P. C. BHAKTA (*)

Some results on the generation of quasi-uniformities. (**)

1. - Introduction.

Let X be a non-void set. For non-void subsets U and V of $X \times X$, $U \circ V$ is a subset of $X \times X$ defined by

$$U \circ V = \{(x, y) : (x, z) \in V \text{ and } (z, y) \in U \text{ for some } z \in X\}.$$

The set Δ is defined by $\Delta = \{(x, x) : x \in X\}.$

A non-void family \mathcal{U} of subsets of $X \times X$ is said to be «a quasi-uniformity on X» if the following axioms are satisfied ([2], Ch. 11, p. 174):

- (QU.1) $\Delta \subset U$ for every $U \in \mathcal{U}$.
- (QU.2) If $V \subset X \times X$ and $U \subset V$ for some $U \in \mathcal{U}$, then $V \in \mathcal{U}$.
- (QU.3) If $U, V \in \mathcal{U}$, then $U \cap V \in \mathcal{U}$.
- (QU.4) For every $U \in \mathcal{U}$, there is a V in \mathcal{U} with $V \circ V \subset U$.

The pair (X, \mathcal{U}) is said to be «a quasi-uniform space». A subfamily \mathscr{B} of \mathscr{U} is a base of the quasi-uniformity \mathscr{U} if for any U in \mathscr{U} , there is a member V of \mathscr{B} with $V \subset U$. A family \mathscr{B} of subsets of $X \times X$ is a base for some quasi-uniformity on X iff the following conditions hold:

- (B.1) $\Delta \subset U$ for every $U \in \mathcal{B}$.
- (B.2) For $U, V \in \mathcal{B}$ there is a W in \mathcal{B} with $W \subset U \cap V$.
- (B.3) For every $U \in \mathcal{B}$, there is a V in \mathcal{B} with $V \circ V \subset U$.

^(*) Indirizzo: Department of Mathematics, Jadavpur University, Calcutta 32, India.

^(**) Ricevuto: 26-VIII-1975.

A mapping $p: X \times X \to R$ (R = field of real numbers) is «a quasi-metric on X» if the following axioms are satisfied $(x, y, z \in X)$:

- (QM.1) $p(x, y) \ge 0$ and p(x, x) = 0.
- (QM.2) $p(x, y) \leq p(x, z) + p(z, y)$.

For any quasi-metric p on X and r > 0 we write $V_{(p,r)} = \{(x, y) : x, y \in X \text{ and } p(x, y) < r\}.$

Let \mathscr{P} be a family of quasi-metrics on X. Denote by \mathscr{B} the family of all sets of the form $V = \bigcap_{i=1}^{n} V_{(p_i,r_i)}$ $(p_i \in \mathscr{P}, p_i > 0 \text{ and } n = 1, 2, 3, ...).$

It is easy to verify that \mathscr{D} is a base for some quasi-uniformity \mathscr{U} on X. We say that the family \mathscr{D} of quasi-metrics on X generates the quasi-uniformity \mathscr{U} .

In the present paper we show (Th. 2.1) that every quasi-uniformity on a set X can be generated by a family $\mathscr P$ of quasi-metrics on X. Next, we take a certain type of families $\mathscr V$ of subsets of $X \times X$ and define scalar multiple αV of an element V of $\mathscr V$ by a positive number α satisfying some axioms; we show (Th. 2.2) that each such family $\mathscr V$ generates a quasi uniformity on X and conversely, every quasi-uniformity on X is generated by a family $\mathscr V$ of the above type (Th. 2.3). Lastly we show (Th. 2.4) that every topology on a set X can be generated by a family of quasi-metrics on X.

2. - On the generation of quasi-uniformities.

Theorem 2.1. Every quasi-uniformity on a set X can be generated by a family of quasi-metrics on X.

Proof. Let \mathscr{U} be a quasi-uniformity on the set X. Let \mathscr{B} be a base for \mathscr{U} such that no member of \mathscr{B} is equal to $X \times X$. For each V in \mathscr{B} we can choose, proceeding as in Theorem 11.1.1 ([2], Ch. 11, p. 175), a sequence $\{U_n^{(r)}\}_{n=0}^{\infty}$ of sets in \mathscr{U} with $U_{n+1}^{(r)} \circ U_{n+1}^{(r)} \circ U_{n+1}^{(r)} \subset U_n^{(r)}$, where $U_0^{(r)} = X \times X$ and $U_1^{(r)} = V$. By metrization lemma ([1], Ch. 6,12, p. 185) there is a quasi-metric p_V on X such that

(1)
$$U_{\mathbf{n}}^{(r)} \subset \{(x,y) \colon p_r(x,y) < 2^{-n+2}\} \subset U_{\mathbf{n}-1}^{(r)} \qquad (n=1,2,3,\ldots).$$

Let $\mathscr{D} = \{p_{V} \colon \mathscr{V} \in \mathscr{B}\}$. Denote by \mathscr{V} the quasi-uniformity on X generated by the family \mathscr{D} of quasi-metrics on X. Let U be any member of \mathscr{U} . There is a set V in \mathscr{B} with $V \subset U$. From (1) we have $V_{(\mathscr{D}_{p},1)} \subset U_{1}^{(r)} = V$. This gives that $U \in V$ and so $\mathscr{U} \subset V$.

