, M. P. India.

^(**) Ricevuto: 28-IV-1975.

1. - Pairwise s-regular spaces.

Definition. A bitopological space (X, P_1, P_2) is pairwise s-regular if for every P_i -closed set F and a point $x \notin F$, there exists a P_i -semi open set U and a P_i -semi open set V such that $U \cap V = \emptyset$, $F \in U$, $x \in V$, $i \neq j$, i, j = 1, 2.

It is evident that every pairwise regular space is pairwise s-regular. The converse need not be true.

Example 1. Let

$$X = \{a, b, c\}, \quad P_1 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}, \quad P_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}.$$

Then, (X, P_1, P_2) is pairwise s-regular but it is not pairwise regular.

Remark 1. Examples 2 and 3 below show that pairwise s-regular and pairwise T_0 are independent. In addition, example 2 shows that pairwise s-regular spaces may fail to be pairwise semi T_2 .

Example 2.

$$X = \{a, b, c, d, e\}, P_1 = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}, P_2 = \{\emptyset, \{d, e\}, X\}.$$

Then, (X, P_1, P_2) is pairwise s-regular but it is not pairwise T_0 . Note that it is not pairwise semi T_2 also.

Example 3. Let

$$X = \{a, b, c\}, P_1 = \{\emptyset, \{a\}, \{b, c\}, X\}, P_2 = \{\emptyset, \{b\}, \{b, c\}, X\}.$$

Then, the space (X, P_1, P_2) is pairwise T_0 but it is not pairwise s-regular. However we have the following theorem.

Theorem 1. Every pairwise s-regular pairwise T_0 space (X, P_1, P_2) is pairwise semi T_2 .

Proof. Let $x, y \in X$ and $x \neq y$. X being pairwise T_0 , let V be a P_i -open set, i = 1 or 2 which contains x but does not contain y. Then $X \sim V$ is a P_i -closed set containing y to which x does not belong. The conclusion now follows by pairwise s-regularity of (X, P_1, P_2) .

Theorem 2. In a bitopological space (X, P_1, P_2) , the following conditions are equivalent (where in $i \neq j$, j, i = 1, 2):

- (a) (X, P_1, P_2) is pairwise s-regular.
- (b) For each $x \in X$ and each P_i -open set U containing x there is a P_i -semi open set W such that $x \in W \subset P_j$ -sel $W \subset U$.
- (c) Every P_i -closed set A is identical with the intersection of all the P_i -semi closed P_j -semi neighbourhoods of A.
- (d) For every set A and every P_i -open set B such that $A \cap B \neq \emptyset$, there exists a P_i -semi open set 0 for which $A \cap 0 \neq \emptyset$ and P_i -sel $0 \in B$.
- (e) For every nonempty set A and P_i -closed set B such that $A \cap B = \emptyset$, there exists disjoint sets G and H such that G is P_i -semi open, H is P_j -semi open, $A \cap G \neq \emptyset$, and $B \subset H$.
- Proof. (a) \Rightarrow (b). Let U be a P_i -open set such that $x \in U$. Then $X \sim U$ is P_i -closed and $x \notin (X \sim U)$. Now by (a) there exists a P_i -semi open set V and P_i -semi open set W such that $x \in W$, $X \sim U \subset V$ and $W \cap V = \emptyset$. And so, $x \in W \subset P_i$ -sel $W \subset U$.
- (b) \Rightarrow (c). Let A be P_i -closed and $x \notin A$. Then $X \sim A$ is P_i -open and cintains x. By the hypothesis there is a P_i -semi open set W such that $x \in W \subset C$ P_i -sel $W \subset X \sim A$. This gives that $X \sim W \supset X \sim P_i$ -sel $W \supset A$. Therefore, $X \sim W$ is P_i -semi closed P_i -semi-neighbourhood of A to which x does not belong. Thus (c) holds.
- (c) \Rightarrow (d). Let $A \cap B \neq \emptyset$ and B is P_i -open. Let $x \in A \cap B$. Since $x \notin (X \sim B)$ which is P_i -closed, in view of (c) let V be a P_i -semi closed P_i -semi neighbourhood of $X \sim B$, such that $x \notin V$. Now let U be P_i -semi open set such that $X \sim B \subset U \subset V$. Then, $0 = X \sim V$ is P_i -semi open and if fulfills the requirements of (d).
- (d) \Rightarrow (e). Let $A \cap B = \emptyset$, A is nonempty and B is P_i -closed. Then $A \cap (X \sim B) \neq \emptyset$ and $X \sim B$ is P_i -open. By (d), let G be a P_i -semi open such that $A \cap G \neq \emptyset$, $G \subset P_i$ -sel $G \subset X \sim B$. Put $H = X \sim P_i$ -sel G. Then, $G \subset P_i$ -semi open, $G \subset P_i$ -semi open open.
 - (e) \Rightarrow (a). Obvious.

