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A Riesz representation theorem for measures. (**)

1. - Introduction.

Let S denote a non-empty set, let X be a o-algebra of subsets of § and let
ca(S, X) be all countably additive scalar valued measures on 2 with finite
variation. If X is a Banach space, then ca(S, 2) ® X will denote the closure
in variation norm of all finite sums of the form 3 u.; where ui€ea(S, L) and
;e X. Thus (3 ua)(B) = p(B)z; for Bel.

The main purpose of this paper is to obtain a representation theorem for
linear operators 7' from ea(8, ) ® X into Y, that are continuous in the varia-
tion norm. Here also Y is a Banach space. As a secondary result we charac-
terize such operators that are compact or weakly compact.

In [7], Mauldin characterizes the bidual of C[0, 1], the space of continuous
functions on the real interval [0, 1]. If w is in the bidual and if T'is a linear
operator on this space, then this representation is given by T'(u)= [ dy, where
the integral is defined in an appropriate manner. The techniques developed
in [7], depend strongly on T' being real valued. In [7], Mauldin represents
operators on the dual space of the space ca(S, X, X) of countably additive
Y-valued measures of finite variation. It is stated that the representation
holds if and only if X is a Radon-Nikodym space.

The results in [7], and [7], ave directly related with the results of Edwards
and Wayment found in [3]. In fact the integrals of [3] and [7], coincide on
a large class of functions. In essence the results in [3] represent operators
defined on point funections rather than set functions.
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Using techniques different than those in [7]; and [7], but reminiscent of
techniques used in [5] and [6], this article begins by showing that simple func-
tions belong to the bidual of the space under consideration. Even when Y
is the scalars, the ideas are very different from the ideas of [7];.

In [3] the notion of a convex set function is introduced and will be of cen-
tral importance here.

We will show the following. If 7 is a bounded linear operator from
ca(S, ) @ X into Y, then there exists a unique convex set function  from X
into L(X, Y**), subjected to some side conditions such that T'(m)=[m dy.
Here L(X, Y**) represents all bounded linear operators from X into the second
dual Y** of ¥. Of course the integral will be appropriately defined. More-
over the norm of 7' is {sup |w(4)]: A€ X}.

In addition we will show that, if v,. is an X*-valued set function defined
by w,. = {y*¥, p(E)), then T is weakly compact if and only if {y,.:y* € 0%} is
weakly sequentially compact. By ¢* is meant the unit ball of ¥*, the dual
of Y. Also T is compact if and only if the closure of all sums of the form
{2 w(d)e;: {4} pairwise disjoint; Y |@:| <1} is compact in Y.

In [1], we have developed representation theorems for operators on meas-
ures which are absolutely continuous with respect to some fixed measure.
In fact the operators in [1] need not be linear. There it was assumed thab
T(my + m,) = T(m,) + T(m,) whenever m, and m, ave concentrated on disjoint
sets.

2. = Main results,

Let m be an X valued measure defined on X, let ¢ be a set function defined
on 2 with values in ¥ and let (,) denote a bilinear form from X x Y into Z.
Throughout this paper X, ¥, Z will denote Banach spaces. By [m dy we
mean the limit (if it exists) of > (m(4), y(4)) over partitions = of § by sets
from X. Consequently we write

fmay =lim 3 (m(4), p(4)) -

T AER

In this article the bilinear form will be defined on spaces of the form
X xI(X, Y), where IL{X, Y) denotes all linear operators from X into Y that
are continuous in the norm. Thus we have (z, u) = u(®).

Following [7], we assume that the cardinality of ca(S, X) is 2%, Also we
assume the continuum hypothesis.
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‘We now quote a theorem of [7], which will be used here. Let & = (4,),e;
denote o maximal set of mutually singular measures, indexed by a set of ordi-
nals I. Without loss of generality we may, assume us(S) =1 for all wel.