Next, let $W \in \mathscr{V}$. Then there are finite number of members $V_1, V_2, ..., V_m$ in \mathscr{B} and $r_i > 0$ (i = 1, 2, ..., m) such that $\bigcap_{i=1}^m V_{(p_{T_i}, p_i)} \subset W$. Choose positive integers $n_1, n_2, ..., n_m$ with $2^{-n_i+2} < r_i$ (i = 1, 2, ..., m).

From (1) we have

$$U_{n_i}^{(\mathbf{r}_i)} \subset \{(x,\,y) \colon p_{r_i}(x,\,y) < 2^{-n_i+2}\} \subset V_{(\mathbf{p}_{r_i},r_i)} \qquad (i=1,\,2,\,\ldots,\,m) \;.$$

Write $U = \bigcap_{i=1}^m U_{n_i}^{(r_i)}$. Then $U \in \mathcal{U}$ and $U \subset \bigcap_{i=1}^m V_{(p_{r_i}, r_i)} \subset W$.

This gives that $W \in \mathcal{U}$ and so $V \subset \mathcal{U}$. Therefore we have $V = \mathcal{U}$ and the proof is complete.

Now let X be a non-void set and $\mathscr V$ be a non-void family of subsets of $X \times X$ having the following properties:

- (i) $\Delta \subset V$ for every $V \in \mathscr{V}$.
- (ii) $V_1 \cap V_2 \in \mathscr{V}$ for all $V_1, V_2 \in \mathscr{V}$.

Clearly $\mathscr V$ does not satisfy all the conditions for being a base for some quasi-uniformity on X. We denote by R_+ the set of all positive real numbers. Let f be a mapping of $R_+ \times \mathscr V$ into $\mathscr V$. For simplicity we write $\alpha \cdot V$ or αV for $f(\alpha, V)$, where $\alpha \in R_+$ and $V \in \mathscr V$ and call αV as scalar multiple of V. We suppose that this multiplication satisfies the following axioms. For $\alpha, \beta \in R_+$ and $V \in \mathscr V$

- (iii) $1 \cdot V = V$,
- (iv) $\alpha(\beta V) = (\alpha \beta) V$,
- (v) $\alpha V \subset \beta V$ if $\alpha < \beta$,
- (vi) $\alpha V \circ \beta V \subset (\alpha + \beta) V$,
- (vii) if $(x, y) \in X \times X$ and $V \in \mathscr{V}$ there is a $\lambda > 0$ such that $(x, y) \in \lambda V$.

We denote by \mathscr{F} the class of all families \mathscr{V} having the properties (i) and (ii) with a (scalar) multiplication satisfying the axioms (iii)-(vii).

Theorem 2.2. For each $\mathscr V$ in $\mathscr F$ there is a quasi-uniformity $\mathscr U$ on X such that $\mathscr V$ is a base for $\mathscr U$; and for each V in $\mathscr V$ there is a quasi-metric p_V on X such that

$$V_{(p_{\nu},r)} \subset rV \subset V_{(p_{\nu},\varrho)} \tag{0 < r < \varrho}$$

and the family $\{p_v \colon V \in \mathscr{V}\}$ of quasi-metrics on X generates the quasi-uniformity \mathscr{U} .

Proof. We prove the theorem by the following steps.

(I) Let $V \in \mathscr{V}$. Take $U = \alpha V$, where $0 < \alpha < \frac{1}{2}$. Then $U \in \mathscr{V}$. By (vi) and (v) we have $U \circ U = \alpha V \circ \alpha V \subset 2\alpha V \subset V$. Thus \mathscr{V} satisfies the conditions (B.1), (B.2) and (B.3). Hence \mathscr{V} is a base for some quasi-uniformity \mathscr{U} on X.

