ALESSANDRO BELCASTRO and MARCO MARGIOCCO (*)

Sθ-symmetrizations and Cθ-categories. (**)

1. - Introduction.

This paper treats of some particular symmetrizations of categories. We recall that a symmetrization of a category \mathscr{C} is an embedding of \mathscr{C} in an involution category \mathscr{H} having the same objects. A precise definition of symmetrization can be found in $[4]_1$.

It is well known that each abelian category \mathscr{A} can be embedded in an involution category \mathscr{T} (the category of relations, or correspondences of \mathscr{A}) having the same objects, where the morphisms from A to B are the subobjects of $A \times B$ (Mac Lane $[6]_1$, $[6]_2$; Hilton [5]; Brinkmann $[1]_2$). This embedding in an involution category can be generalized to exact categories (conjecture of Puppe [7], proved by Calenko $[3]_1$, $[3]_2$, Brinkmann $[1]_1$, Brinkmann and Puppe [2]).

In this way we obtain the canonical symmetrization $s: \mathscr{E} \to \mathscr{H}$ of an exact category \mathscr{E} .

It has been proved ([4]₇, 1.10) that the category \mathscr{H} is orthodox iff \mathscr{E} has distributive lattices of subobjects. We recall that a regular involution category is called orthodox iff the composition of idempotent endomorphisms is idempotent [4]₃.

Orthodoxy of \mathscr{H} is a necessary and sufficient condition in order that canonical isomorphisms between subquotients of \mathscr{E} should be composable ([4]₅, 3; 17). This fact allows us to define induced relations between subquotients which are compatible with composition ([4]₅, 3.9).

We can also quotient ${\mathscr H}$ by a congruence of category ${\varPhi}$ such that canoni-

^(*) Indirizzo: Ist. Mat. Università, Via L. B. Alberti 4, I-16132 Genova, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.S.A.G.A. (C.N.R.). — Ricevuto: 6-III-1977.

cally isomorphic subquotients of $\mathscr E$ become the same subobject in $\mathscr H/\Phi$. Moreover, the composition

$$\mathcal{E} \xrightarrow{i} \mathcal{H} \xrightarrow{p} \mathcal{H}/\Phi$$

is an inverse symmetrization of \mathscr{E} , that is \mathscr{H}/Φ is an inverse category $[4]_3$.

More generally, this question has been treated for a "quaternary category" $\mathscr{E}[4]_2$. In this case we can construct the quaternary symmetrization $s: \mathscr{E} \to \mathscr{H}$, generalising the category of relations of an exact category, and also Brinkmann's proceeding $[1]_1$. Then \mathscr{H} is orthodox iff \mathscr{E} is orthoquaternary $[4]_7$, i.e. \mathscr{E} is quaternary and satisfies the two axioms $C\theta$ 4, $C\theta$ 4* (2.1).

In this paper we construct directly particular inverse symmetrizations, which we call $S\theta$ -symmetrizations, without passing through quaternary symmetrizations. $S\theta$ -symmetrizations are defined for a class of categories larger than that of orthoquaternary categories, which we call $C\theta$ -categories. In the orthoquaternary case the $S\theta$ -symmetrization coincides with the symmetrization $s = pi : \mathcal{E} \to \mathcal{H}/\Phi$ above mentioned.

In 1 we define $S\theta$ -symmetrizations by axioms $S\theta$ 1-7.

In 2 we give axioms for $C\theta$ -categories (among them the above $C\theta$ 4, $C\theta$ 4*).

In 3 we prove: (a) a category \mathscr{C} has a $S\theta$ -symmetrization iff \mathscr{C} is a $C\theta$ -category; (b) the $S\theta$ -symmetrization of a $C\theta$ -category is unique; moreover it can be obtained using the symmetrizer θ (3.5). This symmetrizer can be applied to any category, but it gives $S\theta$ -symmetrizations only if it is applied to $C\theta$ -categories. Finally we construct explicitly the symmetrized category.

In 4 we give an example of a $C\theta$ -category which is not quaternary, so that its $S\theta$ -symmetrization cannot be obtained from a quaternary symmetrization. All the proofs are given in 5.

1. - $S\theta$ -symmetrizations.

1.1. – Let $s: \mathscr{C} \to \mathscr{H}$ be a symmetrization of a category $\mathscr{C}[4]_1$; let us consider the following conditions $S\theta$ 1-7.

 $S\theta$ 1: \mathscr{C} is a factorizing category, i.e. any morphism a has an epic-monic factorization $a = m \circ p$ (where p is epic, m is monic) unique up to isomorphism, called the canonical factorization of a.

 $S\theta$ 2: for any pair (m, p) of morphisms of \mathscr{C} , m monic, p epic, having the same codomain, there are morphisms m', p' (m' monic, p' epic) such that mp' = pm' (we call this property existence of a lower commuting).

S0 3: the functor s is faithful and preserves monics and epics. (s being faithful, we can identify any morphism u of $\mathscr C$ with its image s(u) and $\mathscr C$ with the subcategory $s(\mathscr C)$ of $\mathscr H$).

 $S\theta$ 4: \mathscr{H} is a regular involution category, i.e. for each morphism α , we have $\alpha\tilde{\alpha}\alpha = \alpha$ (equivalently $\tilde{\alpha}\alpha\tilde{\alpha} = \tilde{\alpha}$).

