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ALESSANDRO BELCASTRO ana MARCO MARGIOCCO (%)

S0-symmetrizations and (0¢-categories. (#5%)

1. - Introduction.

This paper treats of some particular symmetrizations of categories. We
recall that a symmetrization of a category € is an embedding of % in an involu-
tion category # having the same objects. A precise definition of symmetriza-
tion can be found in [4],.

It is well known that each abelian category 7 can be embedded in an
involution category .7 (the category of relations, or correspondences of <)
having the same objects, where the morphisms from 4 to B are the subobjects
of AxB (Mac Lane [6];, [6],; Hilton [5]; Brinkmann [1].). This embedding
in an involution category can be generalized to exact categories (conjecture
of Puppe [7], proved by Calenko [3], [3],, Brinkmann [1],, Brinkmann and
Puppe [2]).

In this way we obtain the canonical symmetrization s: & —3 of an
exact category &.

It has been proved ([4]s, 1.10) that the category # is orthodox iff & has
distributive lattices of subobjects. We recall that a regular involution category
is called orthodox iff the composition of idempotent endomorphisms is idem-
potent [4];.

Orthodoxy of # is a necessary and sufficient condition in order that
canonical isomorphisms between subquotients of & should be composable
([4]s, 3; 17). This fact allows us to define induced relations between sub-
quotients which are compatible with composition ([41s, 3.9).

We can also quotient o# by a congruence of category @ such that canoni-
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cally isomorphic subquotients of & become the same subobject in 5#/®. More-
over, the composition

&~ o~ | D

is an inverse symmeirization of &, that is 2#/® is an inverse category [4],.
More generally, this question has been treated for a « quaternary cate-
gory » & [4],. In this case we can construct the quaternary symmetrization
8: & =, genevalising the category of relations of an exact category, and
also Brinkmann’s proceeding [L];. Then s# is orthodox iff & is orthoguater-
nary [4];, i.e. & is quaternary and satisfies the two axioms €04, 08 4% (2.1).
In this paper we construet direetly particular inverse symmetrizations,
which we call SO-symmetrizations, without passing through quaternary sym-
metrizations. Sf-symmetrizations are defined for a class of categories larger
than that of orthoquaternary categories, which we call O6-categories. In the
orthoquaternary case the SOU-symmetrization coincides with the symmetriza-
tion s = pi: & = s|D above mentioned.
In 1 we define SO-symmetrizations by axioms S8 1-7.
In 2 we give axioms for C6-categories (among them the above €@ 4, Cf 4%).
In 3 we prove: (a) a category % has a SO-symmetrization iff € is a (C0-
category; (b) the SO-symmetrization of a C0-category is unique; morcover it
can be obtained using the symmetrizer 0 (3.5). This symmetrizer can be
applied to any category, but it gives S0-symmetrizations only if it is applied
to (0-categories. Finally we construct explicitly the symmetrized category.
In 4 we give an example of a Cf-category which is not quaternary, so that
its S0-symmetrization cannot be obtained from a quaternary symmetrization.
All the proofs are given in 5.

1. -~ S0-symmetrizations.

1.1. — Let s: €~ be a symmetrization of a category € [4];; let us con-
sider the following conditions S0 1-7.

801: ¥ is a factorizing category, i.e. any morphism ¢ has an epic-monic
factorization ¢ = mop (where p is epie, m is monie) unique up to isomorphism,
called the canonical factorization of a.

86 2: for any pair (m, p) of morphisms of &, m monie, p epic, having the
same codomain, there are morphisms m', p’ (m’ monic, p’ epic) such that
mp' = pm' (we call this property ewistence of a lower commuting).
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S0 3: the functor s is faithful and preserves monics and epies. (s being
faithful, we can identify any morphism w of % with its image s(#) and % with
the subeategory s(%) of ).

S0 4: 2 is a regular involution category, i.e. for each morphism o, we have
adio = o (equivalently Gud = &).

