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P. C. BuaxTA (%)

Some results on the generation of quasi-uniformities. (¥%)

1. - Introduction.

Let X be a non-void set. For non-void subsets U and V of X XX, UoV
is a subset of X x X defined by

UoV ={(w,9): (@2 eV and (2 y) e U for some z€ X} .

The set A is defined by 4 = {(«, »): v € X}.
A non-void family % of subsets of X x X is said to be «a quasi-uniformity
on X » if the following axioms are satisfied ([2], Ch. 11, p. 174):

(QUA) AcU for every Ue.

(QU.2) If VcXxX and UcV for some Ue, then Ve.
(QU.3) If U, Ve, then UNnVe.

(QU.4) For every Ue®, there is a V in % with VoV cC U.

The pair (X, %) is said to be «a quasi-uniform space ». A subfamily %
of % is a base of the quasi-uniformity % if for any U in %, there is a member
V of & with Vc U. A family Z of subsets of X x X is a base for some quasi-
uniformity on X iff the following conditions hold:

(B.1) A4cU for every Ue.
(B.2) For U, Ved there is a W in & with WcUnNV.
(B.3) TFor every Ue%, there is a V in # with VoVc U.

(*) Indirizzo: Department of Mathematics, Jadavpur University, Caleutta 32,
India.
(**) Ricevuto: 26-VIII-1975.



90 P. C. BHAKTA [2]

A mapping p: XXX -+ R (R = field of real numbers) is «a quasi-metric
on X » if the following axioms are satisfied (z,y, z € X):

(QM.1) p(z, ¥)>0 and p(z, &) = 0.
(QM.2)  p(=, y)<ple, 2) + ple, y).

For any quasi-metric p on X and »> 0 we write V. =1 9:2,9eX
and p(z, y) <1}

Let Z be a family of quasi-metrics on X. Denote by # the family of all
sets of the form V=]_,V(, ., (€2, p;>0 and n=1,2,3, ...).

It is easy to verify that & is a base for some quasi-uniformity % on X. We
say that the family & of quasi-metrics on X generates the quasi-uniformity %.

In the present paper we show (Th. 2.1) that every quasi-uniformity on a
set X can be generated by a family & of quasi-metrics on X. Next, we take
a certain type of families ¥~ of subsets of X x X and define scalar multiple
oV of an element V of ¥ by a positive number « satisfying some axioms;
we show (Th. 2.2) that each such family ¥ generates a quasi uniformity on X
and conversely, every quasi-uniformity on X is generated by a family 7 of
the above type (Th. 2.3). Lastly we show (Th. 2.4) that every topology on
a set X' can be generated by a family of quasi-metrics on X.

2. - On the generation of quasi-uniformities.

Theorem 2.1. Every quasi-uniformity on a set X can be generated by a
family of quasi-metrics on X.

Proof. Let % be a guasi-uniformity on the set X. Let & be a base for #
such that no member of # is equal to X x X. For each V in & we can choose,
proceeding as in Theorem 11.1.1 ([2], Ch. 11, p. 175), a sequence {UP}= = of
sets in % with UZ,0 U0 U, c UP, where U = Xx X and UP = V. By

metrization lemma ([1], Ch. 6,12, p. 185) there is a quasi-metric py on X
such that

1) U e {(w, y): prle, y) < 2772 ¢ TP n=1,2,3,..).

Let Z={p,: ¥ €%}. Denote by ¥ the quasi-uniformity on X generated
by the family & of quasi-metrics on X. Let U be any member of %. There
is @ set V in & with Vc U. From (1) we have Vi,1c U = V. This gives
that UeV and so #c V.

Next, let We¥". Then there are finite number of members V,, Vs, ..., Vi
in & and ;>0 (¢ =1, 2, ..., m) such that Nit, V(p,,i,pi) c W. Choose positive
integers ny, Ny, ..., , With 27% "<y, (1 =1, 2, ..., m).
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From (1) we have
US? c {(@, 9): py (@, 9) <274 € Vooy (=12, ..,m).