 $S\theta$ 5: \mathscr{H} is an inverse eategory, i.e. for each morphism α of \mathscr{H} there is a unique morphism β such that $\alpha\beta\alpha=\alpha$ and $\beta\alpha\beta=\beta$; note that by $S\theta$ 4 we have necessarily $\beta=\tilde{\alpha}$.

 $\mathcal{S}\theta$ 6: s has quaternary factorizations, i.e. each morphism α of \mathscr{H} has a factorization (not necessarily unique) $\alpha = n\tilde{q}p\tilde{m}$, where m and n are monics of \mathscr{C} , p and q epies of \mathscr{C} .

Note that by $S\theta$ 1-3-4-6 we have: (a) a quaternary factorization of a morphism α of $\mathscr H$ yields an epic-monic factorization in $\mathscr H$ $\alpha = (n\tilde q)(p\tilde m)$ which is necessarily unique by $S\theta$ 4. Therefore $\mathscr H$ is a factorizing category; (b) if $\alpha = n\tilde q p \tilde m$ is a quaternary factorization of an isomorphism α of $\mathscr H$, then m, p q, n are isomorphisms of $\mathscr C$ ([1]₂, 16.1); consequently s is invariant (i.e. $\mathscr C$ and $\mathscr H$ have the same isomorphisms); (c) if $\alpha = n\tilde q p \tilde m$ is a quaternary factorization of α , α is epic in $\mathscr H$ iff n and q are isomorphisms in $\mathscr C$, α is monic iff m and p are isomorphisms in $\mathscr C$. s being invariant, the canonical factorization $\alpha = (n\tilde q) \cdot (p\tilde m) = \mu \pi$ is unique up to isomorphism of $\mathscr C$. This allows us to define the sets $\mathscr H_d$, $\mathscr H_d$, $\mathscr H_v$, $\mathscr H_v$, of morphisms of $\mathscr H$ in the following way

$$\begin{split} &\alpha \in \mathcal{H}_{d} \iff \pi \in \mathcal{C} \;, & \alpha \in \mathcal{H}_{d^{*}} \Rightarrow \mu \in \mathcal{C} \;, \\ &\alpha \in \mathcal{H}_{v} \iff \tilde{\mu} \in \mathcal{C} & (\iff \tilde{\alpha} \in \mathcal{H}_{d}) \;, \\ &\alpha \in \mathcal{H}_{v^{*}} \iff \tilde{\pi} \in \mathcal{C} & (\iff \tilde{\alpha} \in \mathcal{H}_{d^{*}}) \;. \end{split}$$

It is obvious that if $\alpha = n\tilde{q}p\tilde{m} = \mu\pi$ $(\pi = p\tilde{m}, \mu = n\tilde{q})$:

$$\begin{split} \alpha &\in \mathcal{H}_{u} \Longleftrightarrow \alpha = n\tilde{q}\pi\tilde{1} & \text{is a quaternary factorization} \,, \\ \alpha &\in \mathcal{H}_{u^{\bullet}} \Longleftrightarrow \alpha = \mu\tilde{1}p\tilde{m} & \text{is a quaternary factorization} \,, \\ \alpha &\in \mathcal{H}_{v} \Longleftrightarrow \alpha = 1\tilde{\tilde{\mu}}p\tilde{m} & \text{is a quaternary factorization} \,, \\ \alpha &\in \mathcal{H}_{v^{\bullet}} \Longleftrightarrow \alpha = n\tilde{q}1\tilde{\tilde{\pi}} & \text{is a quaternary factorization} \,. \end{split}$$

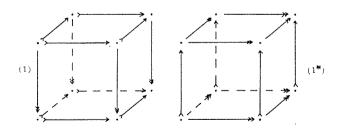
 $S0.7: \mathcal{H}_d, \mathcal{H}_{d^*}, \mathcal{H}_v, \mathcal{H}_{v^*}$ are subcategories of \mathcal{H} (it is sufficient to verify this for $\mathcal{H}_d, \mathcal{H}_{d^*}$).

We call $S\theta$ -symmetrization a symmetrization s verifying axioms $S\theta$ 1-7.

- 1.2. We recall the following lemma ([4]₆, 5.3): « In an inverse category \mathcal{H} a square of monics is bicommutative iff it is anticommutative, iff it is a pullback; an epic-monic square is commutative iff it is bicommutative, i.e. if π , π' are epics μ , μ' are monics and $\mu\pi' = \pi\mu'$, then $\mu'\tilde{\pi}' = \tilde{\pi}\mu$ ».
- **1.3.** Lemma. Let \mathscr{C} be a category having a $\mathscr{S}\theta$ -symmetrization $s:\mathscr{C}\to\mathscr{H}$. Then: (a) \mathscr{C} and \mathscr{H} have (finite) intersections of subobjects; (b) the (finite) intersections of subobjects of \mathscr{C} are the same in \mathscr{C} and in \mathscr{H} ; i.e. a square of monics of \mathscr{C} is a pullback in \mathscr{C} iff it is a pullback in \mathscr{H} (1) (see Proof. **5.1**).
- 1.4. Dually, an analogous lemma is true for intersections of quotients and pushouts of epics.

