R. A. ALÒ, F. BERTOLINI and A. DE KORVIN (*)

A Riesz representation theorem for measures. (**)

1. - Introduction.

Let S denote a non-empty set, let Σ be a σ -algebra of subsets of S and let $ca(S, \Sigma)$ be all countably additive scalar valued measures on Σ with finite variation. If X is a Banach space, then $ca(S, \Sigma) \otimes X$ will denote the closure in variation norm of all finite sums of the form $\sum \mu_i x_i$, where $\mu_i \in ca(S, \Sigma)$ and $x_i \in X$. Thus $(\sum \mu_i x_i)(E) = \sum \mu_i(E) x_i$ for $E \in \Sigma$.

The main purpose of this paper is to obtain a representation theorem for linear operators T from $ea(S, \Sigma) \otimes X$ into Y, that are continuous in the variation norm. Here also Y is a Banach space. As a secondary result we characterize such operators that are compact or weakly compact.

In [7]₁ Mauldin characterizes the bidual of C[0, 1], the space of continuous functions on the real interval [0, 1]. If μ is in the bidual and if T is a linear operator on this space, then this representation is given by $T(\mu) = \int \mu \, \mathrm{d} \psi$, where the integral is defined in an appropriate manner. The techniques developed in [7]₁ depend strongly on T being real valued. In [7]₂ Mauldin represents operators on the dual space of the space $ca(S, \Sigma, X)$ of countably additive X-valued measures of finite variation. It is stated that the representation holds if and only if X is a Radon-Nikodym space.

The results in [7]₁ and [7]₂ are directly related with the results of Edwards and Wayment found in [3]. In fact the integrals of [3] and [7]₁ coincide on a large class of functions. In essence the results in [3] represent operators defined on point functions rather than set functions.

^(*) Indirizzi degli AA.: R. A. Alò, Dept. Math., Lamar Univ., Beaumont, Texas 77710, U.S.A.; F. Bertolini, Ist. di Mat., Univ., 43100 Parma, Italy; A. De Korvin, Dept. Math., Indiana State Univ., Terre Haute, Indiana 47809, U.S.A.

^(**) The first and second Authors were partially sopported by NATO grant n. 835. — Ricevuto: 1-VI-1977.

Using techniques different than those in $[7]_1$ and $[7]_2$ but reminiscent of techniques used in [5] and [6], this article begins by showing that simple functions belong to the bidual of the space under consideration. Even when Y is the scalars, the ideas are very different from the ideas of $[7]_1$.

In [3] the notion of a convex set function is introduced and will be of central importance here.

We will show the following. If T is a bounded linear operator from $ca(S, \Sigma) \otimes X$ into Y, then there exists a unique convex set function ψ from Σ into $L(X, Y^{**})$, subjected to some side conditions such that $T(m) = \int m \, d\psi$. Here $L(X, Y^{**})$ represents all bounded linear operators from X into the second dual Y^{**} of Y. Of course the integral will be appropriately defined. Moreover the norm of T is $\{\sup \|\psi(A)\| : A \in \Sigma\}$.

In addition we will show that, if ψ_{ν^*} is an X^* -valued set function defined by $\psi_{\nu^*} = \langle y^*, \psi(E) \rangle$, then T is weakly compact if and only if $\{\psi_{\nu^*}: y^* \in \sigma^*\}$ is weakly sequentially compact. By σ^* is meant the unit ball of Y^* , the dual of Y. Also T is compact if and only if the closure of all sums of the form $\{\sum \psi(A_i)x_i: \{A_i\} \text{ pairwise disjoint; } \sum \|x_i\| \leq 1\}$ is compact in Y.

In [1], we have developed representation theorems for operators on measures which are absolutely continuous with respect to some fixed measure. In fact the operators in [1] need not be linear. There it was assumed that $T(m_1 + m_2) = T(m_1) + T(m_2)$ whenever m_1 and m_2 are concentrated on disjoint sets.

2. - Main results.

Let m be an X valued measure defined on Σ , let ψ be a set function defined on Σ with values in Y and let (,) denote a bilinear form from $X \times Y$ into Z. Throughout this paper X, Y, Z will denote Banach spaces. By $\int m \, d\psi$ we mean the limit (if it exists) of $\sum (m(A), \psi(A))$ over partitions π of S by sets from Σ . Consequently we write

$$\int m \, d\psi = \lim_{\pi} \sum_{A \in \pi} (m(A), \psi(A)).$$

In this article the bilinear form will be defined on spaces of the form $X \times L(X, Y)$, where L(X, Y) denotes all linear operators from X into Y that are continuous in the norm. Thus we have (x, u) = u(x).