Remark 2. Pairwise s-regularity is not hereditary. For, $\{b,c\}$ as a subspace of the pairwise s-regular space (X,P_1,P_2) of example 1, is not pairwise s-regular. However:

Theorem 3. Every biopen subspace of a pairwise s-regular space (X, P_1, P_2) is pairwise s-regular.

To prove the theorem we require the following

Lemma. If (Y, T_1, T_2) is a P_j -open subspace of a pairwise space (X, P_1, P_2) , then, for any subset B of Y, T_j -sel $B = (P_j$ -sel $B) \cap Y$, j = 1, 2.

Proof of the lemma. Let $x \in T_j$ -scl B, j=1 or 2. Then $x \in Y$. Let V be any P_j -semi open set containing x. Now Y being P_j -open in X, $V \cap Y$ is T_j -semi open in Y (cfr. $[5]_1$, theorem 2.3: if Y is open in a topological space X and U is semi open in X, then $Y \cap U$ is semi open in Y), and contains x. And so $V \cap Y$ meets B. Consequently V meets B. Thus, $x \in P_j$ -scl B. Hence $x \in (P_j$ -scl $B) \cap Y$. Now let $y \in (P_j$ -scl $B) \cap Y$ and let 0 be a T_j -semi open set containing y. Then 0 is a P_j -semi open set for Y is P_j -semi open (cfr. $[5]_1$, theorem 2.4: if Y is a subspace of a topological space X, then A is semi open in Y is semi open in X iff Y is semi open in X). Consequently 0 meets B for $y \in P_j$ -scl B. Hence $y \in T_j$ -scl B.

Proof of the theorem. Let (Y, T_1, T_2) be a biopen subspace of (X, P_1, P_2) . Let A be T_i -open in Y, i = 1 or 2 and $x \in A$. Y being P_i -open, A is P_i -open. Since X is pairwise s-regular there is a P_i -semi open set U in X such that $x \in U \subset P_j$ -sel $U \subset A$. Therefore, $x \in U \subset (P_j$ -sel $U) \cap Y \subset A$. And so, $x \in U \subset T_j$ -sel $U \subset A$, by the lemma, for Y is P_j -open. The theorem now follows by Theorem 2 (b), since U is T_i -semi open ([4], theorem 6).

References

- [1] E. Bohn and L. Jong, Semi topological groups, Amer. Math. Monthly 72 (1965), 996-998.
- [2] P. Das, Note on some applications on semi open sets, Progr. Math. (Allahabad) 7 (1973), 33-44.
- [3] J. C. Kelly, Bitopological spaces, Proc. London. Math. Soc. 13 (1963), 71-89.
- [4] N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [5] S. N. Maheshwari and R. Prasad: [•]₁ Some new separation axioms, Ann. Soc. Sci. Bruxelles Sér. III 89 (1975), 395-402; [•]₂ Some new separation axioms in bitopological spaces, Mat. Vesnik. (to appear).
- [6] M. G. Murdeshwar and S. A. Naimpally, Quasi uniform topological spaces, Noordhoff, Groningen 1966.

* * *