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Some results on Wiener-Hopf equations

on finite intervals. (**)

1. - Introduction.

1.1. - We study integral equations of the I kind of the form

(1.1) | oly) K(z—y) dy = {(») el ,

E

where K € L ,(R), f is a tempered distribution and E is the hali-line R+ or
the interval 10, 1[. We solve explicitly the equation (1.1) when F = R,
K(») = |z|~*; 0 <a<1, and f belongs to Hi(R*) (a normed vector space that
is isomorphic to the weighted Sobolev space Wi(R+) when reﬁ). When
E =10, 1[ we shall prove that the kernel of the equation (1.1} is finite dimen-
sional provided that K satisfies suitable hypotheses.

1.2. — There are some boundary value problems that can be reduced to
an integral equation of the form (1.1). For example, eonsider the homogeneous
equation

{1.2) sgn () |@] P Uy — Ue=0 p>—1.
We are looking for a solution of (1.2) belonging to some weighted Sobolev

space such that w(z) = h(z) a.e. on z € R+, where h is a given function. The

(*) Indirizzo: Ist. Mat. Politecnico di Milano, Piazza Leonardo da Vinei, 20100
Milano, Italy.
(**) Lavoro eseguito nell’ambito del G.N.A.F.A. (C.N.R.). — Rieevuto: 11.VII-1977.
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problem was studied by Pagani in [4],, [4], using an integral transformation
technique, but it is possible to show that the problem can be reduced to solve
the integral equation

- o

f g = () veR",

o — gyl

0

where oo ==1—1/(p + 2) and f is a known function depending on k. The
unknown ¢ is the trace of wu,(®, y) on {& = 0, y > 0}. Other boundary value
problems bring to an equation of type (1.1) where E is a finite interval; for
example we could get a solution ue H™(R}) of the Helmholtz equation
Wpo—+ Uyy— % = 0 when the trace of the solution % and of its derivative u,
are given respectively in J, = {#|0 <& <1} and J, = {#|z> 0, z < 1}, sol-
ving an integral equation of type (1.1) where ¥ = 10, 1[ and the convolu-
tion kernel K(z) is the modified Bessel function of IIT kind [8]. One can
find some results about equations on finite intervals in [2] and [7].

" 2. - The convolution equation when F = R+ and K(z) = |a]-1%%, 0<a< 1.

2.1. — Consider the convolution equation of the I kind
. +o
, Py) ' ; ,
D) . LA AT = .
(2.1) f ;mny[l—“d‘y (@), zeR™, 0<a<l.
0

Here (2.1) means exactly

(2.2) supp ¢ £ [0, - oo, supp (f — [@|+*% p) C]— oo, 0] .
We have the following

Theorem 2.1, Let feH; , (Rt):seR, 0<a<<l, a<qg<1. Then
there exists one and only one solution ¢ € H Y (R*) of the equation (2.1). ¢ sat-
isfies the inequality _]Iqb[!n,_“ = Cff sz’ , where C depends only on .

Stg—a $tg—a
Remarks. 1) Let

F(R)= {ue C=(R)|Vh, ke N°, pu(u)==sup |#"u®(z)| < -+ oo}
PR . M . zeR
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topologized by the family of seminorms {p,}. For each £e R let

PART)={u e 0=(]0,4 ool) | Ym, ne N°, ¢ (u)= sup |log" & a"—*" ) (x) ) | <+oo}

ze R*

topologized by the family of seminorms {q(*)} Let &/(R) and f/’é(R"r) the
dual spaces of P(R) and Ss(R¥) respectively. For each ge¥ sy we define
T_¢g: R3t > exp [é]g(exp [t]). 7-s+1 is an algebraic and topological isomor-
phism of &_z, onto . (the space of quickly decreasing functions). Let

4o

VgeSs e,  Geln) = (Heg)n) = [ a5 =ing(2) dz = (v_¢ag)"(0)

