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G TerrATI (%)

A set-theoretical approach

to Lebesgue - Stieltjes measure. (**)

1. - Introduection.

Tt is often natural to study integrals from the point of view of considering
finite-valued continuous monotone funetions on the real line, particularly in
probability and classical applied mathematics. This leads to a wide class of
definitions of integrals,’ and specifically to the well-known Lebesgue-Stieltjes
integral. In the section 2 of this Note we analize an approach to this kind
of integral from a different point of view, which may be considered as a con-
structive one, and which only uses sets and mapping between them. In the
section 3 we examine a suitable definition of measurable mappings, and we
discuss an analogue of the Lebesgue-Stieltjes integral, which in this context
can be understood as a real number which relates each other two mappings.
Some elementary properties of this kind of integration are skethched. In the
section 4 some applications to probability theory are bricfly discussed.

2. - A Lehesgue-Stieltjes measure.

For our purposes we need a well-known general method for constructing
measures [1]. Thus we recall the following definitions (we suppose from now
on that the set X, and later Y, always are non-void sets).

(*) Indirizzo: Istituto di Matematica, Universitd, 43100 Parma, Ttaly.
(**) Work supported by C.N.R. (Italy) (under the contract n. 73.00283.02). — Rice-
vuto: 20-XI1I-1976.
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Definition 1. TLet X be a set, and let % be a class of subsels of X,
containing 4. A mapping g: ¥ — R (R the extended real line) will be called
a pre-measure on X if and only if: (i) V0e ¥, 0<a{C)< + oo; (ii) f(#) = 0.
Let now P(X) be the set of all subsets of X. A mapping pu: P(X) — R, will
be called a measure () on X if and only if: (a) VS e P(X), 0<u(S)< + oo,
w(@) =03 (b) V8, 8,e P(X), 8,C8: =u(S:)<pu(S:); (e) if {8},., (I the set of
the positive integers) is any family of sets of X, then u({JS,)< > u(S,).

i=1 Tes]

Definition 2. Let X be a set and let € be a class of sets which satisfies
to: (i) 0e¥; (i) VSe P(X) a family {C},, of sets of ¥ exists such that

UC;>8 (we conventionally exclude the finite case). We call € a sequential
=1

covering class in X, and for any § we call the family {C},, the sequential
covering of S.

The link between pre-measures on X, defined possibly on a smaller class
than P(X), and measures on X, defined on the entire P(X), is given by the
following well-known result [1].

Theorvem 1. Let X be a set and let i be a pre-measure defined on a class €
of sets of X, which is a sequential covering class in X. Then the set function

¢;€¥|Ue; D8 i=1

s @ measure on X.

This result together with the definition above is the motivation for the
next concepts we want to specify. At this stage the following definition of pre-
metrizability will be useful.

Definition 3. Let X be a set. Let p: X XX —R a mapping of the
Cartesian product X x X into B such that Va, o’ € X, o(z, 2')>0 (symmetry
not required). A couple (X, ) will be called a pre-metrizable set. Let now
(X, 0) be a pre-metrizable set. Let we define the following non-negative

number d, by means of

(i) VSePX), d8)= sup o, ),
() d@) =o. e

(1) Also called outer measure.
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We call d a pre-diameter (%) of S.

We are now in position to give in the next definition our set-theoretical
analogue of a Lebesgue-Stieltjes pre-measure.

Definition 4. Lzt X, ¥ be two sets. Let f: D,— Y be a mapping,
D, being a non-void subset of X. Let (¥, g) be a pre-metrizable set, and let d
be a pre-diameter. Let we call f(S) the set f(8) ={ye Y|Vze S, f(z) = y}.
Let we define a set funection f, by means of («) VSc Dy, f,(S) = a(f(8));
(B) f(9) = 0.

We call u, a set-theoretical analogue of the Lebesgue-Stielljes pre-measure,
and f the distribution mapping for the pre-measure f,.

We report here the following result, which is an immediate consequence
of Theorem 1.

Theorem 2. Let X, Y, f and fi, be as in Def. 4. Let D, coincide with the
entire X. Then the set function

VSeP(X), w8 = it 3 alc)

6;€¢Uec,Ds i=1
18 @ measure on X.

The proof follows the standard one of Theorem 1, and for this reason will
not be reproduced here.

In the last definition of this section we colleet some standard notions con-
cerning measurability of sets.