Following [7]₁ we assume that the cardinality of $ca(S, \Sigma)$ is 2^{\aleph_0} . Also we assume the continuum hypothesis.

We now quote a theorem of [7]₁ which will be used here. Let $\mathcal{M} = (\mu_{\alpha})_{\alpha \in I}$ denote a maximal set of mutually singular measures, indexed by a set of ordinals I. Without loss of generality we may, assume $\mu_{\alpha}(S) = 1$ for all $\alpha \in I$.

Theorem 1 (see [7]₁). The subspace $AC(S, \Sigma)$ of $ca(S, \Sigma)$ of all measures, which are absolutely continuous with respect to some finite sum from \mathcal{M} , is dense in the variation norm in $ca(S, \Sigma)$.

We are now ready to give a representation theorem for linear functionals on $ca(S, \Sigma) \otimes X$. Hence we first resolve our question for the case that Y denotes the scalars.

Let $\{B_{\alpha}\}$ be a family of sets such that $\mu_{\gamma}(B_{\alpha}) = 0$ if $\gamma < \alpha$ and $\mu_{\alpha}(B'_{\alpha}) = 0$, where B'_{α} denotes the complement of B_{α} .

Thus μ_{α} is concentrated on B_{α} . The family $\{B_{\alpha}\}$ is obtained as follows: let $B_{\gamma\alpha}$ be so that $\mu_{\alpha}(B_{\gamma\alpha}) = 0$ and $\mu_{\alpha}(B_{\gamma\alpha}') = 0$, let $B_{\alpha} = \bigcap_{\gamma < \alpha} B_{\gamma\alpha} \in \mathscr{B}_{\alpha}$. In [7]₁ it is shown that, if $B \subset B_{\alpha}$ and $\mu_{\alpha}(B) > 0$, then B does not have the same property relative to other ordinals. Let ψ be defined on Σ ; ψ is μ_{α} -convex if

$$\psi(A \cup B) = \frac{\mu_{\alpha}(A)}{\mu_{\alpha}(A \cup B)} \, \psi(A) + \frac{\mu_{\alpha}(B)}{\mu_{\alpha}(A \cup B)} \, \psi(B) \, .$$

Theorem 2. Let T denote a continuous linear functional on $ca(S, \Sigma) \otimes X$. Then there exists a unique set function ψ which is μ_{α} -convex when restricted to subsets of B_{α} , and such that $\psi(A) = 0$ when for no α do we have $A \in B_{\alpha}$ with $\mu_{\alpha}(B) > 0$, and $T(r) = \int r \, \mathrm{d}\psi$.

Proof. Let us designate by $f\mu_{\alpha}(\cdot)$ the measure $\int_{(\cdot)} f d\mu_{\alpha}$ Since $f(\mu_{\alpha_1} + ... + \mu_{\alpha_n}) = f\mu_{\alpha_1} + ... + f\mu_{\alpha_n}$, Theorem 2 implies that finite sums of measures absolutely continuous with respect to some μ_{α} are dense in the variation norm in $ca(S, \Sigma)$. It follows from [4] that, if $r \ll \mu_{\alpha}$, then

$$r = \lim_{\pi} \sum_{E \in \pi} \frac{\mu_E^{\alpha}}{\mu_{\alpha}(E)} r(E)$$
,

where $\mu_{\scriptscriptstyle E}^{\alpha}(\cdot) = \mu_{\alpha}(E \cap (\cdot))$. Hence

$$T(r) = \lim_{\pi} \sum_{E \in \pi} r(E) T\left[\frac{\mu_E^{\alpha}}{\mu_{\alpha}(E)}\right].$$

