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S. 0. CHOUDHARY aa K. TEWART (%)

(¥B) - property in near-rings (**)

Introduction.

In this paper we study near rings with (N B)-property i.e. near-rings which
are nil and of bounded index. It is shown here that B(¥), the sum of all the
(NB) ideals of IV, is a nil ideal, but it need not be (N B). However, it is found
that B(N) becomes (NB), if N satisfies the maximum condition of (NB) ideals
or minimum condition on nil ¥-subgroups. Further, B*(N) is defined as the
intersection of all ideals A of N such that N/4 contains no non-zero (NB)-
ideal. Then B*(N) is a nil ideal and N/B*(N) contains no non zero (NB) ideal.
Following the construction of Baer lower radical in ring theory, the construec-
tion of B*(N) is given. The effect of d.c.c. on B(N) and B*(N), and their rela-
tion with other radicals is also seen.

1. - B(N) the sum of all (NB) ideals of .

L1. - Definition. Let N be a right near-ring. N is said to be (NB):
nil and of bounded index, if there exists a fized positive integer n > 1 such
that r» =0, for every reXN.

For other definitions, we refer to [1],, [1],, [8],[6].

It is clear that nilpotence property implies (N.B) property which in turn
implies nil property.

(*) Indirizzo degli Autori: 8. C. CmoupHARY, Dept. of Math., University of
Udaipur, Udaipur, India; K. Tewarr, Dept. of Math., Indian Institute of Techno-
logy, Kanpur-203016, India.
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1.2. - Definition. A ideal (N-subgroup) 4 of N is said to be (NB)
ideal ((NB)N -subgroup) if there exists a fiwed positive integer m such that
ar==0 for all ¢ in A.

Remarks. 1. Homomorphic image of an (NB) near-ring (ideal) is again
an (NB) near-ring (ideal).

2. Let 0: N—N' be a near ring epimorphism such that ker § is an
(NB) ideal of N. Then inverse image (under ) of an (NB) ideal of N’ is an
(NB)-ideal in N. Hence if N/ker 0 is an (N.B) near-ring, then N is an (¥ B)
near-ring.

1.3. — Theorem. ZThe sum of two (NB) ideals By and B, of N is an (NB)
ideal of N.

Proof. This is an easy consequence of the near-ring isomorphism (B, -
~+ B,)/By =~ B,/B,N B, and the remarks above.

1.4. — Corollary. The sum of a finite number of (NB) ideals is again
an (NB) ideal.

Let B() denote the sum of all the (¥B) ideals of N. In the following we
construct an example to show that there exists near-rings for which B(¥)
need not be (NB) ideal. For this we first take the commutative ring R given
in[3], (pp. 19-20).

1.5. — Example. Consider the set of symbols X, where « is any rational
number between 0 and 1. Liet F be a field of characteristic zero, and R be the
commutative algebra over F with {X;|0<a< 1} as basis. Multiplication of
basis element is given by

XocXﬁ:XOH—ﬁ if Ol+ﬁ<1, XaXﬁZO if OC+/3>1.

R, considered as a ring, is the set of all finite sums > 1, X., where luc F-R
is commutative and R == S(R), the sum of all nilpotent ideals of R. More-
over R is nil, but not nilpotent[3]. :

Since every nilpotent ideal is (N B) ideal, we have E = S(R) C B(R). Hence
R = B(R). We claim that B(R) (= R) is not (¥B). For if R is (NB), then
it must be nilpotent being nil algebra of bounded index over a field of char-
acteristic zero ([4], theorem 1.13).

With the help of the above ring E we can always constluct & ne‘u’dmg N
which is not a ring and for which B(¥) is not (¥.B).. This we can do by taking



[3] (NB)-PROPERTY IN NEAR-RINGS 31

N =R XxN', where N' is a near-ring. Then N, together with pointwise addi-
tion and pointwise multiplication, is a near-ring. Also N~R @ N'. Since
this is a direct sum of ideals, it can be seen that every ideal of R is also an
ideal of N. Also, every (NB) ideal of R is (NB) ideal of N. Hence B(R)
CB(N). If B(N)is (NB), then B(R) is also (N¥B) which is not the ecase. Hence
B(N) is not an (NB) ideal of N.

1.6. - Proposition. Let E be an ideal of N such that N/E con-
tains no non-zero (NB) ideal, then B(N)C .

Proof. 0: N — N/F be natural near-ring epimorphism. Then by above
remarks, for any (NB) ideal 4 of N, 0(4) is an (NB) ideal of N/E. Hence
6(4) is zero ideal of N/F; that is, 4 CE. Hence B(N)CE.

We have seen that B(N) may not be (¥NB) ideal of N. However, we have:

17. - Proposition. B(N) is a nil ideal.

Proof. TLet U(YN) denote the sum of all nil ideals of N. Then N/U(N)
contains no nonzero nil ideal[6],[7], and, so, N/U(N) contains no nonzero
(¥B) ideal. Hence B(N)C U(N). Since U(N) is nil, B(N) is a nil ideal.

1.8. — Theorem. If B(N) is (NB) ideal, then B(N/B(N)) = (0).