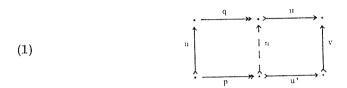
2. - $C\theta$ -categories.

- **2.1.** Let us consider the following conditions for a category \mathscr{C} .
- $C\theta$ 1: \mathscr{C} is factorizing (identical to $S\theta$ 1).
- $C\theta$ 2: identical to $S\theta$ 2 (existence of a lower commuting (1.1, $S\theta$ 2)).
- $C\theta$ 3: \mathscr{C} has pullbacks of monics (finite intersections of subobjects).
- $C\theta$ 3*: \mathscr{C} has pushouts of epics (finite intersections of quotients).
- $C\theta$ 4: if the diagram (1) is commutative and its upper square is a pullback, so is the lower one. If $C\theta$ 1 is verified, $C\theta$ 4 is equivalent to the statement that the direct image of subobjects preserves (finite) intersections.
- $C\theta$ 4*: if the diagram (1*) is commutative and its upper square is a pushout, so id the lower one. If $C\theta$ 1 is verified, $C\theta$ 4* is equivalent to the statement that the inverse image of quotients preserves (finite) intersections.



⁽¹⁾ As \mathscr{C} and \mathscr{H} are factorizing, in both categories the lattice-definition of intersection of subobjects (given by a pullback in the subcategory of monics) is equivalent to the one given by a pullback in \mathscr{C} (or \mathscr{H}).

- **2.2.** We call $C\theta$ -category a category verifying the axioms $C\theta \ 1 \dots C\theta \ 4^*$.
- 2.3. Lemma. In a category verifying $C\theta 1$, if the outer rectangle of the diagram (1) is commutative, there is a unique morphism m such that inner squares are commutative. Moreover, m is monic (see Proof. 5.2).



2.4. - Lemma. Let & be a Cθ-category. If in the commutative diagram

the upper and lower squares are pullbacks, there is a (unique) epic completing the projection of the upper square on the lower one (see Proof 5.3).

2.5. – Lemma (dual of **2.4**). Let $\mathscr C$ be a $C\theta$ -category. If in the commutative diagram

the upper and lower squares are pushouts, there is a (unique) monic completing the injection of the lower square in the upper one (proof dual of 5.3).

It can be easily proved that, if $C\theta 1$ and $C\theta 3$ are verified, Lemma 2.4 is equivalent to axiom $C\theta 4$, and dually for Lemma 2.5.

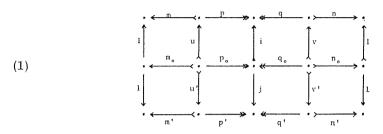
2.6. – Lemma. Let \mathscr{C} be a $C\theta$ -category, m a monic of $\mathscr{C}(A, B)$, p and q morphisms of $\mathscr{C}(B, C)$. If pm and qm are equal epics, then p and q are equal epics (see Proof 5.4).

3. - Existence and uniqueness of the $S\theta$ -symmetrization of a $C\theta$ -category.

3.1. – Theorem. A category $\mathscr C$ has a S0-symmetrization iff it is a C0-category.

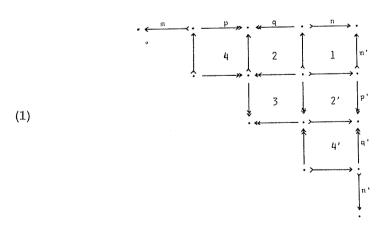
For the necessity see 5.5. For the sufficiency, we must construct directly the involution category \mathscr{H} and the $S\theta$ -symmetrization $s:\mathscr{C}\to\mathscr{H}$. This construction is described in 3.2, 3.3, 3.4.

3.2. — Lemma. Let $s: \mathcal{C} \to \mathcal{H}$ be an SO-symmetrization and let $\alpha = n\tilde{q}p\tilde{m}$, $\beta = n'\tilde{q}'p'\tilde{m}'$ be quaternary factorizations of two morphisms α and β of \mathcal{H} . Then $\alpha = \beta$ iff there exists an «intermediate» morphism $\gamma = n_0\tilde{q}_0p_0\tilde{m}_0$ and «vertical» morphisms u, v, u', v', i, j such that the following diagram of \mathcal{C} is commutative



where u, u', v, v' are (necessarily) monics, i and j are isomorphisms. Moreover if $\alpha = \beta$ we can choose the morphisms u, u', v, v' so that the squares (m, u, u', m') and (n, v, v', n') are pullbacks (see Proof **5.6**).

3.3. – Lemma. Let $s: \mathscr{C} \to \mathscr{H}$ be a SO-symmetrization and let $\alpha = n\tilde{q}p\tilde{m}$, $\beta = n'\tilde{q}'p'\tilde{m}'$ be quaternary factorizations of two composable morphisms α and β of \mathscr{H} . A quaternary factorization of $\beta\alpha$ is given by the lower path of the following diagram (making the 4 possible compositions)



where the square (1) is a pullback (C θ 3); (2) and (2') are commutative (C θ 1); (3) is a pushout (C θ 3*); (4) and (4') are commutative (C θ 2).

The proof follows at once, the squares (2) and (2') being commutative and the squares (1), (3), (4), (4') being bicommutative by 1.2.

