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Remarks on the equation for the energy relaxation

(%)

of a Rayleigh gas.

. = Introduction.

During a recent investigation of the motions of electrons in a field in a
gas, we were led to study the limits of the conventional (first-order) theory
and, in particular, to obtain an improved (i.e. a second-order) equation for
the electron energy distribution p(e, t) [2];, [3]. We based our analysis on a
very appropriate procedure which starts from the linearized Boltzmann (or
master) equation for p(e, ). This integro-differential equation is replaced by
a series development of the Kramers-Moyal type [6]. The coeflicients are
given in a pa.rticula,ﬂy convenient form [2],, [3] allowing us to obtain quickly
the appropriate (differential) equation for p(e, t) for an arbitrary law of electron-
atom interaction (to the desired order of approximation). However, our pro-
cedure is not only applicable to the Lorentz gas. In fact, it may advantageously
be used also to study relaxation processes of a Rayleigh gas. In particular, it
still allows one to obtain easily the equation for p(e, ) to higher orders than
the first with respect to the ratio between the mass of the 5ubsystem-pa1‘rlcles
and that of the background-gas particles, for arbitrary law of interaction.

In this paper we present the derivation of the second-order equation for
the energy distribution of heavy particles in a gas of light atoms. This means
that the terms of higher order than the second with respect to the mass ratio
are neglected. We limit ourselves to consider field-free gases and elastic col-
lisions [2];, but we do not impose restrictions on the interaction law. To test
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the correctness of our results, we analyze, in particular, the hard-sphere model,
in which all the particles of our two-component system are considered to be
hard spheres interacting only at the instant of impact. In this case, it is shown
that our results are consistent with the (exact) expressions of the first three
coefficients of the Kramers-Moyal expansion given by Andersen and Shuler [1].
However, even for this simple case, we have been unable to make a com-
parison between our (fourth-order) equation for p(e, 1) and corresponding equa-
tions of the literature. In faet, it seems that the second-order equation for
the energy distribution of a three-dimensional Rayleigh gas has never been
derived, not even for the simplest interaction laws. On the contrary, we find
in the literature second-order equations for the one-dimensional gas (Rayleigh
piston) [7]. Really, for a three-dimensional system, it is not even easy to find
in the literature the first-order equation, if we do not impose limitations on
the interaction law. In any case, the available derivations are very different
from, and more complicated than, the derivation given here [8].

In this paper we will not be concerned with the solution of the equation
for p(e, t). However, we shall make some remarks on the temporal behaviour
of the energy distribution under special conditions. We shall also dwell a little
on the relaxation of the moments of p(e, #) and will give some results which
are of interest, particulary in the light of the recent progress in this field [4].

2, - Equations for p(s, 1).

2.1. - Owr model consists of a subsystem of heavy particles (of mass m),
homogeneously dispersed in a heat bath of light particles (of mass M and number
density N) at a given temperature 7. It is assumed that the temporal behav-
iour of the subsystem energy distribution p(e, t) is properly accounted for neg-
lecting collisions between particles of the subsystem. Moreover, inelastic col-
lisions and action of external fields are excluded.

As in paper [3], our starting point is the equation

ap(s, 1) i (=1 er
1

1) . T per (b(e)ple, 1)

with ([2], [4])

mM

2) b.(e) = (—1) (m

)TN[ [ﬂ"“[c'(rFS)]*G(g, DEV)ds v,
Vo

where we have used the following notations:

v and ¥V are the subsystem-particle and atom veloeities in the laboratory
frame, respectively;
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g =gr=v—V and g’ = gs are the relative velocities before and after
collision, respectively;
G is the center-of-mass velocity;
ol(g, ¥) d®s is the differential seattering cross section;
F(V) is the velocity distribution function relevant to the gas atoms.

An inspection of eq. (2) shows, clearly, that an explieit expression of b,(g)
cannot be obtained in the absence of simplifying assumptions. Generally, they
concern the g-dependence of the cross section. But the assumption which
leads to the most considerable simplification is that of assuming 7' = 0. This
assumption is much more interesting in the Lorentz limit than in the Rayleigh
limit. However, since our treatment of sect. 2.2 is not appropriate for atoms
at rest, it is useful that we give here also the results relevant to this ease [3].