S0 5: 2 is an inverse category, i.e. for each morphism o of S there is a
unique morphism f such that ofe = & and faf = f; note that by 864 we

have necessarily f#= d.

80 6: s has quaternary factorizations, i.e. each morphism o of 27 has a
factorization (not necessarily unique) o = ngpm, where m and n are monics
of %, p and ¢ epics of ¥.

Note that by 86 1-3-4-6 we have: (a) a quaternary factorization of a mor-
phism o of & yields an epic-monic factorization in 2 o« = (ng)(pm) which is
necessarily unique by 86 4. Therefore S is a factorizing category; (b) if o0 =
= ngpim is a quaternary factorization of an isomorphism « of 3%, then m, p
q, n are isomorphisms of € ([1l,, 16.1); consequently s is invariant (ie. %
and 2 have the same isomorphisms); (¢) if o = ngpi is a quaternary fac-
torization of «, « is epic in 4 iff » and ¢ are isomorphisms in %, « is monic
iff m and p are isomorphisms in %. s being invariant, the canonical factoriza-
tion « = (ng)-(p@) = uz is unique up to isomorphism of #. This allows us
to define the sets oy, Hu, Hy, #,y of morphisms of # in the following

way

weH, <>ac¥, wcH,y=>uc®,
weH, <>He¥ (=G ey,
0 € Hyp<>TEE (<=Gedy).

It is obvious that if o = nfpM = un (7w = pi, p = ng):

€, <0 = nﬁni is a quaternary factorization ,
0 € Hgior = plpit is a quaternary factorization,
e, <o = 1ﬁpﬁz is a quaternary factorization ,
0 € H <=0 = nlA is a quaternary factorization .

80 T: Hyy Hge, H,, Ho arve subcategories of H#° (it is sufficient to verify
this for ., # ).
We call SO-symmetrization a symmetrization s verifying axioms 80 1-7.
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1.2. — We recall the following lemma ([4];, 5.3): « In an inverse category o#
a4 square of monies is bicommutative iff it is anticommutative, iff it is a pull-
back; an epic-monic square is commutative iff it is bicommutative, i.e. if =, '
arve epics u, g’ are monies and ww’ = mu', then u'# = Fu».

L3. — Lemma. Let % be a category having a SO-symmetrication s: € — .
Then: (a) € and A have (finite) intersections of subobjects; (b) the (finite) inter-
sections of subobjects of € are the same in € and in H; i.e. a square of monics
of € is a pullback in € iff it is ¢ pullback in S (1) (see Proof. 5.1),

1.4. ~ Dually, an analogous lemma is true for intersections of quotients
and pushouts of epies.

2. - (f-categories.
2.1. — Let us consider the following conditions for a category %.

C01: ¥ is factorizing (identical to S61).

00 2: identical to S0 2 (existence of a lower commuting (1.1, S0 2)).

C6 3: ¢ has pullbacks of monics (finite intersections of subobjeets).

00 3*: € has pushouts of epics (finite intersections of quotients).

00 4: if the diagram (1) is commutative and its upper square is a pullback,
so is the lower one. If 00 1 is verified, 00 4 is equivalent to the statement that
the direct image of subobjects. preserves (finite) intersections.,

C6 4*: if the diagram (1%) is commutative and its upper square is a pushout,
80 id the lower one. If €01 is verified, €0 4* is equivalent to the statement
that the inverse image of quotients preserves (finite) intersections.

(™

(*) As ¥ and o are factorizing, in both categories the lattice-definition of intersection
of subobjects (given by a pullback in the subeategory of monics) is equivalent to the
one given by a pullback in % (or 22).
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2.2. — We call CO-calegory a category verifying the axioms C0 1 ... CO 4*.

2.3, — Lemma. In a category verifying C01, if the outer rectangle of the
diagram (1) is commutative, there is a unique morphism m such that inner squares
are commadative. Moreover, m is monie (see Proof. 5.2).

ey !