3.4. – Let \mathscr{C} be a $\mathscr{C}\theta$ -category. We define the involution category \mathscr{H} specifying its objects, morphisms and compositions using **3.2** and **3.3**. Let the objects of \mathscr{H} be the same of the objects of \mathscr{C} ; let the elements of $\mathscr{H}(A, B)$ be the equivalence classes of chains of morphisms of \mathscr{C} of the type

modulo the following equivalence relation: two chains C = (m, p, q, n) and C' = (m', p', q', n') are equivalent if there exist an *intermediate* chain $C'' = (m_c, p_0, q_0, n_0)$ and *vertical* morphisms u, v, u', v', i, j such that the diagram 3.2 (1) is commutative, where i and j are isomorphisms and u, v, u', v' morphisms which are necessarily monics. This is an equivalence relation (see Proof 5.7).

To define the product of two composable morphisms α and β of \mathscr{H} represented by the chains C = (m, p, q, n) and C' = (m', p', q', n') we use the diagram 3.3 (1). In this diagram the commutative squares (4) and (4') are obtained by $C\theta$ 2, hence they are not necessarily unique, not even up to isomorphism.

We define $\beta\alpha$ as the morphism of \mathscr{H} represented by the *lower path* of the diagram, when the 4 possible compositions are made. This definition does not depend neither on the choice of the chains representing α and β nor on the choices made to construct the squares (4) and (4') (see Proof 5.8). The composition thus defined is associative (see Proof 5.9).

If 1_A is the morphism of \mathscr{H} represented by the chain $(1_A, 1_A, 1_A, 1_A)$ of identities of \mathscr{C} , we have obviously: $\alpha 1_A = \alpha$ and $1_A \beta = \beta$ whenever the compositions are defined. If α is an element of $\mathscr{H}(A, B)$ represented by the chain (m, p, q, n), we define $\tilde{\alpha}$ as the element of $\mathscr{H}(B, A)$ represented by the chain (n, q, p, m). Clearly, the definition of $\tilde{\alpha}$ does not depend on the choice of the chain representing α ; with this definition \mathscr{H} is an involution category $(\tilde{\alpha}\tilde{\beta} = (\beta\alpha)^{\tilde{\alpha}})$ being obvious).

The function $s: \mathcal{C} \to \mathcal{H}$, mapping any object in itself and any morphism a = np (canonical factorization in \mathcal{C}) in the equivalence class of the chain (1, p, 1, n) (evidently well defined), is a symmetrization of \mathcal{C} (see Proof 5.10) and satisfies the axioms $\mathcal{S}\theta$ 1-7 (see Proof 5.11). So each $\mathcal{C}\theta$ -category has a $\mathcal{S}\theta$ -symmetrization.

3.5. – Theorem. (Uniqueness of the $S\theta$ -symmetrization). All the $S\theta$ -symmetrizations of a $C\theta$ -category \mathcal{C} are isomorphic to the symmetrization $s_{\mathcal{C}\theta}$: $\mathcal{C} \to \mathcal{C}^0$, obtained by the symmetrizer θ , associated to the following square types ([4]₁, **2.8** and **4**): pullbacks of monics; pushouts of epics; mixed commutative squares, i.e squares of the tipe (m, p, m', p'), where m, m' are monics, p, p' are epics and pm = m'p' (see Proof **5.12**).

4. - Examples.

- **4.1.** Any inverse involution category \mathscr{H} is a $C\theta$ -category; its $S\theta$ -symmetrization is the identical functor, so its symmetrized category is \mathscr{H} itself (as we can easily see).
- **4.2.** Example of a $C\theta$ -category which is not quaternary. The category $\mathscr{G}^{\#0}$ (θ -symmetrized of $\mathscr{G}^{\#}$, distributive expansion of the category of abelian groups $[4]_8$) is a $C\theta$ -category (being an inverse involution category) but is not quaternary: in order to prove it, we demonstrate that there is a pair of morphisms (m, p), m monic, p epic with the same codomain, having no *epic-monic* pullback, i.e. no pullback of the type (m, p, m', p'), where m' is monic, p' epic and mp' = pm'.

Let A be an abelian group having a proper filtration $0 \stackrel{c}{\neq} K \stackrel{c}{\neq} H \stackrel{c}{\neq} A$. Let us consider (as epic-monic pair) the pair of morphisms μ and \tilde{v} (diagram 1), where μ and v are the equivalence classes in $\mathcal{G}^{\#0}$ of the canonical inclusions $\mu: 0 \to H/K$ and $v: H/K \to A$. A is provided with the distributive lattice of subobjects supplied by its filtration, while H/K with the lattice consisting of the null and total subobjects.

Let us suppose that it exists the pullback $\tilde{\mu}'$, v' of μ , \tilde{v} (where μ' , v' are monics) and let X be the domain of v'. Then X must be isomorphic to one of the following objects: 0, H, K, A, A/K, A/H, H/K. By 1.2 the square μ , ν , μ' , ν' is a pullback. Hence X can not be H, A, H/K, A/K, otherwise instead of the object O we should have the object H/K.