If $E \subset B_{\alpha} \in \mathcal{B}_{\alpha}$, set

$$\psi(E) = rac{\mathrm{I}}{\mu_z(E)} \; T[\mu_E^{lpha}] \; .$$

If E_1 and E_2 are disjoint subsets of B_{α} with $\mu_{\alpha}(E_1) > 0$, $\mu_{\alpha}(E_2) > 0$, then

$$\psi(E_1 \cup E_2) = \frac{T[\mu_{E_1}^{\alpha}]}{\mu_{\alpha}(E_1 \cup E_2)} + \frac{T[\mu_{E_2}^{\alpha}]}{\mu_{\alpha}(E_1 \cup E_2)} = \frac{\mu_{\alpha}(E_1)}{\mu_{\alpha}(E_1 \cup E_2)} \, \psi(E_1) + \frac{\mu_{\alpha}(E_2)}{\mu_{\alpha}(E_1 \cup E_2)} \, \psi(E_2) \; .$$

Let us now define ψ on Σ as follows:

$$\psi(B) = egin{cases} rac{T[\mu_B^lpha]}{\mu_lpha(B)} & ext{if } B \in B_lpha ext{ and } \mu_lpha(B) > 0 \ 0 & ext{otherwise} \ . \end{cases}$$

Clearly ψ is μ_{α} -convex when restricted to subsets of B_{α} .

Let $r=r_{\alpha_1}+\ldots+r_{\alpha_k}$, where $r_{\alpha_i}\ll\mu^i_{\alpha}$ and μ^i_{α} is one of the measures μ_{α} . Then

$$T(r) = \sum T(r_{\alpha_i})$$
 and $T(r_{\alpha_i}) = \lim_{\pi} \sum_{E \in \pi} r_{\alpha_i}(E) \frac{T[\mu_E^{\alpha_i}]}{\mu_{\alpha}(E)} = \int r_{\alpha_i} d\psi$.

Thus $T(r) = \int r \, d\psi$. By the density theorem stated above, we have that $T(r) = \int r \, d\psi$ for all $r \in ca(S, \Sigma) \otimes X$. This completes our proof.

Now, let $f' \in (ca(S, \Sigma) \otimes X)^*$, the dual of $ca(S, \Sigma) \otimes X$, where $ca(S, \Sigma) \otimes X$ denotes the closure in the variation norm of finite sums $\sum \mu_i x_i$ with $\mu_i \in ca(S, \Sigma)$, $x_i \in X$. If we define $\varphi_{f'}^x(\mu) = f'(\mu \cdot x)$, then it is clear that $\varphi_{f'}^x$ is a linear functional on $ca(S, \Sigma)$. Moreover, $\|\varphi_{f'}^x\| \leq \|f'\| \|x\|$. By Theorem 2 there exists a set function $\psi_{x,f'}$ defined on Σ , such that $\varphi_{f'}^x(\mu) = \int \mu \, \mathrm{d} \psi_{x,f'}$.

We are now in a position to represent continuous linear operators on $ca(S, \Sigma) \otimes X$.

Theorem 3. Let T be a continuous linear operator from $\operatorname{ca}(S, \Sigma) \otimes X$ into Y. There exists a unique set function ψ from Σ into $L(X, Y^{**})$, which is μ_{α} -convex when restricted to subsets of B_{α} . In addition $\psi(A) = 0$ if for no α , $A \subset B_{\alpha}$ with $\mu_{\alpha}(B) > 0$. Moreover, $T(m) = \int m \ d\psi$ as elements of Y^{**} , and $||T|| = \sup\{||\psi(A)|| : A \in \Sigma\}$.

Proof. Let $E \subset B_{\alpha} \in \mathcal{B}_{\alpha}$ with $\mu_{\alpha}(E) > 0$. For $x \in X$ let us define:

$$\langle \overline{\chi_E \cdot x}, f' \rangle = \mu_{\alpha}(E) \, \psi_{x,t'}(E) \; .$$

Since $\psi_{x,t'}$ is μ_{α} -convex on subsets of B_{α} , the above expression is well defined, that is, if $E = E_1 \cup E_2$ where E_1 and E_2 are disjoint, then $\overline{\chi_{E_1} \cdot x} + \overline{\chi_{E_2} \cdot x} =$