Definition 5. Let X, ¥, f and u, be as above. We call u, a set-theoret-
ical analogue of the Lebesgue-Stieltjes measure, and f the distribution mapping
for the measure u,. Moreover, as usual, a subset § of X is said to be p,-meas-
urable if for any set T c X, u/(T) > pu (TN 8) + pu{T — 8) (' — § is the com-
plement of § with respect to 7). We call M, the class of all u,-measurable
subsets of X.

Thus in particular if u,(8) = 0, it follows that S is u,-measurable.

2. - Measurable mappings and integrals.

In this section we briefly discuss the concept of measurability of a mapping
and, consequently, its integration on subsets.

() We observe that the pre-diameter d is also a pre-measure, and satisfies to the
requirements (a), (b) for a measure in Def. 1. Moreover we explicitely point out the fact
that not necessarily oz, ) = 0.
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It is uwsual to characterize measurable mappings in the following way. Let
X be any set with a measure u, let ¥ be another set, and let ¢ be a mapping
g:D,—~ R, (®) (R,cY), D, being a measurable non-void subset of X. Let
% be a sequential covering elass in Y; then the mapping ¢: D, — R, is said
to be a measurable mapping if for any set De &, Dc R,, g YD) is a y-meas-
urable set.

However we will proceed in a slightly more constructive way, which is a
direct set-theoretical translation of the elementary procedure for measurability
of ordinary functions.

Definition 6. Let X, ¥ be two sets. Let (Y, o) be a pre-metrizable
set together with a pre-diameter d. Moreover let ¥ be such that a non-void
set, ¢, exists, which separates Y in the weak sense that two distinet-each-other
(and from e¢) non-void subsets ¥;, Y, exist satisfying to ¥ = Y, U Y, Ue.
Let ¢ be any mapping ¢g: D, — Y (D, a non-void subset of X). We will call
height of g over a now-void subset Sc D, the mapping H:Y — R defined by
the following relations

H(g(8)) = d(g(8) U ¢) whenever g(8)c ¥, and g(8) N Y, = 0;
(ii) H(H(S )) = — d{g(8) U e) whenever g(8)c Y, and g(8) N Y,=0;
(iii) H(g(8)) = 0 whenever g(S)ce or S = @;
H(g(8)) = a((9(S) N ¥;) U e) — a((g(8) N ¥,) Ue) whenever g(S) is

not as above.

We call null function the mapping g such that H(g(8)) = 0 for any subset
S of D,.

Thus we can give our definition for a measurable mapping.
Definition 7. Let X, ¥ be two sets, and f: X —~ ¥ be a mapping.
Let we suppose that the requirements from Def. 1 to Def. 5 of the preceding
section are satisfied, including the ones of Theorem 2, and let u, be the set-
theoretical analogue of the Lebesgue-Stieltjes measure, as previously con-
structed. Let g be any mapping ¢: D, - Y and let the requirements of Def. 6
be satisfied. Liet D, be a u,-measurable subset of X. Let § be 2 non-void
subset of D,. We will say that g is u,-measurable on § if an only if for any
sequential covering {C},, of 8 in D,, for any i€ I, for any «, € R such that
H(g(C,)) = a;, the sets C, belong to M,.

(3) Where E, is the range of ¢.
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At this point we can proceed to our definition of the analogue of the Liebesgue-
Stieltjes integration.

Definition 8. Let X, ¥ be two sets, and f, g be two mappings sub-
mitted to the requirements from Def. 1 to Def. 6 (including the ones of The-
orem 2). Let § be a non-void subset of D,, and let g be y-measurable over S,
in the sense of Def. 7. Let any sequential covering {C},., of § be made of
subsets of D,. We will call analogue of the Lebesque-Sticlijes integral of g over S
the real number [g du, so defined

[gau= it 3 H(C)ulC).
y oie‘o”/ﬁo,{)s =
=)
A pmeasurable mapping ¢ such that all the above series are absolutely con-
vergent (%) ([gddu, <+ oo) will be said u,-integrable.
8

In this latter definition we have adopted the convention 0. oo = 0 which
is all special to measure theory. We also observe that the null mapping is
u-measurable and u,-integrable on any subset.

We collect in the following theorem some elementary properties.