[

2.4. — Lemma. Let € be a CB-category. If in the commutative diagram

NN
i

[P O
*
\

A

the upper and lower squares ave pullbacks, there is a (unique) epic completing
the projection of the upper square on the lower one (see Proof 5.3).

2.5. — Lemma (dual of 2.4). Let € be a CO-category. If in the commu-
tative diagram

1

e

[

the upper and lower squares are pushouts, there is a (unique) mowic completing
the injection of the lower square in the upper one (proof dual of 5.3).

It can be easily proved that, if €01 and 003 are verified, Lemma 2.4 is
equivalent to axiom C6 4, and dually for Lemma 2.5.

2.6. — Lemma. Let € be a CO-category, m a monic of G(A, B), p and q
morphisms of €(B, C). If pm and qm are equal epics, then p and ¢ are equal
epics (see Proof 5.4).
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3. - Existence and uniqueness of the S6-symmetrization of a (/0-category.

3.1. — Theorem. A category € has a SO-symmetrization iff it is a CO-
category.

For the necessity see 5.5. For the sufficiency, we must construct directly
the involution category # and the SO-symmetrization s: € —.5#. This con-
struction is described in 3.2, 3.3, 3.4.

3.2. - Lemma. Let s: % — 2 be an SO-symmetrization and let o = nijpin,
B=mn'g'p'W be quaternary factorizations of two morphisms o and f of H.
Then o= iff there cwists an «intermediaic» morphism y = ny G, peiity and
«vertical » morphisms w, v, w', v', 4, j such that the following diagram of % is
commutative

q' nt

where w, w'y v, v are (necessarily) monics, i and j are isomorphisms. Moreover
if « = f§ we can choose the morphisms wu, ', v, v' so that the squares (m, u, w', m')
and (n, v, v, n') are pullbacks (see Proof 5.6).

3.3. — Lemma. Let s: €~ be a SO-symmetrization and let o = nijpi,
g=n"q'p'W be quaternary factorizations of two composable morphisms o and B
of . A quaternary factorization of fo is given by the lower path of the followm g
diagram (making the 4 possible compositions)

N

i ’ g p

(1) . f .
g |

o P——3
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where the square (1) is a pullback (G0 3); (2) and (2') are commutative (CO 1)
(8) is @ pushout (G 3%); (4) and (4') are commutative (CO 2).

The proof follows at once, the squares (2) and (2’) being commutative and
the squares (1), (3), (4), (¢') being bicommutative by 1.2.

3.4. — Let ¥ be a Ch-category. We define the involution category #
specifying its objects, morphisms and compositions using 3.2 and 3.3. Let the
objects of # be the same of the objects of %; let the elements of #(4, B) be
the equivalence classes of chains of morphisms of € of the type

modulo the following equivalence relation: two chains C = (m, p, g, #) and
¢ = (m,p', q',n') are equivalent if there exist an intermediate chain ("=
= (Mc, Po, o, M) annd wvertical morphisms u, v, u', v’, 4, j such that the diagram
3.2 (1) is commutative, where ¢ and j are isomorphisms and w, v, %', »" mor-
phisms which are neéessarily monics. This is an equivalence relation (see
Proof 5.7). ) ’

To define the product of two composable morphisms o and § of 5 repre-
sented by the chains ¢ = (m, p, ¢, n) and C'= (m/, p’, ¢', n') we use the dia-
gram 3.3 (1). In this diagra-fn the commutative squares (4) and (4') are obtained
by €02, hence they are not necessarily unique, not even up to isomorphism.

We define Bo as the morphism of 5 represented by the lowér path of the
diagram, when the 4 possible compositions are made. This definition does not
depend neither on the choice of the chains representing « and f nor on the
choices made to construct the squares (4) and (4') (see Proof 5.8). The composi-
tion thus defined is associative (see Proof 5.9).

If 1, is the morphism of 5 represented by the chain (14,14, 14,14 of
identities of ¥, we have obviously: al, = « and 1,8 = § whenever the com-
positions are defined. If « is an element of S#(4, B) represented by the chain
(m, p, q, n), we define & as the element of (B, A) represented by the chain
(n, ¢, p, m). Clearly, the definition of & does not depend on the choice of the
chain representing «; with this definition s# is an involution category (@f =
= (fa)” being obvious).