92

(II) Let $V \in \mathscr{V}$. Take any x, y in X. Then by (vii) there is a $\lambda > 0$ such that $(x, y) \in \lambda V$. Let $A_{(x,v)} = \{\lambda \colon \lambda > 0 \text{ and } (x, y) \in \lambda V\}$. Define $p_v(x, y)$ by $p_v(x, y) = \inf\{\lambda \colon \lambda \in A_{(x,v)}\}$. From definition it is clear that $p_v(x, y) > 0$. Since $(x, x) \in \lambda V$ for every $\lambda > 0$, we have $A_{(x,x)} = \{\lambda \colon \lambda > 0\}$ and so $p_v(x, x) = 0$.

Now let x, y, z be any three elements in X. Write $p_v(x, z) = r_1$ and $p_v(z, y) = r_2$. Choose $\varepsilon > 0$ arbitrarily. Then $(x, z) \in (r_1 + \varepsilon) V$ and $(z, y) \in (r_2 + \varepsilon) V$. By (vi) we have $(x, y) \in (r_1 + \varepsilon) V_0(r_2 + \varepsilon) V \in (r_1 + r_2 + 2\varepsilon) V$, which gives that $r_1 + r_2 + 2\varepsilon \in A_{(x,y)}$. Hence $p_v(x, y) \leqslant r_1 + r_2 + 2\varepsilon = p_v(x, z) + p_v(z, y) + 2\varepsilon$. Since $\varepsilon > 0$ is arbitrary we obtain: $p_v(x, y) \leqslant p_v(x, z) + p_v(z, y)$. Thus p_v satisfies the axioms (QM.1) and (QM.2). So p_v is a quasi-metric on X.

Let r and ϱ be any two positive numbers with $r < \varrho$. If $(x, y) \in V_{(p_{\nu}, \tau)}$, then $p_{\nu}(x, y) < r$ which gives that $(x, y) \in rV$ and so $V_{(p_{\nu}, \tau)} \subset rV$. If $(x, y) \in rV$, then $p_{\nu}(x, y) \leqslant r < \varrho$ which gives that $(x, y) \in V_{(p_{\nu}, \varrho)}$; so $rV \subset V_{(p_{\nu}, \varrho)}$. Hence $V_{(p_{\nu}, r)} \subset rV \subset V_{(p_{\nu}, \varrho)}$ for $0 < r < \varrho$.

(III) Let \mathscr{U}_0 denote the quasi-uniformity on X generated by the family $\{p_v \colon V \in \mathscr{V}\}$ of quasi-metrics on X. Let $U \in \mathscr{U}$. Since \mathscr{V} is a base for \mathscr{U} , there is a member $V \in \mathscr{V}$ with $V \subset U$. Again, since $V_{(p_v,1)} \subset V$, it follows that $U \in \mathscr{U}_0$ and so $\mathscr{U} \subset \mathscr{U}_0$.

Next, let $U \in \mathcal{U}_0$. Then there is a set W of the form $W = \bigcap_{i=1}^n V_{(\mathfrak{p}_{r_i,r_i})}$ $(V_i \in \mathscr{V})$ such that $W \subset U$. Let α be a positive number with $0 < \alpha < 1$. Write $W_0 = \bigcap_{i=1}^n (\alpha r_i) V_i$. Then $W_0 \in \mathscr{U}$. Since $(\alpha r_i) V_i \subset V_{(\mathfrak{p}_{r_i,r_i})}$ $(i=1,2,\ldots,n)$, we have $W_0 \subset W \subset U$ which gives that $U \in \mathscr{U}$; so $\mathscr{U}_0 \subset \mathscr{U}$. Therefore $\mathscr{U}_0 = \mathscr{U}$ and the proof of the theorem is complete.

Theorem 2.3. If $\mathscr U$ is a quasi-uniformity on X, then there is a family $\mathscr V$ in $\mathscr F$ such that $\mathscr V$ generates $\mathscr U$.

Proof. Let \mathscr{U} be a quasi-uniformity on the set X. Then by Theorem 2.1 there is a family \mathscr{P} of quasi-metrics on X such that \mathscr{P} generates the quasi-uniformity \mathscr{U} . Denote by \mathscr{V} the family of all sets of the form $\bigcap_{i=1}^{n} V_{(p_i,r_i)}$ $(p_i \in \mathscr{P}, r_i > 0 \text{ and } n = 1, 2, 3, ...)$.

Then $\mathscr V$ is a base for the quasi-uniformity $\mathscr U$. Clearly $\mathscr V$ possesses the properties (i) and (ii).

Let $V \in \mathscr{V}$. Then we have

$$V = \bigcap_{i=1}^{n} V_{(p_i, r_i)} \qquad (p_i \in \mathscr{P} \text{ and } r_i > 0)$$

If $\alpha \in R_+$, then $\bigcap_{i=1}^n V_{(p_i,\alpha_{r_i})}$ is also are element of \mathscr{V} . We define $\alpha V = \bigcap_{i=1}^n V_{(p_i,\alpha_{r_i})}$. It is obvious that the axioms (iii) and (iv) are satisfied.