 $=\overline{\chi_{E}\cdot x}. \text{ Since } \mu_{\alpha}(S)=1 \text{ and since } \|\varphi_{I'}^{x}\|=\sup\left\{\psi_{x,I'}(A)\colon A\in\Sigma\right\}, \text{ it follows that } \overline{\chi_{E}x} \text{ is in the bidual } [ca(S,\Sigma)\otimes X]^{**} \text{ of } ca(S,\Sigma)\otimes X. \text{ Now } \{E_i\} \text{ is a finite sequence of disjoint subsets from } \mathscr{B}_{\alpha} \text{ with } \mu_{\alpha}(E_i)>0.$

$$\begin{split} \|\sum \overline{\chi_{\mathcal{B}_{i}} x_{i}}\| &= \sup_{\|f'\| \leqslant 1} |\sum \langle \overline{\chi_{\mathcal{B}_{i}} x_{i}}, f' \rangle| = \sup_{\|f'\| \leqslant 1} |\sum \mu_{\alpha}(E_{i}) \psi_{x_{i}, f'}(E_{i})| \\ &\leqslant \sup_{\|f''\| \leqslant i} \max_{i} \|\varphi_{f'}^{x_{i}}\| \mu_{\alpha}(S) \leqslant \max_{i} \|x_{i}\| . \end{split}$$

Let us proceed now to define ψ from Σ into $L(X, Y^{**})$ as follows:

We are denoting by T' and T'' the adjoint and double adjoint, respectively, of T.

Recall that $\sum \mu_i x_i$ are dense in $ca(S, \Sigma) \otimes X$. By the theorem of [7]₁, we may assume $\mu_i \ll \mu_{\alpha}^i$, where μ_{α}^i is one of the μ_{α} . We note that it is possible for $\mu_{\alpha}^i = \mu_{\alpha}^i$ when $i \neq j$.

Now $\langle T(\sum \mu_i x_i), y' \rangle = \langle \sum \mu_i x_i, t' y' \rangle = \sum \langle \mu_i x_i, T' y' \rangle = \sum \int \mu_i \, \mathrm{d} \psi_{x_i, T' y'}$. If $E \in B_{\alpha}, \ \mu_{\alpha}(E) > 0$, then $\langle T''(\overline{\chi_E x}), y' \rangle = \langle \overline{\chi_E x}, T' y' \rangle = \mu_{\alpha}(E) \, \psi_{x, T' y'}(E)$. Also $\langle T''(\overline{\chi_E x}), y' \rangle = \langle \mu_{\alpha}(E) \, \psi(E) x, y' \rangle$. Hence: $\langle \psi(E) x, y' \rangle = \psi_{x, T' y'}(E)$.

Thus: $\langle T(\sum \mu_i x_i), y' \rangle = \sum \int \mu_i \, \mathrm{d} \langle \psi(\cdot) x_i, y' \rangle$ when $\mu_i \ll \mu_\alpha^i$. Now

$$\begin{split} \int & \mu_i \, \mathrm{d} \langle \psi(\cdot) x_i, \, y' \rangle = \lim_{\pi} \quad \sum_{E \in \pi} \ \langle \mu_i(E) \psi(E) x_i, \, y' \rangle \\ &= \lim_{\pi} \quad \sum_{E \in \pi} \ \langle \psi(E) \mu_i(E) x_i, \, y' \rangle = \lim_{\pi} \quad \sum_{E \in \pi} \ \psi(E) \mu_i(E) x_i, \, y' \rangle \; . \end{split}$$

By [4], μ_i is the limit in variation norm of $\sum_{E \in \pi} (\mu_{\alpha}^i[En(\cdot)]/\mu_{\alpha}^i(E)) \ \mu_i(E)$ as π is refined. Let K be any μ_{α}^i -convex set function from \sum into $L(X, Y^{**})$ which in uniformly bounded in norm. Since it is easy to check that $\sum_{E \in \pi} (\mu_{\alpha}^i[En(\cdot)]/\mu_{\alpha}^i(E))$ are integrable with respect to K, it follows that μ_i is. Thus

$$\lim_{\pi} \sum_{E \in \pi} \mu_i(E) \psi(E) x_i$$

exists in the norm of Y^{**} . Thus

$$\int \mu_i \, \mathrm{d} \langle \psi(\cdot) x_i, y' \rangle = \langle \int \mu_i x_i \, \mathrm{d} \psi, y' \rangle \,, \qquad \langle T(\sum \mu_i x_i), y' \rangle = \langle \int \sum \mu_i x_i \, \mathrm{d} \psi, y' \rangle \,.$$

Thus

$$T(m) = \int m \, d\psi$$
 for $m \in ca(S, \Sigma) \otimes X$.