Proof. Let A/B(N) be any (NB) ideal of N/B(N). Since B(N) is (NB),
A is an (NB) ideal of N. Hence A C B(N), which means that N/B(N) has no
non-zero (NB) ideal. Hence B(N/B(N)) = (0). :

2. « B*(N) and its construction.

2.1. — Definition. For any near ring N we define

B*(N)=N[A|4 ideal of N such that N /A contains no nonzero (¥NB) ideal].

2.2. — Theorem. N/B*(N) contains no non-zero (NB) ideal and B*(N)
%8 a il ideal.

Proof. Let K/B*N) be an (¥NB) ideal of N/B*(N). Then there exists a
fixed positive integer n such that (k- B*(N))"= (0) for each keX. But
then k»e B*(N) for each ke K and for a fixed positive integer n.

If 4 is any ideal of I such that N/A4 contains no nonzero (N.B) ideal, then
B*(N)C A. Therefore, k" € A for each k € K and a fixed integer n > 0. Hence
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(K -+ A)/A is an (NB) ideal of N/A. Since N/A contains no non-zero (NB)
ideal, we have that (K -+ A)/A = (0); that is, K C 4 for every A such that
N/A has no nonzero (NB) ideal. Hence K C B*(N), which proves that N/B*(N)
has no non-zero (NB) ideal.

To prove that B*(N) is a nil ideal, we note that N/U(N), where U(N) is
the upper nil radical of ¥, (i.e. sum of all nil ideals of N) contains no non-zero
nil ideals and hence contains no non-zero (NB) ideal. Hence B*(N)< U(N)
and so B¥() is a nil ideal.

2.3. — Corollary. B(N)C B¥(N).

24. - Remark. Recall[6],[7], that the lower nil radical, L(N), of ¥
is the intersection of all ideals A of N such that N/A contains no non-zero
nilpotent ideal. Since every nilpotent ideal is (NB), we have that L(N)
C B¥(N). Hence we have the following chains

(a) S(N)CB(N)CB*(N)C U(N)CJo(N)CD(N)C T (N)C Jo(N),
() S(N)SL(N)CB*(N)C U(N)CJIo(N)CD(N)C I (N)C J(N) .

Here S(N) is the sum of all nilpotent ideal of N; J,(N)= N{[L/N]|L »-mod-
ular left ideal of N } (»=0,1,2); and D(N) is the intersection of all mod-
ular maximal left ideals of N [2],[6],[8]. If N has identity then it is known
that J(N) = Jo(N). In this case it is denoted by J(N). Hence for nearings
with identity we also have the chains

(¢) S(N)CL(N)CB*(N)C UN)CJo(N)SDN)CJ(N)C.F*,
(d) S(N)CL(N)CB*(N)C U(N)CJ,(N)CD(N)c %,

where 2* is a radical ideal and & is a strong radical ideal of N [1],, [6].

2.5. — Construction of B*(N). We now give the eonstruction of B*(N) on
the lines of the construction of Baer lower radical in ring theory.

Let N be a near-ring. Since B(N) is not necessarity (NB), N/B(N) may
contain (NB) ideals. Let N; be the ideal of ¥ such that N,/B(N) is the sum
of all (NB) ideals of N/B(¥). In general, for every ordinal o, which is not a
limit ordinal, we define N, to be the ideal of N such that N,/N,., is the sum
of all (NB) ideals of N/Ns—,. If « is a limit ordinal, we define No= > Ny,

B<ee
whenever N is defined. In this way we obtain an ascending chain of ideals

B(N)CN;CN,C...CNaC ...
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If the set N has ordinal number », then after atmost » steps this chain must
stop. 'We may then consider the (smallest) ordinal v such that Ny= N, ==....
We claim that N.= B¥(N).

2.6. — Theorem. B¥HN)= N-..

Proof. From the construction it is clear that N/N, contains no non-zero
(NB) ideal. Therefore B*(N)C N..

Conversely, let 4 be any ideal in N such that N/4 contains no non-zero
(NB) ideal. Then B(N)C.A. By transfinite induction assume that NzC 4
for every f<o«. If « is a limit ordinal, then No= > NzC A.

B<a
If « si not a limit ordinal, then o — 1 exists and Ny, C A. We prove that

NoCA, If Naug 4, then there exists an (NB) ideal C/Nx—, of N/Nas, such
that C/Na—y ¢ A/Ns— (for, if all (NB) ideals of N/N,_, are contained in 4/N,—,,
then Nu/Ny— C A/Na—y, and so, N, C A, which is not the case). Hence O ¢ A.
Since /Ny, is (N B) ideal of N/Ns-, we have 17 C N, for every 2 in C and
a fixed positive integer m. This gives that Ame A for every 4 in C and a
fixed positive integer m. Hence (C 4+ A4)/4 is a non-zero (NB) ideal of N/A.
This contradicts the fact that N/4 has no non-zero (NB) ideal. Hence N,C 4
for every «. Hence N, C A for every A such that N/A has no non-zero (NB)
ideal. Hence N,C B*(N).