For each object Y and each pair of morphisms $\alpha \colon Y \to 0$ and $\beta \colon Y \to A$ such that $\mu \alpha = \tilde{\nu} \beta$ there exists a morphism γ such that $\alpha = \tilde{\mu}' \gamma$ and $\beta = \nu' \gamma$. If we choose Y depending on X according to the scheme

$$egin{array}{cccc} X & Y \\ \hline O & K \\ K & A/H \\ A/H & K \\ \end{array}$$

and if α is the canonical projection and β the canonical inclusion, then γ is a monic. Then, if X = S/T and Y = S'/T', we must have: $S \subset S' + T$, $S \cap T' \subset T$. We can easily verify that this leads in each case to a contradiction.

An analogous example can be made for any exact category $\mathscr E$ having an object A with a proper filtration $0 \stackrel{\mathsf{c}}{\neq} K \stackrel{\mathsf{c}}{\neq} H \stackrel{\mathsf{c}}{\neq} A$. Then the category $\mathscr E^{\#\theta}$ has not *epic-monic* pullbacks, so it gives an example of a $C\theta$ -category which is not quaternary.

5. - Proofs.

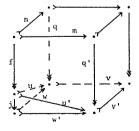
5.1. – Proof of **1.3**. Since \mathscr{H} is an inverse category $(S\theta 5)$, the subcategory of monics of \mathscr{H} has pullbacks ($[4]_6$, 5.8). For the \mathscr{C} case, let m, n be converging monics of \mathscr{C} ; by $S\theta 3$ m, n are also monics of \mathscr{H} , hence they have a pullback (μ, ν, m, n) in \mathscr{H} , which is bicommutative by **1.2**, i.e. $m\nu = n\mu$, $\tilde{n}m = \mu\tilde{\nu}$. By the invariance of s, we have: $m \in \mathscr{H}_{dd^*\nu^*}$ (here $\mathscr{H}_{dd^*\nu^*}$ means $\mathscr{H}_d \cap \mathscr{H}_{d^*} \cap \mathscr{H}_{v^*}$) $\tilde{m} \in \mathscr{H}_{d^*\nu^*}$ then, by $S\theta 7$, $\mu\tilde{\nu} = \tilde{n}m \in \mathscr{H}_{d^*\nu^*}$. This means that $\mu, \nu \in \mathscr{C}$.

Now we prove that (μ, r, m, n) is a pullback in the subcategory of monics of \mathscr{C} .

Let m', n' be monics of $\mathscr C$ such that mn'=nm'. Then it exists a unique monic μ' of $\mathscr H$ such that $v\mu'=n'$, $\mu\mu'=m'$. We have necessarily: $\mu'=\tilde vn'=\tilde u$, From $n'\in\mathscr H_{dd^*v^*}$, $\tilde v\in\mathscr H_{d^*v^*}$ it follows that $\mu'=\tilde vn'\in\mathscr H_{d^*v^*}\Rightarrow \mu'\in\mathscr C$. So each pair m, n of converging monics of $\mathscr C$ has a pullback in $\mathscr C$, which is also a pullback in $\mathscr H$.

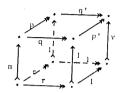
5.2. – Proof of **2.3**. In the diagram **2.3** (1) let m_0p_0 be a canonical factorization of qn. Then $(um_0)p_0 = (vu')p$ are canonical factorizations of the diagonal morphism, so there exists a unique isomorphism i such that $p_0 = ip$. The monic $m = m_0 i$ (unique since p is epic) is the required one.

5.3. - Proof of 2.4.



Let u'p be the canonical factorization of q'm; by 2.3 it exists a unique monic u such that the diagram is commutative. By $C\theta$ 4 the face (u, v, u', v') is a pullback; since also the face (w, v, w', v') is a pullback, it exists the isomorphism j such that the diagram is commutative. The required epic is jp (unique because vw is monic).

5.4. - Proof of **2.6**. Since pm = qm is epic, p and q are epics. Let r = pm = qm, and consider the commutative diagram



where the upper square is a pushout $(\mathcal{C}\theta \ 3^*)$ and also the lower one (obviously) and v is the monic completing the injection (2.5). From the diagram follows at once p'=v=q', hence p',q',v are the same isomorphism. Since q'p=p'q, we have p=q.

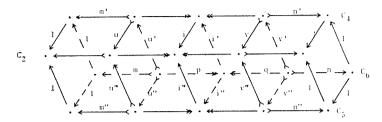
5.5. – Proof of **3.1** (necessity of the condition). Let us prove that \mathscr{C} verifies the axioms of $C\theta$ -categories.

 $C\theta$ 1: obvious. $C\theta$ 2: obvious. $C\theta$ 3: follows from 1.3. $C\theta$ 3*: follows from 1.4. $C\theta$ 4: in the diagram 2.1 (1) the upper square, and also the four vertical ones, are bicommutative by 1.2; therefore, as one can easily prove, also the lower square is bicommutative, hence it is a pullback (1.2). $C\theta$ 4*: proof dual of $C\theta$ 4.

