MOHD. SAEED KHAN (*)

A fixed point theorem in bi-metric spaces (**)

1. - Introduction.

Let (X, d) be a metric space. A mapping $T: X \to X$ is called a contraction mapping with respect to d if there exists an α , $0 < \alpha < 1$ such that

$$d(Tx, Ty) \leq \alpha d(x, y)$$
 for all $x, y \in X$.

The well known Banach contraction principle states that a contraction mapping on a complete metric space has a unique fixed point.

We find that a contraction mapping is always continuous.

A triple (X, d_1, d_2) where d_1 and d_2 are metrics on X will be called a bi-metric space.

Maia [2] considered bi-metric space to find out a sufficient condition for the existence of a unique fixed point of a mapping T which is a contraction with respect to one metric and continuous with respect to other. He proved the following

Theorem A. Let (X, d_1, d_2) be a bi-metric space such that

- (i) $d_1(x, y) \leqslant d_2(x, y)$ for all $x, y \in X$,
- (ii) $T: X \to X$ is contraction with respect to d_2 ,
- (iii) $T: X \to X$ is continuous with respect to d_1 ,
- (iv) X is complete with respect to d_1 .

^(*) Indirizzo: Dept. of Math., Aligarh Muslim University, Aligarh (202001) U. P., India.

^(**) Ricevuto: 24-IV-1975.

Then there exists a unique fixed point of T in X. It may be remarked that if the two metrics d_1 and d_2 are equal, the above theorem reduces to the classical Banach contraction principle.

2. – In this paper we generalize Theorem A by replacing conditions (ii), (iii) and (iv) by less restricted conditions. We prove the following

Theorem. Let (X, d_1, d_2) be a bi-metric space such that

- (i) $d_1(x, y) \leq d_2(x, y)$ for all $x, y \in X$,
- (ii) T satisfies: $d_2(T^{2p}x, T^{2p}y) \leqslant \alpha$ $d_2(T^px, T^{2p}x) + \beta d_2(T^py, T^{2p}y)$ for positive integer, $p, \alpha > 0, \beta > 0, \alpha + \beta < 1,$
 - (iii) T^q is a continuous for some positive integer q at a point w in (X, d_1) ,
- (iv) there exists a point $x_0 \in X$ such that the sequence of iterates $\{T^n(x_0)\}$ has a subsequence $\{T^{ni}(x_0)\}$ converging to w in (X, d_1) .

Then w is a unique fixed point of T.

For the proof of the Theorem, we need the following Lemmas.

Lemma 1. Let (X, d) be a metric space and T a self mapping of X satisfying

$$d(T^{2p}x, T^{2p}y) \leq \alpha d(T^px, T^{2p}x) + \beta d(T^py, T^{2p}y)$$

for all $x, y \in X$ and $\alpha > 0$, $\beta > 0$, $\alpha + \beta < 1$, p being a positive integer. Then for any $x \in X$, the sequence of iterates $\{T^n(x)\}$ is a Cauchy-sequence.

Proof. Let $x \in X$. Define $T^p(x) = x_0$ and $T^p(x_{n-1}) = x_n$. Put $K = \alpha/1 - \beta$. Then

$$d(x_1, x_2) = d(T^{2p}x, T^{2p}x_0) \leqslant \alpha d(T^px, T^{2p}x) + \beta d(T^px_0, T^{2p}x_0) \leqslant \alpha d(x_0, x_1) + \beta d(x_1, x_2),$$

hence $d(x_1, x_2) \leqslant Kd(x_0, x_1)$. Again

$$\begin{split} d(x_2,\,x_3) \; &= d(T^{2p}x_0,\,T^{2p}x_1) \!\leqslant\! \alpha d(T^px_0,\,T^{2p}x_0) \; + \\ &\qquad \qquad + \beta d(T^px_1,\,T^{2p}x_1) \!\leqslant\! \alpha d(x_1,\,x_2) \!+\! \beta d(x_2,\,x_3) \; . \end{split}$$

Therefore $d(x_2, x_3) \leqslant K^2 d(x_0, x_1)$. In general, $d(x_n, x_{n+1}) \leqslant K^n d(x_0, x_1)$. Thus $\{x_n\}$ is a Cauchy-sequence.

Lemma 2. If T^n (n positive integer) has a unique fixed point w in a metric space X, then w is the unique fixed point of T in X.

Proof. Simple.

Remark. The converse of Lemma 2 is not necessarily true. For let X = [0, 1], with the usual metric. Suppose $T: X \to X$ such that T(x) = 1 - x for all $x \in X$. Then T has a unique fixed point but T^2 has none.

Proof of the Theorem. Let $T^p(x) = x_0$, $T^p(x_{n-1}) = x_n$. Then $\{x_n\}$ is a Cauchy-sequence in (X, d_2) and from (i) it is a Cauchy-sequence in (X, d_1) . By (iv) a subsequence of $\{x_n\}$ converges to w in (X, d_1) . Now we have

$$\lim_{i \to \infty} x_{n_i} = w \qquad \qquad \text{in} \quad (X, d_{\mathbf{I}}) .$$

Also T^q is continuous at w in (X, d_1) . Therefore

$$T^{\boldsymbol{q}}(w) = T^{\boldsymbol{q}} \bigl(\lim_{i \to \infty} x_{n_i} \bigr) = \lim_{i \to \infty} T^{\boldsymbol{q}}(x_{n_i}) = \lim_{i \to \infty} (x_{n_i+\boldsymbol{q}}) = w \;.$$

Now we shall show that w is a unique fixed point of T^q . For if $x \neq y$, $T^q(x) = x$ and $T^q(y) = y$, we get

$$d_2(x, y) = d_2(T^{2pq}x, T^{2pq}y) \leqslant \alpha d_2(T^{pq}x, T^{2pq}x) + \beta d_2(T^{pq}y, T^{2pq}y)$$

 $\leqslant \alpha d_2(x, x) + \beta d_2(y, y)$.

Thus w is a unique fixed point of T^q . Therefore w is a unique fixed point of T.

Remarks. (a) Condition (ii) can be replaced by any condition which gives a Cauchy sequence. (b) If $d_1 = d_2$ and q = p, our theorem reduces to a theorem of Gupta and Khan [1].

Example. Let X = [0, 1] with usual metric space, and $T: X \to X$ be defined by T(0) = T(1) = 0, T(x) = 1 for all $x \in (0, 1)$. Then T is not continuous so it does not satisfy the condition (ii) of Theorem A since a contraction mapping with respect to any metric has to be continuous.

But $T^2(x) = 0$ for all $x \in [0, 1]$. Hence T^2 is continuous and satisfies condition (iii) of our theorem.

References

- [1] V. K. Gupta and M. S. Khan, Some fixed point theorems, (to appear).
- [2] M. G. Maia, Un'osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova 40 (1968), 139-143.

Abstract

A sufficient condition for the existence of a unique fixed point of a self mapping of a bi-metric space has been obtained.

* * *