Theorem 1 (see[7],). The subspace AC(S,2X) of ca(8, ) of all meas-
ures, which are absolutely continuous with respect to some finite sum from M,
is dense in the variation norm in ca(S, 2).

We are now ready to give a representation theorem for linear functionals
on ca(S, X) ® X. Hence we first resolve our question for the case that ¥
denotes the scalars.

Let {Ba} be a family of sets such that uy(Bs) = 0 if y <« and Us(B,) =0,
where B, denotes the complement of Ba.

Thus ps is concentrated on Bs. The family {Ba} is obtained as follows: let
Bys be so that pa(Bys) = 0 and pa(B,,) = 0, let Bx =[] Bya€Zs. In [T, it

y<«
is shown that, if B c B, and u«(B) > 0, then B does not have the same prop-

erty relative to other ordinals. Let p be defined on 2 o is us-convex if

pald) pnal(B)

AV B)= i A G B) p(4) + y(B) .

pa(AUB) "

Theorem 2. Lei T denote a continuous linear functional on ca(S, ) @ X.
Then there exists a unique set function y which is us-convex when restricted to
subsets of Ba, and such that yp(A) = 0 when for no o do we have A C Bawith
ua(B) > 0, and T(r)= [rdy.

Proof. Let us designate by fua(-) the measure [fdux Since f(us, -+ ---

)
wor + o) = fta, + ... + ftta,, Theorem 2 implies that finite sums of measures
absolutely continuous with respeet to some uq are dense in the variation norm

in ea(8, X). It follows from [4] that, if r < s, then

r=1lim ¥ B,

n Ee€n ,ULX(E)
where ul(:) = ua(EN(-)). Hence
. Hg
Try=1lm > (AT |—=1| .
( ) n Egn ( ) |:/‘0‘(E)]

If Fc Bye%Ba, set

I .
Y(8) = - Tl
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It B, and E, are disjoint subsets of B with ua(#,) > 0, us(l,) > 0, then

Tlu% Tlu5 E B,
ee] [ugz]j _ ua‘( 1)1 w(i,) + Ha( h)j
ua(By W By pa( By OBy pa(lly O Ey) pol(li v 1)

Y(B, U B,) = P(Hy) .

Let us now define p on 2 as follows:

T &
[g if Bc By and pa(B)> 0
u
p(B) = {"
0 otherwise .

Clearly v is p.-convex when restricted to subsets of B.. :
Let r=v, + ... 4+ r,, where 7, < ptoand b is one of the measures us.
Then

- . o Tl
T(r) =3 T(rs,) and T(r.)=1m Y 7, (H) Lol frs dy .
: ‘ ¢ n Eem salE) :

Thus Z'(r)= [ dy. By the density theorem stated above, we have that T'(r)=
= [rdy for all »€eca(S, £)® X. This completes our proof.

Now, let /'€ (ca(S, L) ® X)*, the dual of ea(8, X) ® X, where ca(S, X) ® X
denotes the closure in the variation norm of finite sums z M, with u; e
eca(8, X), w;€ X. If we define ¢} {(u) = f'(u-2), then it is clear that ¢f is a
linear functional on ca(8, 2). Moreover, |¢p < [f'| |#|. By Theorem 2 there
exists a set function vy, ., defined on X, such that ¢f{u) = fu dy., .

We are now in a position to represent continuous linear operators on
ca(S, L) ® X.

Theorem 3. Let T be a continuous linear operator from ca(S,2) R X
into Y. There exists a unique set function v from X into L(X, Y*%), which is
la-convex when restricted to subsets of Bu. In addition w(A) =0 if for no «,
A ¢ Ba with ps(B)> 0. Moreover, T(m)=[m dy as elements of Y**, and
17] = sup {JpA)]: 4 e X},

Proof. et Ec BsePx with pua(ll) > 0. For xe X let us define:

e @y 11D = pal By, o (B) .