The funetion s: € — 2, mapping any .cobject in itself and any morphism
a = np (canonical factorization in %) in the equivalence class of the chain
(1, p, 1, n) (evidently well defined), is a symmetrization of % (see Proof 5.10)
and satisfies the axioms 80 1-7 (see Proof 5.11). So each C0-category has a
S6-symmetrization.

15



220 A. BELCASTRO and M. MARGIOCCO [8]

3.5. — Theorem. (Uniqueness of the SO-symmetrization). Al the SO-
symmetrizations of a C0-category € are isomorphic to the symmetrization sqy:
€ — °, obtained by the symmetrizer 0, associated to the following square types
([4];, 2.8 and 4): pullbacks of monics; pushouts of epics; miwed commutative
squarcs, i.e squares of the tipe (m, p, m',p’), where m, m' are monics, p, p’'
are epics and pm = m'p’ (see Proof 5.12).

4. - Examples.

4.1. — Any inverse involution category o is a CB-category; its SO-sym-
metrization is the identical functor, so its symmetrized category is o itself
(as we can easily see).

4.2. ~ Example of a Cf-category which is not quaternary. The category
%% (9-symmetrized of ¥, distributive expansion of the category of abelian
groups [4]) is a Cf-category (being an inverse involution category) but is
not quaternary: in order to prove it, we demonstrate that there is a pair of
morphisms (m, p), m monie, p epic with the same codomain, having no epic-
monic pullback, i.e. no pullback of the type (m, p, m', p'), where m' is moniec,
p’ epic and mp' = pm'.

Let A be an abelian group having a proper filtration 05 K S HS A.
Let us consider (as epic-monic pair) the pair of morphisms g and # (diagram 1),
where u and v are the equivalence classes in 9#% of the canonical inclusions
p:0—H|K and v: H/K —A. A is provided with the distributive lattice of
subobjects supplied by its filtration, while H/K with the lattice consisting
of the null and total subobjects.

Let us suppose that it exists the pullback ', »' of g, # (where u', ' are
monies) and let X be the domain of »'. Then X must be isomorphic to one
of the following objects: 0, H, K, A, A/K, A[H, H/K. By 1.2 the square
My vy @'y v is a pullback. Henee X can not be H, 4, H/K, A/K, otherwise
instead of the object O we should have the object H/K.

For each object Y and each pair of morphisms a: ¥ —0 and g: Y — 4
such that ux = 7 there exists a morphism y such that o« = @'y and f=1y.
If we choose ¥ depending on X according to the scheme

X Y
0 K
K AJH

AJH K
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and if e« is the canonical projection and f the canonical inclusion, then y is
5 monic. Then, if X = 8/7 and Y = §'/7", we must have: & c 8 4 T,
SN T cT. We can easily verify that this leads in each case to a contradic-
tion.

An analogous example can be made for any exact category & having an
object A with a proper filtration 05 K HS A. Then the category &*°
has not epic-monic pullbacks, so it gives an example of a Cf-category which
is not quaternary.

5. = Proofs.

5.1. — Proof of 1.3. Since J# is an inverse category (80 5), the subeategory
of monies of s has pullbacks ([4),, 5.8). For the € case, let m, n be con-
verging monies of €; by 803 m, n are also monies of 5, hence they have a
pullback (u, v, m, n) in 2, which is bicommutative by 1.2, ie. mp = ny,
fim = u#. By the invariance of s, we have: m e .. (here H#.,. means
H,NHoyp NH) WEH g, then, by 807, pp = iimeH,,.. This means
that p, ve %.

Now we prove that (u, », m, n) is a pullback in the subcategory of monics
of %.