3. - Chain conditions and B(N), B*(N).

We first show that if N has A.C.C. on (NB) ideals then B(N)= B*(N).
For this we prove:

3.1. — Theorem. If N satisfies the maximum condition on (NB) ideals,
then B(N) is the largest (NB) ideal of N.

Proof. Since N satisfies the maximum condition on (NB) ideals, there
exists a maximal (¥B) ideal, say D which is the largest (NB) ideal of N,
We show that B(N)=D. Clearly, DC B(N). Now, let y € B(N)= Y Ba,

ael
where B.’s are (NB) ideals of N. Then y = bs -+ ba, + ... 4 ba,, ba,€ By,
(A<i<k). Also By, + Bs,+ ...+ Bs,+ D= D, since the left hand side is an
(NB) ideal containing D and D is a maximal (¥B) ideal. Hence y = b, +
-+ ...+ b, € D which gives that B(N)CD. Hence B(N)=D.

3.2, — Corollary. If N has mawmimum condition on (NB) ideals, then
B(N) = B*(N).
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. Proof. By 3.1, B(XN) is (NB) ideal and so B(N/B(N)) = (0). Hence
N[B(N) contains no non-zero (NB) ideal. Hence B*(N)C B(N). Since B(N)
is always contained in B*¥(N) we have that B(N)= B*(N).

3.3. — Theorem. If N satisfies d.c.c. on (NB) N-subgroups, then every
(NB) N-subgroup 1is wnilpotent.

Proof. Let C be any (NB) N-subgroup of N. For each positive integer «,
let O* denote the N-subgroup of N generated by the set ("= {¢,0,... ¢,|
le;eC}. Then (= (012(0220%2...0"20"12.,, is decreasing sequence of
(NB) N-subgroups of N. Since N has d.c.c. on (¥NB) N-subgroups, there
exists a positive integer k such that Cr= Ol = (%=.... Put B=C"
We show that B = (0). Let us assume that B (0). Also let BoB be the
N-subgroup of N generated by the set BB = {b;b,|0;, b, B}. Since B is an
N-subgroup of N, it contains BB, and therefore: B2BoB = (F o (2 (%=
C*= B. This gives that BoB = B and so BB 0. Now consider the col-
lection

. & = {L|L(NB) N-subgroup of N such that LCB and BL s 0} .

Since Be & , we have that & is not empty. Since N satisfies d.c.c. on (NB)
N-subgroups, & containg a minimal element, say D. So DCB and BD 3= 0.
Thus, there exists a d € D such that Bd == 0. Also Bd is an (NB) N-subgroups
of N contained in B, for BAC BDC BBCNBCB and B is (NB). Moreover
N(Bd)z= 0. To see this, consider the map 0: N — N given by 0() = rd for
all ¥ in N. Clearly, 0 is an N-homomorphism. If B(Bd) = 0, then (BB)d =0
and so BB Ckerf. This implies that BoBCker and so B Cker0, which
means 6(B) = Bd = 0. Hence B(Bd)s 0. So Bde %. Since D is a minimal
element of & we have that Bd = D. So d = bd for some b B. Since B is
(N B), there exists a (fixed) m such that bdm= 0 for all beB. Hence d=bd
= b02d = b3d = ... = b*d = 0 +which is a contradiction. Hence B = C*= 0
and O is nilpotent. ' ‘

34 - Corollary. If N satisfies d.c.c. on (NB) N-subgroups then B(N)
= S(N), the sum of all nilpotent ideals of N.
- Proof.We always have S(V) QB(N). .Since N has d.c.c. on (NB) N-sub-
groups, every (INB) ideal is nilpotent. Hence B(N)C S(NV).

“ “Laxton ([5], theorem 2.6) proved that if N is a d.g. near-ring with iden-
tity which satisfies the d.c.c. on N-subgroups, then every nil N-subgroup. is
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nilpotent. This was slightly generalised by Beidleman, who proved [1], that
it ¥ is a d.g. near-ring with identity which satisfies the d.c.c. on nil N-sub-
groups, then every nil N-subgroup is nilpotent. The following theorem shows
that the hypothesis of d.g. ness with identity in the above cited result is not
necessary.

3.5. —~ Theorem. Let N be a near-ring satisfying d.c.c. on nil N-sub-
groups, then every nil N-subgrowp is nilpotent.

Proof. Replace (NB) by nil in the proof of the Theorem 3.3.
Since U(XN) is a nil ideal, the above theorem together with the Remark 2.4
gives.

3.6. — Corollary. Let N satisfy d.c.c. on nil N-subgroups, then B(N) and
B*(N) are nilpotent ideals, and S(N)= B(N)= B*N) = L(N) = U(N).

Since every nil N-subgroup is left quasi regular, we have that d.c.c. on
left quasi regular N-subgroups implies d.c.c. on nil N-subgroups.

Hence by ([6], 6.8(¢)) and above corollary we have that:

3.7. — Corollary. Let N satisfy d.c.c. on left quasi regular N -subgroups,
then S(N)= B(N)=L(N)= B*(N)= U(N) = Jy(N).
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Summary

See Introduction.
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