5.6. – Proof of **3.2**. If it exists a diagram of the type **3.2** (1), its four central squares are bicommutative by **1.2**, then $n\tilde{q}p\tilde{m}=n\tilde{q}ii^{-1}p\tilde{m}=nv\tilde{q}_0p_0\cdot\tilde{u}\tilde{m}=n_0\tilde{q}_0p_0\tilde{m}_0$. In the same way $n'\tilde{q}'p'\tilde{m}'=n_0\tilde{q}_0p_0\tilde{m}_0$. Conversely, let $n\tilde{q}p\tilde{m}=n'\tilde{q}'p'\tilde{m}'$. Let us construct the diagram **3.2** (1) in the following way: u,u' (resp. v,v') are monics completing the pullback of m,m' (resp. n,n') (C θ 3); $m_0=mu=m'u',\ n_0=nv=n'v'$; i is the isomorphism of $\mathscr H$ (hence of $\mathscr C$) determined by the two canonical factorizations $(n\tilde{q})(p\tilde{m})$ and $(n'\tilde{q}')(p'\tilde{m}')$ and j=1. At last we find the epic p_0 (q_0) ; it is sufficient to prove that $i^{-1}pu$ and p'u' are equal epics. We have: $i^{-1}pu=i^{-1}(p\tilde{m})(mu)=(p'\tilde{m}')(m'u')=p'u'$. Let us prove that p'u' is epic in $\mathscr H$ (hence in $\mathscr C$): $p'u'(p'u')^{\sim}=p'u'\tilde{u}'$ $\tilde{p}'=i^{-1}pu\tilde{u}'\tilde{p}'=i^{-1}p\tilde{m}m'\tilde{p}'=p'\tilde{m}'m'\tilde{p}'=1$.

5.7. – Proof that the given relation \mathcal{Q} is an equivalence. We can easily verify that the relation between the chains C'' and C given by the *upper portion*

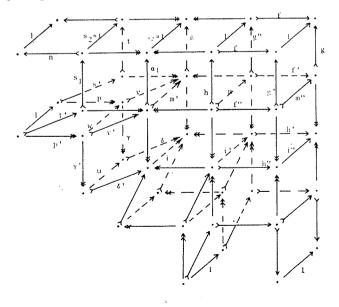
of the diagram 3.2 (1) is a preorder, which we denote by $C'' \leqslant C$. So clearly $C\mathscr{R}C' \Leftrightarrow \text{it}$ exists C'' such that $C'' \leqslant C$ and $C'' \leqslant C'$. Therefore \mathscr{R} is reflexive and symmetric. Now we prove that \mathscr{R} is transitive.



In fact if $C_1 \mathcal{R} C_2$ and $C_2 \mathcal{R} C_3$, there exist chains C_4 preceding C_1 , C_2 and C_5 preceding C_2 , C_3 . Then it is sufficient to construct a chain C_5 preceding C_4 and C_5 .

First we construct the left and right faces of the diagram (all morphisms are identities) and the three parallel ones as pullbacks; then we define m = m'u' = m''u'', n = n'v' = n''v''; finally p and q are the epies completing the projections of the faces (u, u', u'', u''') and (v, v', v'', v''') on the face (i, i', i'', i''') (2.4), and C_6 is given by the chain (m, p, q, n).

5.8. – Proof that the product is well defined. It is sufficient to prove that, if a is a chain representing α , b and b' are chains representing β with $b \le b'$, and if ba and b'a are any two chains obtained composing b and b' with a, according to the diagram **3.3** (1), then ba and b'a are equivalent, independently on the choices made to construct the squares (4) and (4'). We build the following diagram:

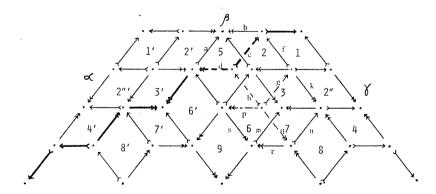


First we write a (the two horizontal upper chains, relied by identities), b and b' (the two vertical right chains, relied by a translation with i'' isomorphism), and the compositions ba, b'a as in 3.3 (1). Then we construct m, m', i, i' such that the diagram is commutative: m exists because the face (f, g, f', g'') is a pullback; m', i' are obtained from 2.3; i is obtained from 2.5; m, m', i, i' are all monics. The union of the faces (f, g, f', g'') and (f', m, f'', m'') coincides with the face (f, g', f'', h), which is a pullback, hence also the face (f', m, f'', m'') is a pullback; by $C\theta$ 4, the face (i, i'', h', h'') is a pullback. Since i'' is an isomorphism, also i' and i are isomorphisms.

Now we construct the intermediate chain giving the equivalence between ba and b'a. s' and t' are obtained as pullback of $s = s_2 s_1$ and t. vp and v'p' are canonical factorizations. $\delta \gamma$ and $\delta' \gamma'$ are canonical factorizations. w is obtained by 2.3; it is monic and also epic (being the second factor of an epic) hence w is an isomorphism ($C\theta$ 1); u is obtained analogously and is an isomorphism. The commutative square $(v', \alpha_2 \alpha_1, \beta, vw)$ is a pullback because it is the projection of the pullback $(t', s_2 s_1, t, s')$ by epics ($C\theta$ 4). Since $\alpha_2 \alpha_1 = \beta m'$ with m' monic, v' must be an isomorphism. Then also δ' and δ are isomorphisms.

This construction is possible even if s_2 and α_2 are only monies (in our case they are identities). So the same construction can be applied to the other half of the diagram. So we obtain a chain (m_1, p_1, q_1, n_1) (where $m_1 = ns_1t'$, $p_1 = \delta' \gamma' p'$ and q_1 , n_1 are obtained analogously) preceding both chains ba and b'a, therefore they are equivalent.