0

the Mellin transform of g. Obviously .#: is an algebraic and topological iso-
morphism of .¥_¢, onto & k

For each 8§ E.S”; we define ¢:8:% 3 f > S(z7'f); o is an algebraic and topo-
logical isomorphism of 7’: onto &’ (the space of tempered distributions).
f/’_gﬂgé"; with continunous injeetion. It is quite obvious that os is the con-
tinuous extension of 7-g1;; we can also extend the Mellin transform to the
whole space y in this way: VS EH’ S = (M:8) = (0:8)

This extelmon is an algebraic and topological isomorphism of / onto &',

Now let Hi(Rt) = fucys_rl(l 4 @) 2q (@) e LAR)} equipped by the norm

Jud o = ( f (14 @)y (2)]* da)?

It is easy to see that ,9”;_,(R+) 2 HY(R¥) 25y, (RY) 2 Z(RY) 50 that
I oy RY) = HYR*). Moreover V&, 1€ R, g:: u > osu is an isomelry between
Hi,, and H'. TFor other information about this argument see (1.

Tet 0 <<l a<<q<1land seR. Let &, and S —u-x topologized

respectively by the norm |-} ,_, and |- Iu"‘ . It is easy to see that the
Opel'ﬂt()l' shg—o 8t q—a
e
T: 9 i(RY oW g R*
A0S —Jl-;—l( )9‘77 = |J/‘ Jll_a dll/ E’/“(q—a)ﬂ ( )
0
is continuous. Therefore the operator
(23) IL{ Bk y—'h‘l—“ HL s+q—- S > W!’H““ P EHH—q & —j:‘(a—ﬂ;rl

is the continuous extension of 7' to Y_,¢;.
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2). Let K(x) = exp [#(q— )]/ |exp [#] — 1|*%; then K e LY(R) and

(2.4) KE(&) = f exp [—iéx] K (z) do = Nx)

R

I(q— o — &) {1 |, sina(g— a»—if)}
I'(q—i&) sin 7r(q — &)

By routine computations we have
(2.5) VEeR, K()+0; C,< |K(®)|(1 + &)< ¢, 0y, Cie R+
The following lemmas will be used in the proof of Theorem 2.1.

Lemma 2.1. Let se R, K the same as in (2.4) and yp € H'(R). Then the
convolution equation % K = 0 has only the trivial solution y = 0.

Lemma 2.2. Let se R, K the same as in (2.4) and g € H'(R) given. Then
the convolution equation

(2.6) px K =g

Proof. By Fourier transform on (2.6) and from (2.5) we have

9.7 EI— - 2)(s—a&)/2 {7 2dé = ) 2)(s—a)f2 ﬂé_)lz
@0 Poliome= [ 0+ o ipeas = [ g

R R

1 Al e _ 1 H
§E,[ (14 £)2|4(&)|2 ag ~—51Ugllus<+m-
R

Proof of Theorem 2.1. Let us consider equation (2.6); by Lemma 2.2
the unique solution v satisfies the inequality

1
(2.8) K7 PERE G, lgllas -

Let g =o'y and f=o071,9.As § = (o‘,,«p)A =@, and § = (6,-af)” = fouu,
from (2.7) we have pe Hi7Z_, and fe H), ..
The equation (2.6) becomes

(2.9) (0.p) % K = 6,-af, o (oap)x K]=F, Ap =1,

[ et *
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where 4 is a continuous, with a continuous inverse and one-to-one operator
from H;7% . onto H,,, . (in fact (K %) is a continuous, with a continuous
inverse and one-to-one operator from Hs<* onto H*®). We can conclude that
the functional equation (2.9) where f is given in H’ +e-BF) has one and only

one solution pe H,[ 5  (R*) given by §,= foa/E and which satisfies the ine-
quality ¢] .. =(1/0) [f] .

Shg—rx 8fgax
‘We now show that 4 is the convolution operator (2.3).