It is clear from the definition that ψ is μ_{α} -convex on subsets of B_{α} and $\psi(A) = 0$ if for no α , $A \subset B_{\alpha}$ with $\mu_{\alpha}(A) > 0$.

We now show that ψ is unique. Let ψ' be a set function satisfying the conditions of Theorem 3. Assume $T(m) = \int m \, \mathrm{d} \psi'$. Let us set $m = W_A \cdot x$, where $w_A(\cdot) = (\mu_\alpha(A \cap (\cdot)))/\mu_\alpha(A)$ for $A \in \mathcal{B}_\alpha \in \mathscr{B}_\alpha$. Thus we see that $\|\psi'(A)\| \leqslant \|T\|$.

Now
$$\langle T(\mu \cdot x), y' \rangle = \int \!\! \mu \, \mathrm{d} \langle \psi'(\cdot) x, y' \rangle$$
. In fact $\langle \int \!\! (\mu \cdot x) \, \mathrm{d} \psi', y' \rangle = \langle \lim_{x \to 0} \!\! \sum_{x \to 0} \!\! \mu(E) \cdot$

 $\psi'(E)x, y'$. As above it may be shown that μ is integrable with respect to $\psi'(\cdot)x$. Thus

Now

$$\langle T(\mu \cdot x), y' \rangle = \langle \mu \cdot x, T'y' \rangle = \int \mu \, \mathrm{d} \psi_{x, T'y'} = \int \mu \, \mathrm{d} \langle \psi(\,\cdot\,) x, y' \rangle .$$

So

$$\int \mu \, \mathrm{d} \langle \psi'(\cdot) x, y' \rangle = \int \mu \, \mathrm{d} \langle \psi(\cdot) x, y' \rangle$$
.

By setting $\mu = W_A$ with $A \in B_\alpha \in \mathscr{B}_\alpha$ and by using the μ_α -convexity of ψ and ψ' , it can be shown that $\int W_A d\langle \psi'(\cdot)x, y' \rangle = \langle \psi'(A)x, y' \rangle$ and $\int W_A d\langle \psi(\cdot)x, y' \rangle = \langle \psi(A)x, y' \rangle$. Hence it follows that $\psi = \psi'$.

By definition of $\int \mu \, dK$ it is obvious that $\|T\| \leqslant \sup \|\psi(A)\|$. Thus $\|T\| = \sup \|\psi(A)\|$. This completes our proof.

Let m be a measure from Σ into X. We say that m has an approximate Radon-Nikodym derivative if for every $\varepsilon > 0$ there exists a set function σ from Σ

into X of the form $\sigma = \sum_{k=1}^{n} |m|_{A_k} x_k$, where A_k are disjoint sets of Σ and $|m|_{A_k}$ is the contraction of the variation of m to A_k and $\operatorname{var}[m-\sigma] < \varepsilon$.

Let $ca(S, \Sigma, X)$ denote X-valued countably additive measures of finite variation.

Let us recall also that X has the Radon-Nikodym property if every X-valued countably additive set function of finite variation, which is absolutely continuous relative to a positive measure of finite variation, has a density (X-valued) with respect to that measure. For example, reflexive and separable dual spaces have that property.

Corollary. If X is a Radon-Nikodym space and T is a continuous linear operator from $ca(S, \Sigma, X)$, then T admits the representation of Theorem 3. Moreover X has the Radon-Nikodym property if and only if $ca(S, \Sigma, X) = ca(S, \Sigma) \otimes X$. If the above representation holds for all spaces Y, then X has the Radon-Nikodym property.

Proof. Now if X is a Radon-Nikodym space then every X-valued additive set function has the approximate Radon-Nikodym derivative. Thus $\{\sum \mu_i x_i\}$ is dense in $ca(S, \Sigma, X) = ca(S, \Sigma) \otimes X$. Conversely if $ca(S, \Sigma, X) = ca(S, \Sigma) \otimes X$, then the above representation holds for operators from $ca(S, \Sigma, X)$ into X^* . It is pointed out in $[7]_2$ that this implies that X has the Radon-Nikodym property. This completes the proof of our Corollary.