For T=0, all the coefficients b,(¢) can be obtained exactly. The result is [3]

3 bie) = [—2 —"2 ) eriie)
®) ' v o) ©ED
where
7
4) F(e) = { Nv-2z | (1—cosX)a(,%)sin%dX .
B
: lf='V2£[m
In particular, we can write
mM
[ S R —
(5) Bile) o ) s

where v,,(¢) = #,(¢) is the momentum-transfer cross seetion relevant to a sub-
system particle of energy e. Moreover,

mdM  \? mM 2
(6) b2(3)=4((~#:-_1—ﬂ—[)—2) 82@(8):4((—”;-'1—:—5[—)—2) £2(2n(e) —ne))

where use has also been made of the alternative definition [3]
(7) v.(g) = {N'v~27zf(1 —cos X)o(w, Z) sin X A%} o= yzejm -
0

Thus, if we limit ourselves to consider only second-order terms with respect
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to the (small) quantity M/m, we obtain that

M2 m
bl(é‘) =2 (;‘;) (ﬂ—?’) 87’1(8)

M

® by(e) = 4 (—)282(2’1’1(8) —1y(e))

m

b,(e) =0 (r>2).

In other words, only the first two terms of expansion {(2) remain different from
zero and the equation for p(e, f) maintains the Fokker-Planck form.

A further interesting simplification of the coefficients b,(¢c) is obtained if
the scattering processes are isotropic (e.g. if we adopt the hard-sphere model).
In this case, in fact, we have that

mdM \r 1’ 7
= - — - —_ — (1 )145
© bl ( e MP) )33 () [1 (— 1)1,
where () is the collision frequency
(10) o v(e) = {Nv-4mwo(0)}eVarim

As one can see, if 7' = 0, the procedure based on eq. (2) allows us to write
immediately all the exaet coefficients of the Kramers-Moyal expansion, for
arbitrary interaction law. This is an important remark when considering the
complexity of other treatments based on different methods of approach [5].

2.2. - If we renounce the assumption 7=0 and want to take account of
the atom motions correctly, our problem becomes much more difficult. In
this case, it becomes necessary to know the g-dependence of o(g,¥) and only
if (g, X) «c g~ (in which case the frequencies v,, or 7, are energy-independent)
is a remarkable simplification possible. In general, however, it is necessary
to have recourse to approximate 1-esj11ts.

As we said, we shall limit ourselves to calculate approximate expressions,
say fB.(e), of the exact moments b,(¢), by neglecting the terms of higher orders
than the second with respect to the mass ratio M/m. In particular, we shall
show that

8) = ﬂ,(s) -+ o((M/m)é) for r=1,...,4
(11)
“b,(e) = o((M[m)?) for >4,
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where o((M/m)?) means terms of orders (M/m)’, with j>2. Then, as for
the Lorentz gas [3], the second-order theory leads to a fourth-order differen-
tial equation for p(e, ).

As regards the first coefficient of this equation, in [3] it is shown that it
can be written in the form

-~

m i ; f V?F(V)dV{ f [M V24 (m— M)vV cosy—mv?]-

(12) - bufe) »: W
0

’

. siny dy d:
7:1(9) g yay n}v=1/'251_m

where y < v¥V. Clearly, in order to calculate b,(¢) we must assign »(g). Only
for T =0, ie. g =, the knowled@e of the speed—dependence of -», is not
required.

A particularly interesting and simple case is that in which », is g-independent.
Under this condition, in fact, we have immediately that

. mM 3
(13) b1(8) = m ( GT‘*G)

But, apart from this and other simple expressions of »,(g), in general the
problem is complicated, ‘sinece the dependence of », on V cannot be made
explicit, even approximately (this is, in fact, the substantial difference one
finds between Rayleigh and Lorentz gases [3]). We can, however, make the
dependence of ».(g) on y explicit and go on as follows.