We know that there exists a sequence {g.},.n in (R) converging to g
in the norm of H:(R).

For each m consider the equation (¢ R)
(2.10) (K s pu)(a) = gul(a) acR.

The solution ,, belongs to F(R) and {pm}mem converges to y in the norm
of H-*R). For each m there exist two functions: g, €L -n(R¥) and f,€
€S —gemyna(RY) such that o,@, = pn and G-afn= gn. Moreover {p,},.n con-
verges t0 g= o, 'y in the norm of H;* , and {f,},cn converges to f= o9
in the norm of Hj, _, .

Now we have (YmeN°, acR, zeRY)

(K * "/)m)(a’) = gm(“) < (K * O'q(Pm)(a) = (Gq—fxfm)(a') <>

exp [(@— b)(g— a)]
) lexpla—b]—1|1-@
R

exp [gblpn(exp [b]) db = exp [(¢ — &) a]f.(exDp [a]) <=

4+
1
f To— g Pn(¥) 4 = Fu(@) .
0

So the operator (1/ |@|*-=#) is the restriction to &, (R¥) of the continuous
operator A. The proof is now complete.

2.2. — The equation (2.1) ean be solved in the Sobolev space H*R). We
have the following

Lo

Theorem
solution ¢ of (

.2. Let fe H(R) and s— a/2>—%. Then there esists a
1) such that

bo

(2.11) peH'™*R), supp @ S [0, + oo[,
if the following conditions are satisfied

(2.12) —l<s—al2<};



322 E. PIAZZA [6]

there exists a positive integer n such that

(2.13) n—i<s—af2<n+4+% and ¢gP0)=0, (k=0,..,n—1);
i da
(2.14) $—ua/2 =1 and for some £>0 f lg(@)|2— <+ oo
x
[}

(2.15) s—af2=n-+1% and g?0)=0 (k=0,...,n—1) and for some >0

: Az
J1gm @ <+ oo
0

Here g is the distribution defined by
(2.16) §=— -

and I, is defined in this way

1'(2/2)

K@) = |o|-1*;  K(&) = ca|€]"%, co= (2m)} 20~} FA—2)

RO =EQOE (), E.)=veai~t; E.()=vaGiok; =&+,
K, and K. are holomorphic respectively in # > 0 and 5 < 0, and

K, (&) =\/c_“{ oxp [—imaf2] |£]=2,  £<0;

E—:x/?. , §> 0 ;
K_(¢§) = { ;fi[mm ]t ; ;}) ;

Moreover if s — a/2 — % is not an integer and (2.12) or (2.13) holds, we get

C
(2.17) ”‘P“ns‘“(x)é c—: I ety -
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If s— «/2— } is an integer and (2.14) or (2.13) holds, we get

«©

+ -
oo @yl T
Lrry g ()] ® =1 (>
0

where ¢, and , depend only on s.

@18 ol c{ il

Remark. The theorem is a slight modification of the Theorem 3.1 in [5].
Here the kernel K(z) = 1/]@|™* is not in LYR) and its Fourier transform
K(E) can be factorized in the product of two funetions K. ({) and K_({) such
that K.(2) and K_({), ({ = & + in) are holomorphic respectively in the upper
half-plane > 0 and in lower half-plane 5 << 0, but are not continuous in the
closure of these half-planes. Anyway the line of the proof works again with
some observations based on very simple inequalities.

3. - The convolution equation when T = ]0,1[.

Consider equation

(3.1) [ ¢(@) E@—y) dy = f(@) (0<a<1),

[

where K e LMR), supp K S[— 1, 1] and ¢ and f are tempered distributions.
The (3.1) means exactly

(3.2) {supp @ £ [0, 1]; supp (K % ¢ —f) ©1— o0, 0] U [1, + o[} .
We'll show under suitable hypotheses on K that the operator
(3.3) (K %): H=([0, 1]) e p > K % p € H*(J0, 1[)

has closed range and its kernel is finite dimensional. Here r, s are convenient
numbers that will be precised below.