5.9. – Proof that the product is associative. Let us consider the following diagram (where numbers denote faces which are not dashed):



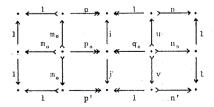
The faces 1 and 1' are pullbacks; 2, 2', 2'', 2''' are commutative $(C\theta 1)$; 3 and 3' are pushouts; 4 and 4' are commutative $(C\theta 2)$ with an arbitrary choice of the *lower commuting*; 5 is a pullback; (a, b, c, d) is commutative $(C\theta 2)$ with

an arbitrary choice of the commuting. The chain in thick type represents $\beta \alpha$. The face (c, f, g, h) is a pullback; by **2.4** it exists the epic p completing the projection of the pullback (c, f, g, h) on the pullback 5; (g, k, n, q) is commutative $(C\theta 1)$; (p, q, r, s) is a pushout; by **2.5** it exists the monic m completing the injection of the pushout (p, q, r, s) in the pushout 3; m completes the faces 6 and 7; 8 is commutative $(C\theta 2)$.

By a construction symmetric of the preceding one with respect to the central axis of the diagram, we construct the faces 6', 7', 8', then the face 9 as a pushout. In this way the lower chain of the diagram (where we make the possible compositions) represents $\gamma(\beta\alpha)$ and also $(\gamma\beta)\alpha$ and this proves associativity.

Notice that the chain representing $\gamma\beta\alpha$ can be obtained constructing only the faces which are not dashed (with an arbitrary choice of the *lower commutings*), since they are all bicommutative.

- **5.10.** Proof that $s: \mathscr{C} \to \mathscr{H}$ is a symmetrization. We must prove: (a) s is a functor; (b) s satisfies the axioms S_1 , S_2 , S_3 , S_4 of $[4]_1$.
- (a) It is clear that s maps the identities of \mathscr{C} into the identities of \mathscr{L} . If a and b are composable morphisms of \mathscr{C} , a=mp and b=nq are their canonical factorizations and m'q' is the canonical factorization of qm, then ba=(nq)(mp)=(nm')(q'p) is the canonical factorization of ba. Hence s(ba) is the morphism represented by the chain (1, q'p, 1, nm') and coincides with s(b)s(a), as it is easily verified.
 - (b) Easy to check.
- **5.11.** Proof that $s: \mathcal{C} \to \mathcal{H}$ verifies the axioms $S\theta$ 1-7. $S\theta$ 1 and $S\theta$ 2 are obvious. Let us prove $S\theta$ 3. If m is a monic of \mathcal{C} , it can be easily verified that s(m)s(m)=1, hence s(m) is monic (coretraction); dually, if p is epic s(p) is epic. We prove now that s is faithful. Let a, b be morphisms of \mathcal{C} , a=np and b=n'p' their canonical factorizations. If s(a)=s(b) we must have a commutative diagram



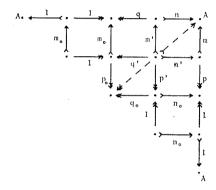
where i, j are isomorphisms and also u, v, q_0 are isomorphisms because they are epies and monies. By **2.6** we have: $(i^{-1}p)m_0 = i^{-1}ip_0 = p_0 = (j^{-1}p')m_0 \Rightarrow i^{-1}p = j^{-1}p'$, hence

$$a = np = nii^{-1}p = nuq_0^{-1}j^{-1}p' = n_0q_0^{-1}j^{-1}p' = n'vq_0^{-1}j^{-1}p' = n'jj^{-1}p' = n'p' = b.$$

Now we prove $S\theta$ 6. From now on, we identify $u \in \mathscr{C}$ with s(u). If a morphism α of \mathscr{H} is represented by the chain (m, p, q, n), it can be immediately verified that $\alpha = n\tilde{q}p\tilde{m}$. So $S\theta$ 6 is obvious.

 $S\theta$ 4 follows at once from the definition of the product in \mathscr{H} .

Now we prove $S\theta$ 5. Since a regular involution category is inverse iff its idempotent morphisms are symmetrical ($\alpha = \tilde{\alpha}$) ([4]₄, 2.16), let us characterise the idempotent endomorphisms of \mathscr{H} . Let $\alpha = (n\tilde{q})(p\tilde{m}) = \mu\pi$ be an idempotent endomorphisms of A. Obviously $\pi\mu = 1_A$, therefore in the diagram giving the product $\pi\mu$.



The lower chain must represent 1_A , hence (1.1) m_0 , p_0 , q_0 , n_0 are isomorphisms and $m_0 p_0^{-1} = n_0 q_0^{-1}$. The dashed diagonal, with the isomorphisms $m_0 p_0^{-1} = n_0 q_0^{-1}$ and the monics m' and n', gives the equivalence between the chains (1, 1, q, n) and (1, 1, p, m). Then we have $\pi = \tilde{\mu}$ and $\alpha = \mu \pi = \mu \tilde{\mu}$ is symmetrical. It is clear that a chain representing α is (m, p, p, m) and the idempotent endomorphisms are exactly of this type.

Finally $S\theta$ 7 can be immediately verified by the definition of the product in \mathscr{H} .