Theorem 3. Let X, Y, f, g be as above. Let g be pmeasurable on two
non-void subsets S;, Sy such that 8;C 8,. Then: (a) f g d,uf<f g du,. Let more-

over 8 be such that 1;(S) = 0. Then: (b) for any g, [uf'measm able on 8, we have

fgdu,=0. Let 8y, ..., 8, be disjoint ,Ltf-mca,3147'able subsets, let § = \_JSL,, and
k=1

s
let g be a u,-integrable mapping on each set Sy,. Then: (¢) g is upintegrable over S

and f g d,uf<z [gdu,. Morcover let g, and g, be two ps-integrable MAPPInGs
k=18,
over a non-void ur-measurabke set ScD, N D,. Let {C; $ie; DE @ sequential

covering of S. Let the heights of g, and g, be such that | H(g:(C)) | = | H(g:(C)) |
for any i€ except on a subclass whose members all have p-measure 0. Then:
(a) f(11 d[uf». fg. dp,. At last, let G be a set of usintegrable mappings over a

smnc set 8§, wzth the following properties: (i) for any two mappings gi, §» € G
& mapping g€ Y owists such that fg d,uf_.jg1 du,+ jgo duy; (i) for any Ace R

and ge G a mapping €Y emsts such that fgl d,uf—— M g duy; (i) the null

mapping belongs to %. Then: (e) ¥ is a vectm -space over I

(*) Otherwise, the number j'g dpy is — oo, for the Mertens theorem.
S
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Proof. (a) follows directly by observing that a sequential covering of 8,
exists which contains a sequential covering of §;. (b) comes out from the fact
that a sequential covering of § exists such that for any member of it, 1, (C)) <
<p(8)=0. (c) is proved by observing that for any C;, C, = b O, where

C: is an element of a sequential covering of §,. (d) is proved by (hreet inspec-

tion. (e) follows when we define an abelian group law 4 (with the null map-

ping as 0 element) and an external law as: J(gn 4 92) dpy = [gn A, + fg. A,
8 8 s

and jl gdu,= ngd,u,

The proof is thus completed.

In the last theorem of this section we obtain, under a somewhat weak
assumption, an analogous of a Radon-Nikodym type theorem. All the sets
are supposed to be different from the void set.

Theorem 4. Let X, Y, f and Us as above. Let o be an everywhere finite
set function such that

(@) VS e M,y u(8)<a(S);
(B) for any sequential covering of disjoint subsets of any set
Se M;: Y o(C) = a(8) .

=1

Then a ps~integrable non-null mapping g: X —> Y ewists such that: fgdu, <
L4

Proof. Let 4 be rmy sequence of positive terms, all of them <1, and
let (C’ }ier be a sequential covering of 8. We define a function g on the whole X
by posing

Vi,  H(gC)) =4, and  H(gX—C))=0.

Thus, for any measurable set §

fgd,u,——lanH( )m(0><_z (9(C)) il C)

=1

<3 (0 <3 u(0)< <3 a(0;) =0(8).

=1 =1 i=1
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The proof is then concluded.

We consider now a specific example, which will be useful for the applica-
tions we have in mind.

Let X be a set, and let ¥ be a Boolean algebra of projections of an abstract
Hilbert space H, whose elements we denote with A, and whose sealar product
and norm we denote with {,} and || | respectively. Let % be a sequential
covering class of X. Let P be a mapping P: X — Y such that: (i) for any

family C, of mutually disjoint sets of &, > P(C,) = P(UC,); (i) for any
i=1 i=1
Ou C.e TPr(0, N 02) = P(Gl)P(Oz) and P(C,V 02) - -P(Gl) + P(Oz) — P(Cy)-
-P(Cy); P(#) = 0y and P(X) = 1, (respectively the null and the identity
mapping of H). The mapping P is usually called a spectral measure. Let we
define o(P(C,), P(Cy)) = {P(Cy)h, P(C.)h} for a fixed h in H; then for any
Ce %, a(P(0)) = {h, P(C)h}, from which we have the pre-measure [,(C) =
= {h, P{C)R}, and the measure, defined on all subsets of X, u}(8)= inf
¢ €¢U0; D8

<«

- >{h, P(C;)k}. Thus P is the distribution mapping for this measure, and heH

i=1

labels the so obtaine measures. We observe that, whenever we define o(P(C,),

P(C,)) = sup {P(Cy)h, P(C;)h}, we have the analogous result u,(S) = inf
{lafl=1 0;e%[Ue,Ds

> N(P(C,)), where N(P(C,)) ==sup [|P(C;)h]: in this latter case u,(X)= 1.