For H*([0, 1]), z€ R we mean the closed linear subspace of distributions
y € H*(R) such that supp y S [0, 1], equipped with the norm |- [ H=([0, 11)
is an Hilbert space [9].

Precisely we shall prove the following

Theorem 3.1. Let 1?(5) be the Fourier transform of K. Supposc there
exist two functions K.(§), K_(&) such that:
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(i) fi'(f) = K(§), K_(§) and { =& + in > K (L) is holomorphic in 5> 0
and continuous in 1= 0; (==§&+ in> K () is holomorphic in 5 <0 and
continuous in 7= 0. ‘

(i1) Suppose there ewists p, ¢, Cy, O, C,, C,, real constants, such that
0< = (14 £ EL(0) | C, Vi innz0;

(3.4)
0<C= 1+ [L)PIE-(0)]S0, VYinns0;p4+g>0.

(iii) Let 4> 0, arbitrarily small, be fized; let 0 < B, arbitrarily large, be
fized
Si={&EnNn=ws1-21<o<1+2; 849> 4% .

Suppose there ewists O, >0, 6> 0, e > 0 such that

= n°(1 + & + g2)r—e:
(A + &)L oyl 7

(3.5) V(& ) edy | K& — K| < 0
where v = p 4 ¢.

(iv) Let fe H(R), — 3 <s—p <} Then every solution ¢ of (3.1) sat-
isfies the following inequality

(3~6) ”(P”u-"“"([o,n) ——<- C{”f”zz‘(]o,u)"{_ ”‘p”B"""“"([o,ﬂ)} 3

where o = min (r, &) and O is a positive constant not depending on .

Remarks,
1). By (3.4), |K(&)|<(C.Cy/(1 + £)7* and it is easy to see that

(L+ &4 o)
(14 &)L 4oyl

Ve, n |R)—R(©)| < 0,

2). Vn € Ny: 2°K(w) € LM(R). Then f((é‘) e C°(R) A\ VYn: l?‘"’(&)—>0,
when & — oo,

3). If there exists ¢> 0 and C,> 0 such that

(3.7) FAGIES
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then (3.5) holds. In fact let J; the set in (ili) of Theorem 3.1; we can also
write

J= {E,wf}l——lgwgl—}—l; &> (1 ﬁﬂwz)é}.

We have equivalently

(3.8) V& nedy: R — K@) =n—&- |R'&], where & = (¢, w),

(3.8) V& wEedy: |R(wd)— R(Q) |=|wE—&| |R'(@&)|, where &= o).
Obviously: 1— 2<@&<1-4 A By (3.7) we have

C, - 1 Cq
(14 @&)irtalz = (1—2)2 (14 g)lr+a

VE wEedy: | K'(@8)| <
Moreover

Yoo

(1 + &)l

and it is trivial that

Thus

(1 4 @&+ gr)lr—ae
(1 4+ &2yi2(] + w? ga)rlg

V&, wied,: | K@) < C,

and by (3.8) or (3.8)

B — B |§— (L + g o)r-o:
V&, ped,y: | K — K| = 0 0T &R + )i

4). In R™\J,; we have

|n—&l°(1 + &2 4 p2)-ol
(L4 2)P(L + )

3.9) Vo,0<o=1, Ye>0: | K@) —K(&)| =< Oy

This follows easily from the arguments above.
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5). TFor a result in [6] the (3.6) assures that the operator (3.3) has closed
range and its kernel is finite dimensional. -

Proof of Theorem 3.1. Suppose ¢ is a solution of (3.1). Let
2> k>0 and y,, y. € C° such that

(3.10) supp v S [— &, 2h], supp . S [h, 1 -+ 1],
Vo € [0, 1]: pi(w) 4 pu(w) =1 .

We write (3.1) in this way

1

[ o) E(@—y) dy —f(z) = 6(a) .