5.12. – Proof of **3.5** (uniqueness of the $S\theta$ -symmetrization). Let \mathscr{C} be a $C\theta$ -category, $s:\mathscr{C}\to\mathscr{H}$ a $S\theta$ -symmetrization, $s'=s_{\mathscr{C}\theta}:\mathscr{C}\to\mathscr{H}'$ the symmetrization obtained through the symmetrizer θ . To prove that s and s' are isomorphic ([4]₁, 2.8) it is sufficient to construct the \sim -functors $h:\mathscr{H}\to\mathscr{H}'$ and $h':\mathscr{H}'\to\mathscr{H}$ such that $hs=s',\ h's'=s$.

Construction of h'. The existence of h' follows ([4]₁, 4.17) from the fact that s maps the squares 3.5 of \mathscr{C} into bicommutative squares of \mathscr{H} (1.2).

Construction of h. Let us define $h(n\tilde{q}p\tilde{m}) = s'(n)\overline{s'(q)}s'(p)\overline{s'(m)}$. We must prove: (1) h is well defined; (2) h is a \sim -functor; (3) hs = s'.

(1) If $n\tilde{q}p\tilde{m} = n'\tilde{q}'p'\tilde{m}'$, we have the commutative diagram 3.2 (1), where i, j are isomorphisms. Since the squares (u, p, i, p_0) and (i, q, v, q_0) are s'-exact ([4], 2.22), we have

$$h(n\widetilde{q}p\widetilde{m}) = s'(n) \, \widetilde{s'(q)} \, s'(p) \, \widetilde{s'(m)} = s'(n) \, \widetilde{s'(q)} \, s'(i) \, s'(i^{-1}) \, s'(p) \, \overline{s'(m)} =$$

$$= s'(n) \, \widetilde{s'(v)} \, \widetilde{s'(q_0)} \, \widetilde{s'(p_0)} \, \widetilde{s'(u)} \, \widetilde{s'(m)} = s'(n_0) \, \widetilde{s'(q_0)} \, s'(p_0) \, \widetilde{s'(m_0)} = h(n_0 \widetilde{q}_0 \, p_0 \widetilde{m}_0) \; ;$$

in the same way

$$h(n'\,\tilde{q}'\,p'\,\tilde{m}') = h(n_0\,\tilde{q}_0\,p_0\,\tilde{m}_0) = h(n\tilde{q}p\tilde{m}) \;.$$

- (2) $h(\beta \alpha) = h(\beta) h(\alpha)$ follows at once from the fact that in the diagram **3.3** (1) all the squares are s'-exact ([4]₁, 2.22). Finally, h(1) = 1 and $h(\tilde{\alpha}) = h(\alpha)$ are obvious.
- (3) Let a=mp be the canonical factorization of a morphism of \mathscr{C} . We have

$$hs(a) = h(m\widetilde{1}p\widetilde{1}) = s'(m)\widetilde{s'(1)}s'(p)\widetilde{s'(1)} = s'(mp) = s'(a)$$
.

References.

- [1] H. B. Brinkmann: [•]₁ Relations for exact categories, J. Algebra 13 (1969), 465-480; [•]₂ Addition von Korrespondenzen in abelschen Kategorien, Math. Z. 113 (1970), 344-352.
- [2] H. B. Brinkmann and D. Puppe, Abelsche und exacte Kategorien, Korrespondenzen, Lecture Notes in Mathematics 96, Springer Verlag, Berlin New York 1969.
- [3] M. S. CALENKO: [•]₁ Correspondence over a quasi-exact category, Dokl. Akad. Nauk. SSSR 155 (1964), 292-294; Soviet Math. Dokl. 5 (1964), 416-418; [•]₂ Correspondences over a quasi-exact category, Mat. Sb. 73 (NS) (1967), 564-584; Math. USSR Sb. 2 (1967), 501-519.
- [4] M. Grandis: [•]₁ Symétrisations des catégories, (I), Généralités, Rend. Sem. Mat Univ. Padova **54** (1975), 271-310; [•]₂ Symétrisations de catégories et fac torizations quaternaires, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur Sez. I **14** (1977), 133-207; [•]₃ Canonical preorder and congruence in orthodox semigroups and categories (Orthodox categories, 1), Boll. Un. Mat. Ital. **13** B

(1976), 634-650; [•]₄ Regular and orthodox involution categories (Orthodox categories, 2), Boll. Un. Mat. Ital. 14 A (1977), 38-48; [•]₅ Induction in orthodox involution categories (Orthodox categories, 3), Ann. Mat. Pura Appl. (to appear); [•]₆ Quasi inverse involution semigroups and categories (Orthodox categories, 4), Boll. Un. Mat. Ital. 14 B (1977), 320-339; [•]₇ Quaternary categories having orthodox symmetrizations (Orthodox symmetrizations, 1) Boll. Un. Mat. Ital. 14 B (1977); [•]₈ Exact categories and distributive lattices, (Orthodox symmetrizations, 2), Ann. Mat. Pura Appl., (to appear).

- [5] P. Hilton, Correspondences and exact squares, Proceedings of the Conference of Categorical Algebra, La Jolla 1965, Springer, Berlin, 1966
- [6] S. MAC LANE: [•]₁ An algebra of additive relations, Proc. Mat. Acad. Sci. U.S.A. 47 (1961), 1043-1051; [•]₂ Homology, Springer, Berlin 1963.
- [7] D. Puppe, Korrespondenzen in abelschen Kategorien, Math. Ann. 148 (1962), 1-30.

* * *