=1 fhll=1

4. - An application to probability.

Let X be a set and let x4 be a measure on its subsets: p is called a probability
measure whenever u(X) = 1. We observe that a probability measure can be
easily obtained from a given measure: for instance the set funections p/(1 4 u)
(whenever u(X) = -+ oo), inf (1, u), u/u(X) (whenever u(X)<-+oo) are all
set functions induced by g which satisfy requirements (a) to (¢) of Def. 1,
together with the above, so all they are probability measures 4 probability
measure will be denoted by p.

We remember now that a general description of classical probability con-
sists of a set X and of a probability measure p on X. An event is an element
of P(X) which is a measurable set and the probability of the event is the
meagure on it.

We outline here another description, which makes use of the notions di-
scussed in the preceding section.

Definition 9. Let X, ¥ be two sets, f a mapping between them, and
let X, Y satisfy to the requirements from Def. 1 to Def. 6 of the preceding
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sections. Let p; be a probability measure induced by a measure yu, described
above. Let P, be the class of the p,measurable subsets of X. We eall a
member of P, an event, the p,-measure of it the probability, and the probability
measure p, a state with respect to the distribution mapping f of X, which, in
this context, will be called the density state function. Let now ¢ be a p,meas-
urable mapping between X and Y: we call ¢ an observable. Then VSc R,c Y
we call the number pf(g“l(S)) the probability, with respeet to the state p,,
that a measure on the observable g will be in §. At last, let g be a p,-integrable
observable. We eall empectation value of ¢ in S with respeet to the density
state function f the integral [gdp, and we write: ¢;(g) = [g dp,.
8 S

The scheme outlined in this latter definition is general enough to allow
both classical and quantum like probability to enter as particular cases: at
this puwrpose, the remark at the end of the preceding section shows that a
quantum scheme-follows whenever Y is an abstract Boolean algebra of pro-
jections of an abstract Hilbert space, and the observable g is a speectral meas-
ure [Z] (?). Moreover, as a trivial consequence of the Theorem 4 of the pre-
ceding seetion, we have the result that, given a set function o, 0 <o <1, which
satisfies its assumptions, an observable g exists for any S such that ¢ (¢) <o(S).

We introduce now a structure on the set of the density state funetion, in
the following way.

Definition 10. Let Py be the set P.=={p;|fis a density state function}.

We call Pr a state space it YV veal 2, A, ..., >0, such that > A,=1 and for

E—1

any sequence py, Py, ... the probability measure > 1,p. belongs to Pp. Let
kw1

now we call 7 the set F = {f|f is a density state function for Pr}. Let g be
be a given observable. We define in F' two composition laws, -+’ and, respec-
tively interval and external, by the following setting

Vi, e R, Ay A >0, -t =1,
Vi, foe I: }‘lefl(g) + ;5,26!‘2(9) = 011‘)’,4—'22-/2(9) .
At least, we call v,(g) (the variance of ¢ in the state f) the following number:

Yg: v,(g) = e/{gg) — ¢}{g) (we omit, here and above, the subset § as an index).
From this latter definition we have the following result.

(®) In this way, f can be thought to be roughly a squared modulus of a wave func-
tion.
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Temma. Let X, Y be as above. Let F be the convew set of the preceding
Def. 10. Then, for any f,, f. € F, for any Ay, 2> 0 and such that Ak A= 1,
we have

’sz~f,+’;.2~f=(9) = 7‘1"/’4(.‘]) - /1&2'?7/2(9) + )‘2(81'1—' Gfg)g(!l) .

Proof. We observe that, e.g. e (gg) = e (9) -+ v (g): thus, multiplying
respectively by 2; and A, the two relations so obtained and subtracting

eil~f,+'7.2-f2(g) = ;"-ie';“:,(g) + 22, 2, ¢ (9) efg(.(/) + 7 9;3(.(/)

we have the result.

In conclusion a scheme is sketched which tries to fit both the classical and
the quantum case, and which seems at the same time flexible enough to include
more general theories. We remark that further possibilities of extending our
formalism are given by extending the number field to an ordered field, even
not commutative, as far as possible. Results on this direetion will published
elgewhere.
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Summary.

A sel-theoretical analogue of the Lebesgue-Stieltjes measure is examined. Some con-
sequences arve briefly comsidered, particularly the measurability and the integrability of
some classes of mappings. Amn application fo the probability theory is discussed.