Since p, 4 18 pa-convex on subsets of B,, the above expression is well defined,
that is, if B = B, U FE, where I, and I, are disjoint, then Yp % Yp @ =
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= yo-w. Sinee pa(S) =1 and since [¢%| = sup {y,,(4): 4 € X}, it follows
that ypa is in the bidual [ca(S, 2) @ X of ca(8,X) ® X. Now{H}is a
finite sequence of disjoint subsets from #. with u.(¥;) > 0.

“z ZE,-mi“ = sup- IZ<ZE£ @,y || = sup lE,uoc ”‘Pz ()]
fIri=<1 i<

< sup ’\Ia,x [l 7] e S)/Mfz,\ ] -

i<t

Let us proceed now to define y from X into L(X, ¥**) as follows:

T [xz®]
ua(H)

if BEcBse%x and us(L)>0
p(B)e =

0 otherwise .

We are denoting by 7" and 7T” the adjoint and double adjoint, respectively,
of T.

Recall that Y u;z; are dense in ca(S, 2) ® X. By the theorem of [7], we
may assume u,; < u., where p is one of the ps. We note that it is possible
for uf = ul when 4= j.

Now (T(S i)y §'> = (S patva, V9> = 3 {pavey, T'Y'> = 3 [ Ay goyr- I
EC Ba, pa(B)>0, then (T"(3sw),y"> = {xs® I'y'> = pal(B) 9,z (E).  Also
(T (x5), §'> = e B) p(B) @, y'>. Hence: (p(B)T, y'> = p,py(B).

Thus: {T(X pixs), ¥'> = > [u: Alp(- )@, y'> when p; < . Now

Juedlp (g, y'y =lim > (u{B)p(B)z:, y'>

Eem

=lim Y @E)u(B)x,y> = hm > p(BE)u B2,y .

T EeT Een

By [4], p; is the limit in variation norm of > (ui[Bn(-) NIEA(E)) ndE) as =

Een

is refined. Let K be any ui-convex set function from ¥ into L(X, Y**) which
in uniformly bounded in norm. Since it is easy to check that > (ui[En(-)]/ui(B))

. RET
are integrable with respect to K, it follows that u, is. Thus

lim Z u Byyp(B) e,

E3 Eenm

exists in the norm of Y** Thus

qud<w( Yoo, y'> = fum Ay, y'> LS paes), 4> = 2 e Ay, 4>
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Thus
T(m) = fmdyp for meeca(S, J) XX .

It is clear from the definition that vy is us.-convex on subsets of B, and
p(d) =0 if for no «a, 4 c Bx with u(d)> 0.

We now show that v is unique. Let ¢’ be a set function satisfying the
conditions of Theorem 3. Assume T'(m)=m dy’. Let us set m = W -z, where
wa(+) = (ua(A N () Jus(4) for A c ByeBx. Thus we see that |[v'(4)] < |T].

Now {T(p-@), y'>=[ndly'(*)z, y'>. Infact {f(u-2)dy’,y'> = dim 3 u(B)-

n BEen

' (E)a,y'>. As above it may be shown that u is integrable with respect to
p'(-)x. Thus

Juredy',y'> =1im Q w(B) Q' (B)a, y'»> = fpdly'@ )z, y'> .

x Een

Now

T(p-x)y y'> = pe@y, Ty = [ Ay, pry = [ A<l ()2, y'> -

So

Jud<y' (Y, y'> = pd<p()m, y'> .

By setting p= W, with A ¢ Bx€ %, and by using the us-convexity of u and v/,
-1t can be shown that [W,d{y'(-)x, y'> = {y'(4d)x, y'> and [W dl{p(- )z, y'> =

= (p(d)x, y'>. Hence it follows that p= y'.
By definition of [u dK it is obvious that |7]<sup |9(4)|. Thus |7T| =

== sup |y(4)]. This completes our proof. 1€
4eX

Let m be a measure from 2 into X. We say that m has an epproximate
Radon-Nikodym derivative if for every ¢ > 0 there exists a set function ¢ from X

n

into X of the form o= |m]| 4% Where A4, are disjoint sets of X and |m],,
k=1

is the contraction -of the variation of m to 4, and var [m— o]l < e

Let ca(8, X, X) denote X-valued countably additive measures of fimite varia-
tion.