Write U =7, UY9. Then Ue# and Uci, Veyrnc W.

This gives that We% and so Vc%. Therefore we have V =% and
the proof is complete.

Now let X be a non-void set and ¥ be a non-void family of subsets of
X x X having the following properties:

(i) AcV for every Vev¥ .
() V,nV,e? for all V,, Voe ¥

Clearly 7~ does not satisfy all the conditions for being a base for some
quasi-uniformity on X. We denote by E, the set of all positive real numbers.
Let f be a mapping of R, X7  into ¥". For simplicity we write «*V or «V
for f(ee, V), where e € B, and V e ¥ and call &V as scalar multiple of V. We
suppose that this multiplication satisfies the following axioms. For «, fe B
and Vev?

(iii) 1- V=7V,
(iv) «(BV) = (ef)V,
(v) «VcpV if a<<p,
(vi) aVofVc(e+ AV,
(vii) if (z, y)e X xX and V € ¥ there is a 2> 0 such that (z, y) e AV.

We denote by & the class of all families ¥~ having the properties (i) and (ii)

with a (scalar) multiplication satisfying the axioms (iil)-(vii).

Theorem 2.2. For each 7" in F there is a quasi-uniformity % on X
such that ¥ is a base for U; and for each V in ¥ there is a quasi-metric py
on X such that

VepncrVc Ve, .0 (0 < <<p)

and the family {py: Ve ¥ Y of quasi-metrics on X generates the quasi-unifor-
mity %.

Proof. We prove the theorem by the following steps.

(I) Let Ve v . Take U = aV, where 0 <a<%. Then Ue¥". By (vi)
and (v) we have UoU = «VoaVc2«VcV. Thus ¥ satisfies the conditions
(B.1), (B.2) and (B.3). Hence ¥ is a base for some quasi-uniformity # on X.
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(II) Let Ve#". Take any x, y in X. Then by (vii) there is a 2>0
such that (x, y) € AV. Let A, = {A: 2> 0 and (&, y) € AV}. Define py(x, y) by
py(w, y) = inf {1: € 4} From definition it is clear that py(x, y) >0. Since
(.és, x) € AV for every 4> 0, we have 4, = {A: 1> 0} and so py(z, ©) = 0.

Now let @#, y, # be any three elements in X. Write py(», 2) = », and
Py(2, y) = 7,. Choose &> 0 arbitrarily. Then (z,2) € (4 &)V and (2 9) e
€(r+e) V. By (vi) we have (z,9)€ (4 ¢) Volra -+ &) VC (1 + 12+ 26) 7,
which gives that v, + 7.+ 2e€ 4,,,,. Hence prlw, y) <+ 7 + 2e = pyl(a, 2)4-
+ py(2, ¥) + 2¢. Since > 0 is arbitrary we obtain: p{=, y) <pv(x, 2) + pr(z, ¥).
Thus p, satisfies the axioms (QM.1) and (QM.2). So py is a quasi-metric on X.

Let r and ¢ be any two positive numbers with » < p. If (2, ) € Vi, »,
then py{z, y) << r which gives that (z, y) e+V and so Ve,,nc+V. If (z, y)e
erV, then pyla, ¥) <r << o which gives that (, ¥) € Vis,.0; 80 ¥V C Viw,.00. Hence
Virgy C*V C Visy,e for 0<<r <.

(I11) Let %, denote the quasi-uniformity on X generated by the family
{py: Ve 77} of quasi-metrics on X. Let U e %. Since ¥ is a base for %, there
is a member Ve? with Vc U. Again, since Vi,,)c V, it follows that
Ue, and so % CU,.