We now proceed to characterize compact and weakly compact operators. To this end let $co(S, \Sigma, Z)$ denote all set functions from Σ into Z which are μ_{α} -convex when restricted to B_{α} , and which are zero on sets A such that for no α , $A \subset B_{\alpha}$ with $\mu_{\alpha}(A) > 0$. If ψ is as in Theorem 3, let $\langle \psi_{v^{\bullet}}(A), x \rangle = \langle y^{*}, \psi(A)x \rangle$. Thus $\psi_{v^{\bullet}} \in co(S, \Sigma, X^{*})$ and $co(S, \Sigma, Z)$ is a normed space with $\|\psi\| = \sup \{\|\psi(A)\| : A \in \Sigma\}$. Finally let σ^{*} denote the unit ball of Y^{*} .

Theorem 4. The operator T is weakly compact if and only if $\{\psi_y: y^* \in \sigma^*\}$ is weakly sequentially compact in $co(S, \Sigma, X^*)$. It is compact if and only if $\{\sum \psi(A_i)x_i: \sum \|x_i\| \leq 1, A_i \in \Sigma, \{A_i\} \text{ pairwise disjoint}\}$ is precompact in Y.

Proof. Now T is weakly compact if and only if T^* is (see [2]). In addition

$$\langle T^*(y^*), m \rangle = \langle y^*, Tm \rangle = \int m \, d\gamma_{y^*}.$$

Thus $T^*(y^*) = \psi_{\nu^*}$. Since $\|\psi_{\nu^*}(A)\| \leqslant \|\psi(A)\|$ whenever $y^* \in \sigma^*$, one has $\psi_{\nu^*} \in co(S, \Sigma, X^*)$. By the Eberlein-Smulian Theorem (see [2]), T is weakly compact if and only if $T^*\sigma^*$ is weakly sequentially compact.

Since $W_{A\cup B} = (\mu_{\alpha}(A)/\mu_{\alpha}(A\cup B)) W_A + (\mu_{\alpha}(B)/\mu_{\alpha}(A\cup B)) W_B$ for A and B disjoint subsets of $B_{\alpha} \in \mathcal{B}_{\alpha}$, it follows that the unit ball in $ca(S, \Sigma) \otimes X$ is the closure in variation norm of measures of the form $\sum W_{A_i} x_i$ where $A_i \subset B_{\alpha}^i$, $\{A_i\}$ are pairwise disjoint and $\sum \|x_i\| \leq 1$. Now T is compact if and only if the image of the unit ball of $ca(S, \Sigma) \otimes X$ is precompact in Y, that is if and only if $\{\sum \psi(A_i)x_i \colon \sum \|x_i\| \leq 1, \{A_i\}$ pairwise disjoint in $\Sigma\}$ is precompact in Y.

Bibliography.

- [1] R. A. Alò and A. DE KORVIN, Integration of measures, (to appear).
- [2] N. Dunford and J. T. Schwartz, Linear operators, Vol. 1, New York, 1958.
- [3] J. R. EDWARDS and S. WAYMENT, Extensions of the v-integral, Trans. Amer. Math. Soc. 191 (1974), 1-20.
- [4] C. Fefferman, A Radon-Nikodym theorem for finitely additive set functions, Pacific J. Math. 23 (1967), 35-45.
- [5] R. K. GOODRICH, A Riesz representation theorem, Proc. Amer. Math. Soc. 24 (1970), 629-636.
- [6] A. DE KORVIN and R. J. EASTON, Some representation theorems, Rocky Mountain J. Math. (3) 1 (1971), 561-573.
- [7] R. D. MAULDIN: [7]₁ A representation theorem for the second dual of C[0, 1], Studia Math. 46 (1973), 197-200; [7]₂ The continuum hypothesis, integration and duals of measure spaces, (to appear).

Abstract.

Let S denote a non-empty set, let Σ be a σ -algebra of subsets of S and let $\operatorname{ca}(S,\Sigma)$ be all countably additive scalar valued measures on Σ with finite variation. If X is a Banach space, then $\operatorname{ca}(S,\Sigma) \otimes X$ will denote the closure in variation norm of all finite sums of the form $\sum \mu_i x_i$, where $\mu_i \in \operatorname{ca}(S,X)$ and $x_i \in X$. Thus $(\sum \mu_i x_i)(E) = \sum \mu_i(E) x_i$ for $E \in \Sigma$. The main purpose of this paper is to obtain a representation theorem for linear operators T from $\operatorname{ca}(S,\Sigma) \otimes X$ into Y that are continuous in the variation norm. Here also Y is a Banach space. As a secondary result, we characterize such operators that are compact or weakly compact.