Let m/, n' be monics of ¥ such that mn'= nm'. Then it exists a unique
monic u' of # such that yu'=n', pup'=m’. We have necessarily: p'='=
= jgm'. From n' €y, FEH . it follows that p'=in'eHp, =>p' €.
So each pair m, n of converging monics of € has a pullback in ¥, which is
also a pullback in .

5.2, — Proof of 2.3. In the diagram 2.3 (1) let m,p, be a canonical factori-
zation of gn. Then (um,)p,= (vu')p are canonical factorizations of the dia-
gonal morphism, so there exists a unique isomorphism ¢ such that p,= ip.
The monic m = my¢ (unique since p is epic) is the required one.

5.3. — Proof of 2.4.
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Let «'p be the canonical factorization of ¢'m; by 2.3 it exists a unique monic u
such that the diagram is commutative. By €6 4 the face (u, v, %', v') is a pull-
back; since also the face (w, v, w', v') is a pullback, it exists the isomorphism j
such that the diagram is commutative. The required epic is jp (unique because
vw 1is monie).

5.4. — Proof of 2.6. Since pm = ¢m is epic, p and ¢ are epics. Let » =
= pm = gm, and consider the commutative diagram

where the upper square is a pushout (€9 3*) and also the lower one (obviously)
and v is the monic completing the injection (2.5). From the diagram follows
at once p"= v = ¢, hence p’, ¢’, v are the same isomorphism. Since ¢'p = p'g,
we have p=gq. '

5.5. — Proof of 3.1 (necessity of the condition). Let us prove that %
verifies the axioms of Of-categories.

00 1: obvious. €0 2: obvious. (0 3: follows from 1.3. €0 3*: follows from
1.4. 00 4: in the diagram 2.1 (1) the upper square, and also the four vertical
ones, are bicommutative by 1.2; therefore, as one can-easily prove, also the
lower square is bicommutative, hence it is a pullback (1.2). €9 4%: proof
dual of (6 4.

5.6. — Proof of 3.2. If it exists a diagram of the type 3.2 (1), its four
central squares are bicommutative by 1.2, then agpm = ngii—'pm = nvf,p,-
WM = Moo PotMp. In the same way n'§' p' M = ny§,po,. Conversely, let
ngpm = n'§'p'm'. Let us construct the diagram 3.2 (1) in the following way:
u, u' (resp. », v') are monics completing the pullback of m, m’ (resp. n, n')
(00 3); my=mu =m'w', ng=nv=mn'v"; i is the isomorphism of (hence
of €) determined by the two canonical factorizations (ng)(p#) and (n'§")(p'm')
and j = 1. At last we find the epic p, (¢); it is sufficient to prove that T pu
and p'w’ are equal epics. We have: i~1pu = i~1(p)(mu) = (p'm)(m uw)=p"u'.
Let us prove that p'w’ is epic in ¢ (hence in ?): pu'(p'w) =pud P'=
= T pUd' P = i pim' P’ = p'm'm' P’ = 1.

5.7. — Proof that the given relation £ is an equivalence. We can easily
verify that the relation between the chains ¢ and C given by the upper portion
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of the diagram 3.2 (1) is a preorder, which we denote by C"<C. So clearly

ORC <=1t exists 07 such that "< and 0"< ('. Therefore Z is reflexive
and symmetric. Now we prove that £ is transitive.

/ /“n A /\\ /\

In fact if C,%C, and C.%C,, there exist chains C; preceding C,, C; and C;
preceding C,, C;. Then it is sufficient to construct a chain C, preceding G,
and ;.

First we construct the left and right faces of the diagram (all morphisms
are identities) and the three parallel ones as pullbacks; then we define m =
=m'u =m'u, n=n"v = n”v”, finally p and ¢ are the epics completing the
projections of the faces (u, w', «’, ") and (v, v',v",v") on the face (¢,4,14", ")
(2.4), and C, is given by the chain (m, p, g, n).