Consider physical situations in which the energy of the subsystem par-
ticles may be assumed to be of order k7, i.e. &/kT of zero order with respect
M/m, in almost all collisions. Then we are allowed to consider v < V' and
0|V ~4/M[m, and write that

(14) g:]v—V]z\/1)2+ V:—20V cosy ~

V——vcos;z—l———~sm y+ cosysmzy—{—

that is

dn(V) v i1 2 _UL in2
(14) ve(g) ~ ve(V) — 7 (v €08 y — 5, Sin*y— oo cos y sin y) -+

3 costy + ..

raqm(v) (, o v ine _ las(v)
+§ I % Co8 y——?cosys Y] 7% Tare
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Let us introduce the notation

(15) PV = dafp(V) V2 R(7) AV

to indicate the average of any arbitrary (scalar) function @(V) of V over the
background-particle speed distribution 4zxV:P(V). Then, in virtue of eq. (7),
if we neglect all the terms of higher order than the second with respect to
M|m, after some simple caleulations we obtain that (efr. eq. (2))

'D‘,[z 1
(16) ﬂ1(8)=(g){[—*%£§,< v — I,I<’;>-E:I<Vvl>]ez+

2 (G2 )oo—3 (B—s) i+ ¥ (o037 |

+ (j;[ ) (B> + V) M}

As regards the second coefficient, we have [3]

0= (25 ) [ 20| (m0 =500 ) 6-gr+
14
+§ve(g)G292]d3V} _
vef285/m

If we introduce into this equation the quantities

( dvy (V) v &7
(g) ~ (V) — dLV (fv cos y — —— sinzy )+ 5 d:V" v2 cos? y
18 - , — 7 -
(18) Gg ——T" (MV24 (m— M) Vo cos y — mo?)
— 7 2«
( 9)* (m T e ; (20 - M2 V2 A 2 moV cos p)(v2+ Ve—20Veos y),

after simple calculations we find that (cfr. eq. (11))

2
(19)  fule) = (——) {4[2<v1>——<v2>+f—§<Vv1>~§<Vv;>+
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kT (3, 1 " 1 v " 1 V. m o
‘I“Iﬁ‘ g<71>*‘5<7’2>+5<'7’1>_ﬁ< Yy ) et -+

+4 [%( >+ ;—,<Vv1>) —12Gn) + 5 > — 5 <V + BTy —

kT

2 1
_ N - TN i A8
2 (20— o+ 5 T —5 > ) [Be

+ [30<v1> — 15y + 18< V> — 9V m,> +

+ 5 (6<v’1> — 3Gy + 2Ty — <Vv;”>)] (kT)Z} :

The third coefficient can be obtained in the same way. We have [3]

mM
m 4 M

(20) by(e) = — ( )3 f B(V) { (3v1(g9) — 3va(g) + 7(9)) (G- g)° +
Vv

+ % [ (a(g)+2:(9)—7:(9)) G?9%(G- g) ——(vx(g)+v2(g)~va(g))(G'g)ﬂ} dsv .

v—}lzs/m
In this case it is sufficient to consider that

_ dy, (V)

v COS Y

to obtain, after simple caleulations,

(22) Bale) = (fg) [30<v1>-15 (> 4 18 (Vi — 9 (V> +

—I' 1;%' (6<1’,1I> "“3<’Vlzl> + 2<Vv'l"> — <V'p;">):| ( __g ke + 4(70T)28) )

At this point, it remains only the calculation of the fourth coefficient.
We have

(23) byle) = (W—%{)AfF(V) asv {ngﬁo'(g,Z)sin X dXJ'[G- (r——s)]‘dfj}

o=Vaeim



b
]
b

G. L. BRAGLIA and G. L. CARAFFINI : [8]

The following assumptions

mM 1t i “
m i) M 9T =g =(V)

(24)

1
Gr~uv, G-r:—G'gN7v~(v—~V)=T~7—-—'vcosy

are now all consistent with the fact that we retain only terms of or der (M [m)!
with j<2. Thus, when noting that
(25) f[G- (r—s)]"dl =2a(G-r)(1 —4 cos Z + 6 cos®* X —4 cos® Z 4 cos? X)
o ; : : ; L.
+ 6a[G2— (G- r)2](G- r)? sin? %(1 — 2 cos X + cos? %) 4
., 3 . ‘s
+ ;76— (G r)sinz

one proves, without difficulties, that

M) [3o<fu1> —15¢m) + 18V — 9KVl +

m

(26) Bale) = — (

52 (600 — 30 + 27 — (T ’">)] (kT)e2 .