Next, let Ue%,. Then there is a set W of the form W =7, Vi,
(V.e¥) such that Wc U. Let « be a positive number with 0 < <<1.
Write W, = (i, (0r:) V;. Then W, e %. Since (ar;) V;C V(pyi.,i) (i=1,2,..,n),
we have W,c W c U which gives that U e #; so %, c %. Therefore %, = %
and the proof of the theorem is complete.

Theorem 2.3. If % is a quasi-uniformity on X, then there is a family
v in F such that ¥ generates %.

Proof. Let  be a quasi-uniformity on the set X. Then by Theorem 2.1
there is a family & of quasi-metrics on X such that & generates the quasi-
uniformity %. Denote by ¥~ the family of all sets of the form [}, V(p;’,‘_)
(p;€2, ;>0 and n=1, 2, 3, ...).

Then ¥ is a base for the quasi-uniformity #. Clearly ¥  possesses the
properties (i) and (ii).

Let Ve¥. Then we have

V=N V(pz_,,.) (p;:€Z and r;> 0)

If «eR,, then (}.; Vo, is also are element of ¥". We define «V =
= Vi=1 V@n“n)' It is obvious that the axioms (iii) and (iv) are satisfied.
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Let o, feR, and a<<f. If (x,y)eal, then (v, y)e Vi, oy (i =1, 2,...,0).
So pdw, y) <or;<pr; (i=1,2,..,n) which gives that (2,9) €V 4,
(i=1,2,..,n). Thus (x, y)epfV and so «V c gV which proves (v).

Let o; 8 be any two elements of B,. If (=, y) eV SV, there is an clement =
in X such that (z,2)efV and (z, y)eaV. So pw, 2) < fr; and pdz, y) < or;
(=1, 2 ooy 0). NOW pila, ) <pul, &) + pil, 9) < (2 + B)7s (1=1,2, .., n)
which gives (@, ¥)e(e+ V. So aVfVc(e+ ) V. Next, let (z,y)e X xX.
Write o, = pi(a, ¥) (i =1,2, ..., n) and let 0 = max {a;/r;:¢=1,2, ..., n}.
Choose 2> 0. We have pdw, y) = o;<Or;<< Ar; (¢ =1,2,..,%), which gives
that (z, y) € AV. Thus the (scalar) multiplication «V satisfies all the condi-
tions (iii)-(vii). Therefore ¥ e %#. By Theorem 2.2, ¥~ generates a quasi-
uniformity %, (say) on X for which 7" is a base. Sinee ¥ is a base of each
of the quasi-uniformities # and %, we have % = %,. This completes the
proof of the theorem.

Let % be a quasi-uniformity on X. For each € X and U e %, let Ulx] =
={y:yeX and (z,¥) e U}.

Denote by 7 the family of all subsets ¢ of X such that for each » € G there
is a member U e# with Ulz]c G. Then 7 is a topology on X. We say that
% induces the topology 7. By Theorem 11.1.2 ([2], Ch. 11, p. 177) we see
that if 7 is a topology on X, there is & quasi-uniformity % on X such that the
topology induced by # on X is identical with 7.

Let & be a family of quasi-metrics on X. For any pe?, »> 0 and
we X, let Sy(x;7) = {y:yeX and p(z, y) <7}

Denote by % the family of all subsets of X of the form

NG Spi(m; D) (p;eP,r;>02and n=1,2,..).

Then ¥ is a base for some topology 7 on X. We say that the topology 7 is
generated by the family & of quasi-metrics. Since

ﬂ?=1 Sv,-(a;; ) = ﬂ’:=1 V(pi,ri)[m] )

it follows that the topology induced by % on X is identical with that generated
by the family & of quasi-metrics.

‘Theorem 2.4. Ivery topology on X can be generated by a family of quasi-
metrics on X.

Proof. Let z be a topology on X. By Theorem 11.1.2 ([2], Ch. 11, . 177)
there is a quasi-uniformity # on X such that % induces the topology z. By
Theorem 2.1, % can be generated by a family & of quasi-metrics on X. From
above it follows that & generates 7. '
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