5.8. — Proof that the produet is well defined. It is sufficient to prove
that, if @ is a chain representing «, b and b’ are chains representing f with
b<b', and if ba and b'a are any two chains obtained composing b and b’
with a, according to the diagram 3.3 (1), then ba and '« are equivalent, inde-
pendently on the choices made to construct the squares (4) and (4'). We build
the following diagram: '

pa /* /’ /“ ]
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First we write « (the two horizontal upper chains, relied by identities),
b and b’ (the two vertical right chains, relied by a translation with ¢ isomor-
phism), and the compositions ba, b’'e as in 3.3 (1). Then we construct m, m',
%, ¢’ such that the diagram is commutative: m exists because the face (f, 9,1, 9"
is a pullback; m', i’ are obtained from 2.3; 4 is obtained from 2.5; m, m/, 4, ¢’
are all monics. The union of the faces (f, g,7', ¢") and (7, m, f', m") coinecides
with the face (f, ¢/, f*, ), which is a pullba,ck, hence also the face (f', m, f*, m”)
is a pullback; by 0 4, the face (4,4", k', b") is a pullback. Since 4’ is an iso-
morphism, also ¢' and ¢ are isomorphisms.

Now we construct the intermediate chain giving the equivalence between
ba and b'a. s"and i are obtained as pullback of s = s,s, and t. vp and ' p’
are canonical factorizations. dy and ¢'y’ ave canonical factorizations. = is
obtained by 2.3; it is monic and also epic (being the second factor of an epic)
hence w is an isomorphism (C01); w is obtained analogously and is an iso-
morphism. The commutative square (v', &, ey, 8, v0) is a pullback because it
is the projection of the pullback (¥, s.s,,t,s') by epics (€0 4). Since opo; =
= fm’ with m' monic, v must be an isomorphism. Then also 6’ and § are
isomorphisms.

This construetion is possible even if s, and «, are only monics (in our case
they are identities). So the same construction can be applied to the other
half of the diagram. So we obtain a chain (m,, p,, ¢, n:) (where m, = ns, ',
D= &' y'p’ and ¢, n, are obtained analogously) preceding both chains ba
and b’a, therefore they are equivalent.

5.9. — Proof that the product is associative. Let us consider the following
diagram (where numbers denote faces which are not dashed):

A /2'/L_\ AN

VARV AN,
//\7'\/\/37/\\
/NS N\ NN

The faces 1 and 1’ ave pullbacks; 2, 2/, 2, 2” are commutative (€0 1);
3 and 3’ are pushouts; 4 and 4’ are commutative (6’62) with an arbitrary choice
of the lower commuting; 5 is a pullback; (a, b, ¢, d) is commutative (Cf 2) with
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an arbitrary choice of the commuting. The chain in thick type represents fec.
The face (c, f, g, 1) is a pullback; by 2.4 it exists the epic p completing the
projection of the pullback (¢, f, g, ) on the pullback 5; (g, k, n, g) is com-
mutative (001); (p, ¢, 7, 8) is a pushout; by 2.5 it exists the monic m com-
pleting the injeetion of the pushout (p, ¢, r, s) in the pushout 3; m completes
the faces 6 and 7; 8 is commutative (CO 2).

By a construction symmetric of the preceding one with respect to the
central axis of the diagram, we construct the faces 6, 7', 8, then the face 9
as a pushout. In this way the lower chain of the diagram (where we make the
possible compositions) represents y(f«) and also (yf)a and this proves associa~
tivity.

Notice that the chain representing yf« can be obtained constructing only
the faces which are not dashed (with an arbitrary choice of the lower com-
mutings), since they are all bicommutative. ,

5.10. — Proof that s: € — o is a symmetrization. We must prove: (a) s is
a functor; (b) s satisfies the axioms Sy, S., Si, S; of [4];.

(a) Tt is clear that s maps the identities of ¥ into the identities of 5.
If ¢ and b are composable morphisms of ¥, a = mp and b = ng are their
canonical factorizations and m'q is the canonical factorization of gm, then
ba = (ng)(mp) = (nm')(¢'p) is the canonical factorization of ba. Hence s(ba)
is the morphism represented by the chain (1, ¢'p, 1, nm') and coincides with
s(b)s(a), as it is easily verified.