Let us recall also that X has the Radon-Nikodym property if every X-valued
countably additive set function of finite variation, which is absolutely con-
tinuous relative to a positive measure of finite variation, has a density
(X-valued) with respect to that measure. For example, reflexive and sepa-
rable dual spaces have that property.
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Corollary. If X is a Radon-Nikodym space and T is a continuous linear
operator from ca(S, X, X), then T' admits the representation of Theorem 3. More-
over X has the Radon-Nikodym property if and only if ca(8S, X, X) = ca(8, L) @ X.
If the above representation holds for all spaces Y, then X has the Radon-Nikodym
property.

Proof. Now if X is a Radon-Nikodym space then every X-valued addi-
tive set function has the approximate Radon-Nikodym derivative. Thus
{3 i is dense in ca(S, X, X) = ca(S, L) ® X. Conversely if ca(S, X, X) =
= c¢a(S, X) ® X, then the above representation holds for operators from
ca(S, X, X) into X*. It is pointed out in [7], that this implies that X has
the Radon-Nikodym property. This completes the proof of our Corollary.

We now proceed to characterize compact and weakly compact operators.
To this end let co(S, X, Z) denote all set functions from X into Z which are pa-
convex when restricted to By, and which are zero on sets A such that for no «,
A C Ba with pa(4) > 0. If g is as in Theorem 3, let {p,.(4), z> = {y*, p(4)a).
Thus u,. € co(S, X, X*) and co(8, X, Z) is a normed space with [yp] =
= sup {|p(4)]: 4 € Z}. Finally let ¢* denote the wnit ball of X*.

Theorem 4. The operator T is weakly compact if and only if {y,.:y* €%}
is weakly sequentially compact in co(S, X, X*). It is compact if and only if
(Sypd)m: 3 o) <1, Ad;€ X, {4} pairwise disjoint} is precompact in Y.

Proof. Now T is weakly compact if and only if T is (see [2]). In addi-
tion

LT(y*), m) = y*, Tm)y = fm dgye .

Thus T#(y*) = v,.. Since [y, (4)]}<|p(4)] whenever y* €o*, one has y,.€
€ co(S, X, X*). By the Eberlein-Smulian Theorem (see [2]), T' is weakly com-
pact if and only if T%¢* is weakly sequentially compact.

Since W ,,,= (#al4)/al A U B)) W, + (ua(B)/us(A U B)) Wy for A and B
disjoint subsets of Bxe %, it follows that the unit ball in ca(S, 2) ® X is
the closure in variation norm of measures of the form ¥ W, »; where 4,c By,
{A,} are pairwise disjoint and 3 |z,] <1. Now I'is compact if and only if the
image of the unit ball of ca(8, X) ® X is precompact in Y, that is if and only
it {3 wd)e: Y o] <1, {4,} pairwise disjoint in X} is precompact in Y.
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Abstract.

Let 8 denote a non-empty set, let X be a o-algebra of subsels of S and let ca(S, X) be
all countably additive scalar valued measures on X with finite variation. If X is a Banach
space, then ca(S, X) ®@ X will denote the closure in variation norm of all finite sums of
the form z 1:%;, where p; € cal(S, X) and x,€ X. Thus (z A ES Z Bz, for Be X.
The main purpose of this paper is to obtain.a representation theorem for linear operators T
from ea(S, X) @ X into ¥ that are continuous in the variation norm. Here also ¥ is a
Banach space. As a secondary result, we characterize such operators that are compact
or weakly compact.