As one can see, fi(e) and fy(e) involve only terms of order (M/m)2. Similarly,
one might show that by(s) does not involve terms of this order. Then, the
second-order theory is characterized by the following equation for p(e, )

L7 (Berpte, 1)

@7) 6p(e, t_ jz

This equation becomes a second-order differential equation only for 7 =0
or if we neglect the terms of order (M/m)% In the latter case, the temporal
behaviour of p(e,?) is described by a Fokker-Planck equation with the fol-
lowing coefficients

Pule) = —2 i;,{ ((%) —I—% <Vv{>) (8——; kT)

Bule) = 4;}; ‘(<71> + 51’ <V”;>) kT'a .
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These equations generalize to an arbitrary interaction law the coefficients
given by Andersen and Shuler for the rigid sphere model and agree, as we
shall see, with the results of the literature obtained by different procedures.

2.3. - Three different tests have been made to counfirm the correctness of
our results. First of all, we have verified that the distribution

99 .  m sz P
(f ‘>  C o ple)=ple,00) =g | € eXP |~

is the steady-state solution of eq. (27), and that

(30) Bule)> =0ﬁ91<e)p<a> de=0.

Then, we have made a comparison between our results and the first three
exact coefficients of the Kramers-Moyal expansion, given by Andersen and
Shlﬂel, for the sphere model [1]. ‘We have followed the same pmcedme of
Appendix B of our paper [3]. When noting that for Rayleigh gases A=
= M|m <1, so that

(31) — elf (Ax?) = A exp [— A® m][l 4+ S A —(] z): 4 — (Z%’)3 + ]

105

(Wh’ere @ = ¢/(kT) is treated as a zero-order quantity with respect to 1), we

have obtained
2 g2 5 2m) 5 m BT bz
f1570T_ s 733) T\ 2w )

{ gsz + ; (ﬁ w10) ET-e + 4(kT)? } Z(T)

M

Bale) = —128 ( [)" { = kT - g2— (7»1’) 8} VAV
where -

(33) Z(T) = Nnd? 87“5

(d being the sum of the sphere radii).
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But these results agree with ours. In fact, for the rigid sphere model,

(V) =Vy(V))=(V)>=N7ad* V}:le?fVF( Vydsw= Z(T)
i

(34) 2
n(V) =gn(), vi(V) =9(V) =0.

Andersen and Shuler do not calculate the explicit expression of b,(x). For this
reason we shall only note that, for the rigid sphere model, eq. (26) yields (cf.
eq. (33))

512 (M
m

(35) Bile) = s _)2 (kT)2e2Z(T) .

Finally, we have tested if our (first-order) coefficients (28) are consistent
with the equation for the velocity distribution funection of Brownian particles
given by Wang Chang and Uhlembeck [8]. In the absence of spatial gra-
dients and external fields, the said equation is [8]

0 2l kT 02
(36) 5{=77{215E(@:’f)+;;z;5;§}1

where f is here an isotropic function of v and ¢, and % is the friction coefficient [8]

164/ NM ( 3 \si2 g o Y A%
37 n= ;/n - (2;0—1,) j(l~eos£) sin X d/{st eXP[*;kTJ o(V,2)dv.
0

1]

But eq. (36) can be written in the form

of of KT (208 @
(38) a‘tzﬂ{(3f+”$)+%-(;a—v+a—1ﬁ)}y

from which it follows that the equation for p(v,t) = 4mv2f(v, ?) is a Fokker-
Planck equation with the coefficients