Let $\alpha, \beta \in R_+$ and $\alpha < \beta$. If $(x, y) \in \alpha V$, then $(x, y) \in V_{(r_i, \alpha r_i)}$ (i = 1, 2, ..., n). So $p_i(x, y) < \alpha r_i < \beta r_i$ (i = 1, 2, ..., n) which gives that $(x, y) \in V_{(r_i, \beta r_i)}$ (i = 1, 2, ..., n). Thus $(x, y) \in \beta V$ and so $\alpha V \subset \beta V$ which proves (v).

Let α , β be any two elements of R_+ . If $(x,y) \in \alpha V_0 \beta V$, there is an element z in X such that $(x,z) \in \beta V$ and $(z,y) \in \alpha V$. So $p_i(x,z) < \beta r_i$ and $p_i(z,y) < \alpha r_i$ (i=1,2,...,n). Now $p_i(x,y) \leqslant p_i(x,z) + p_i(z,y) < (\alpha+\beta) r_i$ (i=1,2,...,n) which gives $(x,y) \in (\alpha+\beta) V$. So $\alpha V_0 \beta V \in (\alpha+\beta) V$. Next, let $(x,y) \in X \times X$. Write $\alpha_i = p_i(x,y)$ (i=1,2,...,n) and let $\theta = \max \{\alpha_i/r_i \colon i=1,2,...,n\}$. Choose $\lambda > \theta$. We have $p_i(x,y) = \alpha_i \leqslant \theta r_i < \lambda r_i$ (i=1,2,...,n), which gives that $(x,y) \in \lambda V$. Thus the (scalar) multiplication αV satisfies all the conditions (iii)-(vii). Therefore $\mathscr{V} \in \mathscr{F}$. By Theorem 2.2, \mathscr{V} generates a quasi-uniformity \mathscr{U}_0 (say) on X for which \mathscr{V} is a base. Since \mathscr{V} is a base of each of the quasi-uniformities \mathscr{U} and \mathscr{U}_0 we have $\mathscr{U} = \mathscr{U}_0$. This completes the proof of the theorem.

Let \mathscr{U} be a quasi-uniformity on X. For each $x \in X$ and $U \in \mathscr{U}$, let $U[x] = \{y \colon y \in X \text{ and } (x, y) \in U\}$.

Denote by τ the family of all subsets G of X such that for each $x \in G$ there is a member $U \in \mathcal{U}$ with $U[x] \subset G$. Then τ is a topology on X. We say that \mathcal{U} induces the topology τ . By Theorem 11.1.2 ([2], Ch. 11, p. 177) we see that if τ is a topology on X, there is a quasi-uniformity \mathcal{U} on X such that the topology induced by \mathcal{U} on X is identical with τ .

Let \mathscr{P} be a family of quasi-metrics on X. For any $p \in \mathscr{P}$, r > 0 and $x \in X$, let $S_{r}(x; r) = \{y : y \in X \text{ and } p(x, y) < r\}$.

Denote by \mathscr{C} the family of all subsets of X of the form

$$\bigcap_{i=1}^n S_{p_i}(x;\,p_i) \qquad (p_i\!\in\!\mathcal{P},\,r_i\!>\!0 \ \ \text{and} \ \ n=1,\,2,\,\ldots)$$
 .

Then $\mathscr C$ is a base for some topology τ on X. We say that the topology τ is generated by the family $\mathscr P$ of quasi-metrics. Since

$$\bigcap_{i=1}^{\mathbf{n}} S_{\mathbf{p}_i}(x;\, r_i) = \bigcap_{i=1}^{\mathbf{n}} V_{(\mathbf{p}_i,\, \mathbf{r}_i)}[x]$$
 ,

it follows that the topology induced by $\mathscr U$ on X is identical with that generated by the family $\mathscr P$ of quasi-metrics.

Theorem 2.4. Every topology on X can be generated by a family of quasimetrics on X.

Proof. Let τ be a topology on X. By Theorem 11.1.2 ([2], Ch. 11, p. 177) there is a quasi-uniformity $\mathscr U$ on X such that $\mathscr U$ induces the topology τ . By Theorem 2.1, $\mathscr U$ can be generated by a family $\mathscr P$ of quasi-metrics on X. From above it follows that $\mathscr P$ generates τ .

References.

- [1] J. L. Kelly, General topology, D. Van Nostrand Company, Princeton 1955.
- [2] W. J. Pervin, Foundations of general topology, Academic Press, N. Y. 1964.

* * *