(b) Basy to check.

5.11. — Proof that s: € - verifies the axioms 86 1-7. 861 and S0 2 are
obvious. - Let us prove 86 3. If m is a monic of €, it can be easily verified
that s(m) s(m) = 1, hence s(m) is monic (coretraction); dually, if p is epicv s(p)
is epic. We prove now that s is faithful. Let a, b be morphisms of €, a = np
and b=n'p’ their ecanonical factorizations. If s(a) = s(b) we must have a
commutative diagram ’
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where ¢, j are isomorphisms and also w, v, ¢, are isomorphisms beeause they
are epics and monics. By 2.6 we have: (i'p)m,= 17Vipy = po = (j71p Y my =
=4i"1p = j~1p', hence

1 131 .1 1 ;=1 1 g1

a=np=mnit" p=nug, jTIp' = n, ;i p' = n ot p' =0 jiTp = n/p =b.

Now we prove §06. From now on, we identify we ¥ with s(u). If a
morphism « of 5 is represented by the chain (m, p, ¢, n), it can be immediately
verified that « = njpm. So 866 is obvious.

80 4 follows at once from the definition of the product in .

Now we prove 80 5. Since a regular involution category is inverse iff its
idempotent morphisms are symmetrical (x = &) ([41;, 2.16), let us charac-
terise the idempotent endomorphisms of 3. Let o — (ng)(pm) = um be an
idempotent endomorphisms of 4. Obviously mu = 1, therefore in the diagram
giving the product mu.

The lower chain must represent 1,, hence (L.1) mq,, p,, Go, My are isomor-
phisms and mep;* = n,q;*. The dashed diagonal, with the isomorphisms
myp," = myg;* and the monics m’ and #/, gives the equivalence between the
chains (1,1, ¢, %) and (1,1, p, m). Then we have x =g and o= un = ua
is symmetrical. It is clear that a chain representing « is (m, p, p, m) and the
idempotent endomorphisms are exactly of this type.

Finally 86 7 can be immediately verified by the definition of the product
in 7.

5.12. — Proof of 3.5 (uniqueness of the SO-symmetrization). Let % be a
Ob-category, s: € —# a S0-symmetrization, s = sgy: ¥ ' the symme-
trization obtained through the symmetrizer . To prove that s and s’ are
isomorphic ([4],, 2.8) it is sufficient to construct the ~-functors h: H#—s '
and A': ' — 5 such that hs =s', h's' =s.
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Construction of h'. The existence of &' follows ([4], 4.17) from the fact
that s maps the squares 3.5 of ¥ into bicommutative squares of 5# (1.2).
Construction of h. Let us define k(ngpm) = s'(n)s'(Q) s’(p)?(\m-j. We must
prove: (1) h is well defined; (2) & is a ~-functor; (3) hs = s'.
(1) If ngph = n'§ p'M', we have the commutative diagram 3.2 (1), where
i, j are isomorphisms. Since the squares (u, p, 2, po) and (i, ¢, v, @) are s'-exact
(4], 2.22), we have

Wngpii) = s'(n) TTQ) s'(p) ¥ (M0) = s () G () &' (i) 8'(p) 57 () =

e —

= 8'(n) s'(0) 5 (o) ' (Do) 5' (%) ' (1) = §' (120) 5" (qo) 8' (Do) §' (1Mg) = M(1eGoDu?t0) 3

in the same way

I asst

hn' § p' ') = MneGopotite) = h(ngpin) .

(2) R(Be) = W(B) h(e) follows at once from the fact that in the diagram
3.3 (1) all the squares are s'-exact ([4];, 2.22). Finally, (1) = 1 and k(@) =
= h(x) are obvious. .

(3) Let @ = mp be the canonical factorization of a morphism of .
We have

hs(a) = h(mIpl) = s'(m)s(1) s'(p) 8’ (1) = $'(mp) = s'(a) .
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