(39) pi=— (0220, pm) =2y

mv
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Therefore, the coefficients of the Fokker-Planck equation for p(e, t) are

B (e) = { mop,(0) + 5 Bu(v) } =2 (6“2 kT) 7,

1‘=V26/m

(40)
Ba(e) = {M20?Po(0)} v Vegm = 4k Ten .
Then, we must prove that (efr. eq. (28))

M

(41) =2 (o +5D) =33 <5

T gy (7o)

3m

But in virtue of eq. (7), eq. (37) can be written as follows:

8 1 MET M s J MV?
= = = _ 74 X i
(42) =3 am A (27011) fI e‘p[ ‘)IT] (V) av,
.0
i.e., after an integration by parts,
1 M ;M MV2] d

43 == — 47 — —— | {(V3p)dV
(43) K 3m (..nkT) fe P [ 27GT](1V (Vem) !

which agrees with our result (41).

3. - Remarks on relaxation processes.

In this paper we shall not be concerned with the solution of eq. (27) for
ple, t). However, we want to make some remarks on the relaxation processes
governed by this equation.

Under rather general conditions, from eq. (27) it follows that

dp (2)
di

(44) = B(?),
with

(45) wlt) =] emple, 1 de BU) = [fule)ple, 1) de .
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Thus, B(t) will be a linear function of w,(¢) if f,(¢) is a linear function of e.
But eq. (16) shows that this happens only if we neglect the terms of order
(M[m)* or if »(V) is V-independent (i.e. o(V,%)cc ¥-1), in which case B(t) is
a linear function of 4,(t) for arbitrary mass ratio (efr. eq. (13)). But under this
condition, u,(?) relaxes according to a simple exponential law [1], [2],. There-
fore, we must conclude that, confrary to what happens for the first-order
theory [1], if we consider also the terms of order (M/m)?, u,(t) relaxes Eaccording
to a simple exponential law only when », is a constant.

Another interesting result of the first-order theory is the following: if p(g;.0)
is a Maxwellian distribution at a given temperature 7, > 0, then p(e, ) is a
Maxwellian distribution, with temperature 7'() = (2/3k)u,(t), for any arbitrary
interaction law [1], [2],. For 7' =0, it is the d-distribution which preserves
its form during the relaxation process, according to the fact that the diffusion
coefficient in the energy space vanishes if 7'->0 (cfr. eq. (28)) [2],. However,
if we do not neglect the terms of order (M /m)?, all these results are no longer
maintained, even for o(V,X)oc V-1. In this last case, in particular, p(e,?)
satisfies the equation g

ople,t) M D a i 2.
? =2—— {( (1—2 ,)”n“) viep(e, t) + 7); (2r—m) &[5"1’(‘9’ t)]} ’.

(46) ot “m oe

whose fundamental solution is found to be the Me Alister, or lognormal,
distribution : : -

. o 1 2l - [In (g/eg) + 2( M fm)(v,—(3H fm)v,) t]?
@D ple, 1) = (8n(ﬂf/m)‘-’(2vl—vg)t) P { . STm)@r,—r)t A

(A lognormal distribution was also found for Lorentz gases and isotropie scatb-
tering processes by Eaton and Holway [5]). According to eq. (47), p(e,t) —
—d(e— &) for £—0. But one can easily prove, also, that the moments of
ple, t) relax according to the simple exponential law

M MY, 7y .
— efex — Ny ) —_— = Pl 2 — = .
(48) tr(t) = &5 exp [ m e J{’ 1 m [1’1 A ( "1)] }t]

Note that, as for the Lorentz gas [5], they diverge for very large », in our
case for
1 — (M jm)(vyfry)

(49) () (2—rgfry)

As one can see, if we make use of a second-order theory, a number of simple
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and important results of the first-order theory is lost. For this reason, it may
be of interest to see what we can say on the approximate relaxation of the
subsystem-energy when o(V, %) is an arbitrary function of V. For the sake
of brevity, we shall write, here also, o = ¢/(k7) and shall continue to use
angular brackets to indicate the averages over equilibrium distributions, e.g.
pla, o) = 2[v/m ot exp[— «] (cfr. also eq. (15)). Averages over p(z,t) and, in
particular, p(x, 0), will be denoted by a bar. -