]

By (3.2) supp 0L ]— o0, 0] U [1, + oof.
We have

I o) K@ —y) dy —j(z) = 0(x) ,
(3.11) () ofl(p(?/)K(fv—:l/)d:I/~ ofl vy ey) Kw—y) dy +

1
+ [ v:@)ew) K@@ —y) dy —y,(2) f(@) = () 0(x) ,
]
where j=1,2. For j=1 we write the (3.11) in this way
1 -
(3.12) [ o) K@ —y) dy — Py() = ,(w) ,
0

where

=@ supp e, &[0,2h], IN=1y,f+ Kom, 0,=v,0, suppf,C]— o0,0],

1
Rom(@) = [ [1:(y) —pu(@)lp) K(z —y) dy = (K % (p1¢) — (K # @)} (@) o |
)

For j =2 we have the analogous formula of (3.12).
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For a result in[5)], if — J<s— p< i, the following inequality holds
[Pl ao=rqo,m = = On| 1) gorery, Where 7=1p + ¢. Now

I,

I én-*m*-') .

1
lran= | @) —v@)le@) K@ —y) dy|
[
By hypotheses supp p, E{— &, 2h], y. € C=([0, 2h]); then the moltiplication
for y, is a eontinunous operator in HS(]O 2R[) [3]. We get from this and other
easy considerations [if|pnry= Crelflmgoap - Consider now

o = }}f (1 -+ 52)3”{6;1 (&)jzaé

= NE D) H%(f NGE(E) — K(n)] dop |2 ag

R
fd£1+£ {I |62 B (&) — K ()| | (& —n) dy x

x [ [ulé—p)|du} = B, -
As |
p € CF(R) . yﬁley(R)»erRi{“ [ 2(6— p) |du < Oy

then from (3.3) and (3.9) Yo (0 <o=1), Yme N°:

)

Bis O {48 Q| |1+ &)1 —n) |- | K () — K

=Cu{ [+ |}
Jy R2NJ,

[GON2(L 4 & §—n|*o(L + & + 7*)°
=0 déd
= Uy { f Edny (1 + &)1 + Pyl + (E—nP2 +

|21 + E2)5 & —n|2(l 4 &+ 92y
dcd = B,.
+ f §dny (1 4 &)7(1 + )1 + (E—n)2]™ } 2

RNy

Here obviously €y depends only on s, #

B,< Cis J ak dn | Gn) 201 + E2-r (14 92
RB
[lE—nl* + [§—nl*]
L+ E—nrl”

X (L &2 4 ) =B,.
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Now [5]
Vi, & e R: (14 £ (L4 99t {F]E— | + [L 4 FHE—n2TH;

hence, putting & — » = 1, we have

26]X

By = Cw[ dy | g(n)|2(1 + 92) f def |7)*+ |v
R R
o BTl + A+ et

>< [1 + (T + 77)2 + 772]"- [1 + —r‘l]ﬂl

4.

If r—ex< 0 we get at once B,=< Oy |@|gs—2r(oy -

If r— &> 0, by the trivial inequality 1 - (v + %)z -+ 72< 3(1 + =31 + #%?),
we get B,=< Opllp|gs—r—cqoqy. Finally we have

”‘Pl”zzs-”([o,mé 018{”7”11‘(]0,1[) + ”‘p”zz"—"““([o,u)} ’

where o = min (#, ¢). In an analogous way we can get

”‘772 ”113“ T([0,11) = 19“””3‘(]0,1[) + ”‘p”H"'““([o,ﬂ)} .

But ¢ = ¢, + @,; then the (3.6) follows.
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Summary.

In this work we consider integral equations of Wiener-Hopf type on finite intervals.
We prove Peetre inequality for solutions in Sobolev spaces H®. We also solve a Wiener-
Hopf equation on the half-line in the weighted spaces HYR™) when the convolution kernel
s |m|~%, 0<a< L.