According to Cukier and Hynes [4], if we want to represent the relaxation
of the first moment #(2) of p(z, {) or the equilibrinm correlaxion function

{0z dx(t)>

50 ) =
°0) O ="

by simple exponential laws, i.e. to write that

Z(t) —(xp

20— <oy — P [—'1], C(t) = exp [—rt] ,

(51)

the appropriate choices of # and r are

_ . Bl@)0)
(52) " TR~
zind

<(5x ﬁ1(w)>
53
(53) RTSDY

But we have (efr. eq. (16))

M 8 / 7 f 2 kT " 1 7, 2
) Bl (m) {lﬁ“"— >“*:Ef (,<?}1>+§<1 7’1>)—Ix +

[(<vl>+ <Vv1>) , (<aa>ﬂ——<wl>)

+5 (<';>+ <Vv1">)] ( )<3<v1>+<wl>)}
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which, also in virtue of eq. (30), allows us to write that

) TG —

= —2 (i) =

2({ MY im ; & " "
=% {ﬂ (86 + (Vo) 600> + 5 57 (0> + 3 <7 )}

ne
If », is V-independent, we have immediately that

i M
(56) ro=2 (1—2L\)v1,
mn

m

while for the rigid sphere model we obtain that (cfr. eq. (10))

e M2 M
(57) 7—4-(§———W—L~) vy,

m

This result is easily seen to agree with that given by Cukier and Hynes [4],
that is (cfr. eq. (34))

8 M 3\l
(58) 7«——‘——(1+-‘—) z,

3 m m

if only the terms of orders (M/m)? with j<2 are retained.
As regards the calculation of ¢, we must choose, first of all, the initial
energy distribution. We shall assume that

(59) p(z, 0) =

2 T
W x* exp [—x/d] (6 = _Ti’) ,

from which it follows that #(0) = (3/2)d and z*(0) = (15/4) 2. Thus, we obtain
that

o E@o = (5) {[-xmd—35 e+ oy |e

+ [2 (3(1}1) + 2Vl — %(3<v1> -+ (V) +

+ .;.%1 B + <Vw§'>)] o+ (;"—[ —2) B+ <Vv{>)} :
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which permits immediately to calculate »' by means of eq. (52), i.e. of the
equation

(61) r’=§ T3 B:(2)(0) .

For constant », these equations yield

M M
(62) r’=2—(1—2—)v1=r,
m

m

while, for the rigid sphere model, after some simple calculations, we obtain
that

43[( M
(63) P 2-&—) O

Im m

Algo this result is easily seen to agree with that given by Cukier and Hynes [6],

ie.
.1+ (Mpm)a\E

(64) r=r ( 1+ Mjm )

if the terms of higher orders than the second with respect to M /m are neglected.
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Summary.

A derivation of the equation for the energy distribution p(s,t) of particles (mass m)
homogeneously dispersed in a heat bath of atoms (mass M) is presented. The procedure.
extremely simple, is based on a particularly convenient expansion of the master equation,
We work in the limit m/M > 1 and derive an equation for p(e, t) which is correct fo the
second order with respect to the mass ratio M/m. This equation is then wsed to study
some relawation processes.

Sommario.

Viene dedolta un’equazione per la distribuzione energetica ple, t) di particelle (di massa m)
disperse omogeneamente in un gas di atomi (di massa M). Il procedimento, estremamente
semplice, ¢ basato su un’espansione particolarmente conveniente dell’equazione di Boltz-
mann - linearizzata. O poniamo nell'ipotesi in cui m/IM > 1 e deduciamo un’equazione
per ple, t) corretia al secondo ordine rispetto al rapporlo fra le masse Mjm. Questa equa-
zione & successivamente usata per studiare alouni processi di rilassamento.
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